二维随机变量及联合分布
- 格式:pptx
- 大小:3.64 MB
- 文档页数:178
3.3二维随机变量及其分布一、联合分布函数1、定义:设(X, Y)是二维随机变量,(x,y)∈R 2,则称F(x,y)=P{X<x,Y<y}为(X,Y)的分布函数,或X 与Y 的联合分布函数。
几何意义:分布函数F(00,y x )表示随机点(X,Y)落在区域{}00,),(y y x x y x <<-∞<<∞-中的概率。
如图阴影部分: 对于(x 1,y 1),(x 2,y 2)∈R 2,(x 1<x 2,y 1<y 2),则P{x 1≤X<x 2,y 1≤y<y 2}=F(x 2,y 2)-F(x 1,y 2)-F(x 2,y 1)+F(x 1,y 1)2、分布函数F(x, y)具有如下性质(p119):(1)归一性:对任意(x,y)∈R 2, 0≤F(x,y)≤1,(2)单调不减:对任意y ∈R,当x 1<x 2时,F(x 1,y)≤F(x 2,y);对任意x ∈R ,当y 1<y 2时,F(x,y 1)≤F(x,y 2)。
(3)左连续:对任意x ∈R,0y ∈R,1),(lim ),(==∞∞∞→∞→y x F F y x 0),(lim ),(==-∞-∞-∞→-∞→y x F F y x 0),(lim ),(==-∞-∞→y x F y F x 0),(lim ),(==-∞-∞→y x F x F y ).,(),(lim )0,(000y x F y x F y x F y y ==--→(4)矩形不等式:对于任意(x 1,y 1),(x 2,y 2)∈R 2,(x 1<x 2,y 1<y 2),F(x 2,y 2)-F(x 1,2)-F(x 2,y 1)+F(x 1,y 1)≥0.反之,任一满足上述四个性质的二元函数F(x, y)都可以作为某个二维随机变量(X,Y)的分布函数。
例1:已知二维随机变量(X,Y)的分布函数为:1)求常数A ,B ,C ;2)求P{0≤X<2,0≤Y<3}。
第三章 二维随机变量及其分布第一节 基本概念1、概念网络图⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=⎭⎬⎫⎩⎨⎧→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧→分布分布分布三大统计分布函数分布正态分布均匀分布常见二维分布独立性条件分布边缘分布连续型分布密度离散型分布律联合分布F t X X X Z Y X Z Y X n 221),,min(max,),(χξΛ2、重要公式和结论例3.1 二维随机向量(X ,Y )共有六个取正概率的点,它们是:(1,-1),(2,-1),(2,0),2,2),(3,1),(3,2),并且(X ,Y )取得它们的概率相同,则(X ,Y )的联合分布},1||,1|:|),{(≤-≤+=y x y x y x D求X 的边缘密度f X (x)例3.3:设随机变量X 以概率1取值0,而Y 是任意的随机变量,证明X 与Y 相互独立。
例3.4:如图3.1,f(x,y)=8xy, f X (x)=4x 3, f Y (y)=4y-4y 3,不独立。
例3.5:f(x,y)=⎩⎨⎧≤≤≤≤其他,010,20,2y x Axy例3.6:设X 和Y 是两个相互独立的随机变量,且X ~U (0,1),Y ~e (1),求Z=X+Y 的分布密度函数f z (z)。
例3.7:设随机变量X 与Y 独立,其中X 的概率分布为,6.04.021~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡X 而Y 的概率密度为e(1),求随机变量U=1+Y X的概率密度g(u)。
二维随机变量与联合概率分布随机变量是概率论中的重要概念,它描述了随机试验的结果。
而在某些情况下,我们需要考虑两个或者多个随机变量之间的关联关系,这就引出了二维随机变量的概念。
本文将介绍二维随机变量以及联合概率分布的相关知识。
一、二维随机变量的定义在概率论中,二维随机变量由两个随机变量组成,通常用大写字母(如X、Y)表示。
二维随机变量可以表示为(X,Y)。
二、联合概率分布的定义联合概率分布是二维随机变量(X,Y)所对应的概率分布。
对于任意的(x,y),联合概率分布可以表示为P(X=x,Y=y),其中P表示概率。
三、联合概率密度函数如果二维随机变量的取值是连续的,那么联合概率分布可以用联合概率密度函数来描述。
记为f(x,y),则对于任意的(x,y),联合概率密度函数满足以下条件:1. f(x,y)大于或等于0;2. 在整个定义域上的积分等于1,即∬f(x,y)dxdy=1;3. 对于任意的事件A,有P((X,Y)∈A)=∬Af(x,y)dxdy。
四、边缘概率分布边缘概率分布是指在二维随机变量的联合分布中,只考虑某一个随机变量的概率分布。
对于离散型二维随机变量,边缘概率分布可以通过联合概率分布进行计算。
对于连续型二维随机变量,边缘概率分布可以通过联合概率密度函数积分得到。
五、条件概率分布条件概率分布是指在给定一个随机变量的取值时,另一个随机变量的概率分布。
对于二维随机变量(X,Y),在给定X=x的条件下,Y的条件概率为P(Y=y|X=x),表示Y取值为y的条件下,X取值为x的概率。
六、独立性如果二维随机变量X和Y的联合概率分布等于边缘概率分布之积,即P(X=x,Y=y)=P(X=x)P(Y=y),那么称X和Y是相互独立的。
七、联合分布函数与边缘分布函数联合分布函数是指二维随机变量(X,Y)的分布函数,记为F(x,y)=P(X≤x,Y≤y)。
边缘分布函数是指在联合分布函数中,只考虑某一随机变量的取值的分布函数。
二维随机变量及其概率分布复习资料内容摘要一、二维随机变量设随机试验的样本空间为Ω,X 和Y 是定义在Ω上的两个随机变量(X ,Y )为二维随机变量或二维随机向量。
1. 联合分布函数设(X ,Y )是二维随机变量,y x ,是任意实数,函数F (x ,y )=P{X ≤x ,Y ≤y}称为(X ,Y )的分布函数,或称随机变量X 与Y 的联合分布函数. 2. 联合分布函数的性质(1) 0≤F (x ,y )≤1;(2) F(x ,- ∞)= F(-∞,y)= F(-∞,- ∞)=0F(+∞,+ ∞)=1;(3) F(x ,y)对x 和y 分别是不减的.即对于固定的y ,若x 1<x 2,则F (x 1,y )(),y x F 2≤;对于固定的x ,若y 1<y 2,则F(x ,y 1)≤F(x ,y 2);(4) F (x ,y )关于x 右连续,关于y 右连续,即 F (x +0,y )=F (x ,y ),F (x ,y+0)=F (x ,y )。
(5) 对于任意的点(x 1,y 1),(x 2,y 2),x 1<x 2,y 1<y 2,有 F(x 2,y 2)-F(x 2,y 1)-F(x 1,y 2)+F(x 1,y 1)≥0. 3.二维离散型随机变量如果二维随机变量(X ,Y)所有可能取的数对为有限个或可数个,则称(X ,Y )为二维离散型随机变量.并且称P{X=i , Y=y j }=ij p ,i ,j=1,2…为(X,Y)的分布律,或称做X与Y的联合分布律. 分布律也可用表格列出:分布律满足下列3条性质:4.二维连续型随机变量设(X,Y)的分布函数为F(x,y),如果存在非负函数f(x,y),使得对任意实数x,y都有则称(X,Y)为二维连续型随机变量,函数f(x,y)称做(X,Y)的概率密度,或X,Y的联合概率密度.f(x,y)具有下列性质:(1)f(x,y)≥0,(2)⎰+∞∞-⎰+∞∞- f(x,y)d x dy=1(3)若f(x,y)在点(x,y)连续,则有(4)设D为x Oy平面上的区域,则f(x,y)d x dyP{(x,y)∈D}=⎰⎰D二、边缘分布1.边缘分布函数设F(X,Y)是X与Y的联合分布函数,则FX(x)=P{X≤x,Y<+∞}=F(x,+∞)F Y(y)=P{ X<+∞,Y≤y } =F(+∞)分别称为(X,Y)关于X与Y的边缘分布律。
二维随机变量两个随机变量的联合分布与相关性二维随机变量:两个随机变量的联合分布与相关性随机变量是概率论和数理统计中的重要概念,它描述了一个随机试验中可能出现的不同结果,并给出了这些结果发生的概率分布。
在某些情况下,我们需要研究两个随机变量之间的关系,这就引入了二维随机变量的概念。
本文将介绍二维随机变量的联合分布与相关性。
一、二维随机变量的定义与性质在概率论中,二维随机变量(X,Y)表示两个随机变量X和Y同时取某个值的情况。
二维随机变量可以用联合分布函数、联合概率密度函数或者联合概率质量函数来描述。
1. 联合分布函数:对于任意实数x和y,定义联合分布函数F(x,y)为二维随机变量(X,Y)满足X≤x且Y≤y的概率,即F(x,y)=P(X≤x,Y≤y)。
2. 联合概率密度函数:对于连续型二维随机变量(X,Y),如果存在非负可积函数f(x,y)使得对于任意的实数域A,有P((X,Y)∈A)=∬_Af(x,y)dxdy,则称f(x,y)为(X,Y)的联合概率密度函数。
3. 联合概率质量函数:对于离散型二维随机变量(X,Y),如果存在非负函数p(x,y)满足对于所有的(x,y)有P(X=x,Y=y)=p(x,y),则称p(x,y)为(X,Y)的联合概率质量函数。
二、联合分布的性质1. 边缘分布:对于二维随机变量(X,Y)的联合分布函数F(x,y),我们可以通过F(x,y)求得X和Y的边缘分布函数F_X(x)和F_Y(y),即F_X(x)=P(X≤x),F_Y(y)=P(Y≤y)。
2. 边缘概率密度函数(质量函数):同样地,对于具有概率密度函数(概率质量函数)的连续型(离散型)二维随机变量(X,Y),我们可以通过联合概率密度函数(概率质量函数)f(x,y)求得X和Y的边缘概率密度函数(质量函数)。
3. 条件分布:给定一个条件,我们可以求得在该条件下其他随机变量的分布。
对于二维随机变量(X,Y),若Y=y,则X的条件分布函数为F_X|Y(x|y)=P(X≤x|Y=y),条件概率密度函数(质量函数)为f_X|Y(x|y)=d/dx F_X|Y(x|y)。
二维随机变量的边缘分布与联合分布关系探讨A study of the relationship between the edge distribution and the joint distribution of two dimensional random variables专业:数学与应用数学作者:指导老师:摘要本文首先理解二维随机变量的联合分布的概念、性质及其两种基本表达形式:离散型二维随机变量联合概率分布和连续型二维随机变量联合概率密度。
掌握已知两个随机变量的联合分布时分别求它们的边缘分布的方法。
在文献研究的基础上,运用随机事元和随机事元集合,建立了二维随机变量分布和边缘分布的形式化可拓模型。
利用可拓变换和传导变换,结合形式化的可拓推理知识,对二维随机变量在可拓变换下的传导分布模型进行了研究。
将随机事元、随机事元集合、可拓变换、可拓推理知识等引入到二维随机变量分布的研究中,使分析更加形式化,逻辑性更强。
运用随机事元和随机事元集合建立了二维随机变量分布的可拓模型。
本文对这种特例作了深入研究,分析了具有这种性质的二维密度f(x,y)的结构特点与本质,有助于我们更好地了解正态分布的特殊性质。
关键词:二维随机变量;边缘分布;联合分布AbstractIn this paper,we first understand the concept and properties of the joint distribution of two-dimensional random variables and their two basic expressions: joint probability distribution of discrete two-dimensional random variables and joint probability density of continuous two-dimensional random variables. The method of finding the edge distribution of the joint distribution of two known random variables is mastered. On the basis of literature research, a formal extension model of two-dimensional random variable distribution and edge distribution is established by using random event element and random element set. By using extension transformation and conduction transformation combined with formalized knowledge of extension reasoning,the conduction and distribution models of two-dimensional random variables under extension transformation are studied. The random event element,random event set,extension transformation and extension reasoning knowledge are introduced into the study of two-dimensional random variable distribution,making the analysis more formalized and logical. The extension model of the distribution of two dimensional random variables is established by using the random event element and the set of random element. This special case is studied in depth. The structure and nature of the two-dimensional density f (x,y) with this property is analyzed,which helps us to better understand the special properties of normal distribution.Key words:two-dimensional random variables; edge distribution; joint distribution目录摘要 (I)Abstract (II)1 随机变量独立性及其判定 (1)1.1 随机变量独立性定义 (1)1.1.1随机变量及随机变量独立性的定义 (1)1.1.2随机变量独立性的两个简单定理 (2)1.2 离散型随机变量独立性的判定 (4)1.2.1离散型随机变量判别法一 (4)1.2.2离散型随机变量判别法二 (8)1.3 连续型随机变量独立性的判定 (12)1.3.1连续型随机变量判别法一 (12)1.3.2连续型随机变量判别法二 (13)2 边缘分布与联合分布关系探讨 (16)2.1 二维随机变量的分布函数 (16)2.2 二维离散型随机变量 (17)2.3 二维连续型随机变量 (18)2.4 随机变量的独立性 (18)2.5条件分布 (19)2.6 二维随机变量函数的分布 (20)结论 (21)致谢................................................................................................ 错误!未定义书签。