高教版中职数学拓展模块1.2正弦型函数1优质课件.ppt
- 格式:ppt
- 大小:1.15 MB
- 文档页数:20
中职数学( 高教版)拓展模块正弦型函数( 一)(优秀版)word资料【课题】 1.2正弦型函数(一)【教学目标】知识目标:掌握正弦型函数的性质.能力目标:(1)通过三角计算的学习,培养学生的计算技能与计算工具使用技能.(2)通过应用举例的学习与数学知识的应用,培养学生分析问题和解决问题的能力.【教学重点】利用正弦型函数的性质,求三角函数的周期.【教学难点】利用正弦型函数的性质,求三角函数的周期.【教学设计】本节课的教学重点是正弦型函数的性质的理解与应用,教材主要研究的正弦型函数的周期性.研究正弦型函数的周期性时,教材利用具体的正弦型函数π()sin(2)3f x x=-进行研究,令π23Z x=-,则π()sin(2)sin()3f x x Z f Z=-==.函数()sinf Z Z=的周期为2π,即Z的值每隔2π,函数值重复出现,也就是π23x-的值每隔2π,函数值重复出现。
由此看到x的值每隔π,函数值重复出现。
由此得到函数π()sin(2)3f x x=-的周期为π.恰好具有关系2ππ2=.然后进行拓展,指出正弦型函数的周期.这种处理方法,降低了难度,方便教学.讲解这部分内容时,注意“变量替换”的运用,讲清利用“变量替换”的手段进行化归的思想,以利于通过各个部分内容的教学,使得学生切实掌握这个重要的数学思维方法.例1介绍了求正弦型函数的最值及相应的角的取值的方法.解题过程中设出了新变量z的目的是突出、强化“变量替换”,熟练之后,可以省略设新变量的过程,将π26x+看做一个整体,直接写出取得最大(小)值时的角.例1是求正弦型函数周期的训练题.一般地,研究周期函数的和与积的周期比较复杂,不过多介绍.由运算结果可以看出,函数sin cos2cos sin2y x x x x=+的周期,既不与函数siny x=的周期相同,又有不与函数sin2y x=的周期相同.例题给学生一个解题思路:这类问题,都要利用三角公式转化为正弦型函数来进行研究.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】§1.5 《函数()sin y A x ωϕ=+的图像(第1课时)》教学设计一、基本说明1. 课题:函数()sin y A x ωϕ=+的图像2. 课时:1课时3. 年级:高一年级4. 模块:高中数学必修45. 所用教材版本:人民教育出版社A 版6. 所属章节:第一章第五节7. 课型:新授课二、教材分析本节课是新课标高中数学A 版必修4中第一章第5节第一课时内容。