拉丁方实验设计
- 格式:doc
- 大小:49.50 KB
- 文档页数:2
临床试验设计拉丁方设计的原则
拉丁方设计(Latin Square Design)是一种实验设计方法,常用于处理因变量之间的相关性。
其原则如下:
1.每一个因素水平都被分配到每一个观察次数中,使得每个单元格都包含了所有因素水平的组合。
2.每一个因素水平在实验中出现的次数应该相等,这就是等权原则。
3.如果可能,每个因素水平应该在实验中出现两次,以避免偏斜。
4.如果存在多重共线性问题,可以使用因子分析来提取主要因素,然后将这些因素作为拉丁方设计的因素。
5.拉丁方设计应该包含足够的观察次数,以确保结果的可靠性。
6.在设计拉丁方时,应考虑因素之间的交互作用。
7.拉丁方设计应该尽可能地包含所有可能的因素组合,以充分利用实验资源。
8.拉丁方设计应该尽可能地简单,以减少实验的复杂性和成本。
9.拉丁方设计应该根据实验目标和资源来选择,而不是仅仅因为它是一种流行的设计方法。
实验六拉丁方实验设计实验目的了解拉丁方实验设计的基本方法与数据的分析方法。
实验工具Spss中的Analyze →General linear Model→Univariate。
知识准备一、拉丁方设计的概念将k个不同符号排成k列,使得每一个符号在每一行、每一列都只出现一次的方阵,叫做k×k拉丁方。
利用拉丁方阵进行实验设计的方法叫做拉丁方设计。
最初设计实验方案时,拉丁方阵用拉丁字母组成的方阵来表示。
后来,尽管方阵中的元素改用了字母、阿拉伯数字或其它的符号,人们仍称这种实验方案为拉丁方实验。
拉丁方设计的特点是处理数、重复数、行数、列数都相等。
如图6.47为4×4拉丁方,它的每一行和每一列都是一个区组或一次重复,而每一个处理在每一行或每一列都只出现一次,因此,它的处理数、重复数、行数、列数都等于4。
拉丁方设计的特点:重复数=处理数=列数=横行数;每个处理在横行的区组内或列的区组内都能出现一次,从两个方向都可看成重复,排列呈方形;两个方向的排列都是随机的,从两个方向进行局部控制,试验精确度较高。
缺点:处理数=重复数,若处理过多,重复随之增多,使实验工作量过大。
一般不宜超过8个处理。
若处理数过少,方差分析时的自由度过小,影响分析结果的精确性。
由于重复数与处理数必须相等,缺乏灵活性。
二、拉丁方设计步骤〔1〕根据因素的水平数选择标准方。
标准方是指代表处理的字母,在第一行和第一列均为顺序排列的拉丁方。
如图6.48。
在进行拉丁方设计时,首先要根据实验处理数k 从标准方表中选定一个k×k 的标准方。
例如处理数为5时,则需要选一个5×5的标准方,如图6.48所示。
随后我们要对选定的标准方的行、列和处理进行随机化排列。
本例处理数是5,因此根据随机数字表任选一页中的一行,除去0、6以上数字和重复数字,满5个为一组,要得到这样的3组5位数。
假设得到的3组随机数字为14325,53124,41235。
拉丁方设计--——--—--——-—----————--——-—--———-—--——---———--------—-———-——-———-“拉丁方”的名字最初是由R、A、Fisher给出的。
拉丁方设计(latin square design)是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。
在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。
在对拉丁方设计试验结果进行统计分析时,由于能将横行、直列二个单位组间的变异从试验误差中分离出来,因而拉丁方设计的试验误差比随机单位组设计小,试验精确性比随机单位组设计高。
拉丁方设计又叫平衡对抗设计(baIanced design)、轮换设计.这三个名称是从其模式、作用和方法三个不同的角度来说明这种设计的意义。
所谓平衡对抗设计,是指在实验中,由于前一个实验处理往往会影响后一个实验处理的效果,而该实验设计的作用就在于提供对实验处理顺序的控制,使实验条件均衡,抵消由于实验处理的先后顺序的影响而产生的顺序误差,因而也可称之为抵消法设计。
所谓轮换设计,是指在实验中,由于学习的首因效应,先实验的内容,被试容易记住;又因为学习的近因效应,对于刚刚学过的内容,被试回忆的效果一般也较好。
因此、在实验方法上,有必要使不同实验条件出现的先后顺序轮换,使情境条件以及先后顺序对各个实验组的机会均等,打破顺序界限。
所谓拉丁方设计,是指平衡对抗设计的结构模式,犹如拉丁字母构成的方阵。
例如四组被试接受A、B、C、D四种处理,其实验模式为:上述模式表可以看出,每种处理即表中的字母在每一行和每一列都出现了一次而且仅出现了一次。
像这样的一个方阵列就称为一个拉丁方。
要构成一个拉丁方,必须使行数等于列数,并且两者都要等于实验处理的种数。
拉丁方设计-----------------------------------------------------------------“拉丁方”的名字最初是由R、A、Fisher给出的。
拉丁方设计(latin square design)是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。
在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。
在对拉丁方设计试验结果进行统计分析时,由于能将横行、直列二个单位组间的变异从试验误差中分离出来,因而拉丁方设计的试验误差比随机单位组设计小,试验精确性比随机单位组设计高。
拉丁方设计又叫平衡对抗设计(baIanced design)、轮换设计。
这三个名称是从其模式、作用和方法三个不同的角度来说明这种设计的意义。
所谓平衡对抗设计,是指在实验中,由于前一个实验处理往往会影响后一个实验处理的效果,而该实验设计的作用就在于提供对实验处理顺序的控制,使实验条件均衡,抵消由于实验处理的先后顺序的影响而产生的顺序误差,因而也可称之为抵消法设计。
所谓轮换设计,是指在实验中,由于学习的首因效应,先实验的内容,被试容易记住;又因为学习的近因效应,对于刚刚学过的内容,被试回忆的效果一般也较好。
因此、在实验方法上,有必要使不同实验条件出现的先后顺序轮换,使情境条件以及先后顺序对各个实验组的机会均等,打破顺序界限。
所谓拉丁方设计,是指平衡对抗设计的结构模式,犹如拉丁字母构成的方阵。
例如四组被试接受A、B、C、D四种处理,其实验模式为:上述模式表可以看出,每种处理即表中的字母在每一行和每一列都出现了一次而且仅出现了一次。
像这样的一个方阵列就称为一个拉丁方。
要构成一个拉丁方,必须使行数等于列数,并且两者都要等于实验处理的种数。
拉丁方试验设计及分析1前言“拉丁方”的名字最初是由R、A、Fisher给出的。
拉丁方设计(latin square design)是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。
在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。
在对拉丁方设计试验结果进行统计分析时,由于能将横行、直列二个单位组间的变异从试验误差中分离出来,因而拉丁方设计的试验误差比随机单位就在于提供对实验处理顺序的控制,使实验条件均衡,抵消由于实验处理的先后顺序的影响而产生的顺序误差,因而也可称之为抵消法设计。
组设计小,试验精确性比随机单位组设计高。
拉丁方设计又叫平衡对抗设计(baIanced design)、轮换设计。
这三个名称是从其模式、作用和方法三个不同的角度来说明这种设计的意义。
所谓平衡对抗设计,是指在实验中,由于前一个实验处理往往会影响后一个实验处理的效果,而该实验设计的作用。
所谓轮换设计,是指在实验中,由于学习的首因效应,先实验的内容,被试容易记住;又因为学习的近因效应,对于刚刚学过的内容,被试回忆的效果一般也较好。
因此、在实验方法上,有必要使不同实验条件出现的先后顺序轮换,使情境条件以及先后顺序对各个实验组的机会均等,打破顺序界限。
所谓拉丁方设计,是指平衡对抗设计的结构模式,犹如拉丁字母构成的方阵。
例如四组被试接受A、B、C、D四种处理,其实验模式为:上述模式表可以看出,每种处理即表中的字母在每一行和每一列都出现了一次而且仅出现了一次。
像这样的一个方阵列就称为一个拉丁方。
要构成一个拉丁方,必须使行数等于列数,并且两者都要等于实验处理的种数。
在只有两个实验处理的情况下,通常采用的平衡对抗设计是以ABBA 的顺序来安排实验处理的顺序。
或者把单组被试分为两半.一半按照ABBA的顺序实施处理,另一半按照BAAB的顺序实施处理。
前言拉丁方试验设计及分析1前言“拉丁方”的名字最初是由R、A、Fisher给出的。
拉丁方设计(latin square design)是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。
在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。
在对拉丁方设计试验结果进行统计分析时,由于能将横行、直列二个单位组间的变异从试验误差中分离出来,因而拉丁方设计的试验误差比随机单位就在于提供对实验处理顺序的控制,使实验条件均衡,抵消由于实验处理的先后顺序的影响而产生的顺序误差,因而也可称之为抵消法设计。
组设计小,试验精确性比随机单位组设计高。
拉丁方设计又叫平衡对抗设计(baIanced design)、轮换设计。
这三个名称是从其模式、作用和方法三个不同的角度来说明这种设计的意义。
所谓平衡对抗设计,是指在实验中,由于前一个实验处理往往会影响后一个实验处理的效果,而该实验设计的作用。
所谓轮换设计,是指在实验中,由于学习的首因效应,先实验的内容,被试容易记住;又因为学习的近因效应,对于刚刚学过的内容,被试回忆的效果一般也较好。
因此、在实验方法上,有必要使不同实验条件出现的先后顺序轮换,使情境条件以及先后顺序对各个实验组的机会均等,打破顺序界限。
所谓拉丁方设计,是指平衡对抗设计的结构模式,犹如拉丁字母构成的方阵。
例如四组被试接受A、B、C、D四种处理,其实验模式为:上述模式表可以看出,每种处理即表中的字母在每一行和每一列都出现了一次而且仅出现了一次。
像这样的一个方阵列拉丁方试验设计及分析就称为一个拉丁方。
要构成一个拉丁方,必须使行数等于列数,并且两者都要等于实验处理的种数。
在只有两个实验处理的情况下,通常采用的平衡对抗设计是以ABBA 的顺序来安排实验处理的顺序。
上机操作4 拉丁方实验设计与SPSS 分析
习题:
采用拉丁方对草莓品种进行比较试验,分析不同品种间是否存在显著性差异?
草莓品种试验产量(kg/株)
一、假设: H 0:草莓不同品种对其产量无显著性影响
1
二、定义变量,输入数据 (1)定义变量:打开SPSS 数据编辑器,在“变量视图”模式下,在名称列下输入 “横行”、“直行”、“品种”、“产量”等字符,将“品种”的类型设置为字符串,其它的均设置为数字,小数保留为零位;
(2)输入数据:在“数据视图”模式下,在各名称列输入相应的数据,如图所示:
三、数据处理过程
分析→常规线性模型→单变量→将“产量”移入因变量,将“横行”、“直行”、“品种”移入固定因子→模型:指定模型选“定制”;建立项选择“主效应”,将“横行”、“直行”、“品种”移入模型内;平方和选择“类型Ⅲ”;选中在模型中包含截距→继续→选项:显示均值中移入“品种”;显著性水平为0.05→继续→两两比较:两两比较检验中移入“品种”,假定方差齐性勾选“Duncan ”→继续→确定
四、输出结果并分析
(1)主体间效应的检验
其产量有极显著性影响。
“横行”、“直行”对应的sig>0.05,说明“横行”、“直行”对于草莓的产量没有显著性影响。
由此可以推断原假设错误,接受备择假设H1,说明草莓不同品种间存在显著性差异。
(2)品种
从上表中数据可以看出,草莓C品种对应产量的平均值最高,说明该品种属优良品种,可提高草莓产量。
(3)产量
此可以推出,C适宜推广。