不等式中的恒成立与基本不等式求最值问题(学案)
- 格式:doc
- 大小:44.00 KB
- 文档页数:2
第2课时 利用基本不等式求最值1.会用基本不等式解决简单的最大(小)值问题. 2.能够运用基本不等式解决生活中的应用问题.基本不等式与最值 已知x ,y 都是正数,(1)如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.温馨提示:从上面可以看出,利用基本不等式求最值时,必须有:(1)x 、y >0,(2)和(积)为定值,(3)存在取等号的条件.判断正误(正确的打“√”,错误的打“×”) (1)若a >0,b >0,且a +b =16,则ab ≤64.( ) (2)若ab =2,则a +b 的最小值为2 2.( ) (3)当x >1时,函数y =x +1x -1≥2x x -1,所以函数y 的最小值是2xx -1.( )(4)若x ∈R ,则x 2+2+1x 2+2≥2.( ) [答案] (1)√ (2)× (3)× (4)×题型一利用基本不等式求最值【典例1】 (1)若x >0,求y =4x +9x的最小值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值; (4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[思路导引] 利用基本不等式求最值,当积或和不是定值时,通过变形使其和或积为定值,再利用基本不等式求解.[解] (1)∵x >0, ∴由基本不等式得y =4x +9x≥24x ·9x=236=12,当且仅当4x =9x ,即x =32时,y =4x +9x 取最小值12.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92.当且仅当2x =3-2x ,即x =34时取“=”.∴y 的最大值为92.(3)∵x >2,∴x -2>0, ∴x +4x -2=(x -2)+4x -2+2 ≥2(x -2)·4x -2+2=6. 当且仅当x -2=4x -2, 即x =4时,x +4x -2取最小值6. (4)∵x >0,y >0,1x +9y=1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫1x +9y =10+y x +9x y≥10+29=16.当且仅当y x =9x y 且1x +9y=1时等号成立, 即x =4,y =12时等号成立.∴当x =4,y =12时,x +y 有最小值16.[变式] (1)本例(3)中,把“x >2”改为“x <2”,则x +4x -2的最值又如何? (2)本例(3)中,条件不变,改为求x 2-2x +4x -2的最小值.[解] (1)∵x <2,∴2-x >0, ∴x +4x -2=x -2+4x -2+2=-⎣⎢⎡⎦⎥⎤(2-x )+42-x +2≤-2 (2-x )·42-x+2=-2.当且仅当2-x =42-x,即x =0时,x +4x -2取最大值-2. (2)x 2-2x +4x -2=(x -2)2+2(x -2)+4x -2=x -2+4x -2+2≥2 (x -2)·4x -2+2=6 当且仅当x -2=4x -2,即x =4时,原式有最小值6.(1)若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形、合理拆分项或配凑因式.(2)若多次使用基本不等式,等号成立的条件应相同. [针对训练]1.已知x ,y >0,且满足x 3+y4=1,则xy 的最大值为________.[解析] ∵x ,y >0, ∴x 3+y 4=1≥2 xy12, 得xy ≤3,当且仅当x 3=y 4即x =32,y =2时,取“=”号,∴xy 的最大值为3.[答案] 32.已知x ,y >0,且x +y =4,则1x +3y的最小值为________.[解析] ∵x ,y >0,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x+3x y ≥4+23,当且仅当y x =3xy, 即x =2(3-1),y =2(3-3)时取“=”号, 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. [答案] 1+323.若x <3,则实数f (x )=4x -3+x 的最大值为________. [解析] ∵x <3,∴x -3<0, ∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x =3-x ,即x =1时取“=”号.∴f (x )的最大值为-1. [答案] -1题型二利用基本不等式解决实际问题【典例2】 如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围 36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?[思路导引] 设每间虎笼长x m ,宽y m ,则问题是在4x +6y =36的前提下求xy 的最大值.[解] (1)设每间虎笼长x m ,宽为y m ,则由条件知4x +6y =36,即2x +3y =18. 设每间虎笼面积为S ,则S =xy .解法一:由于2x +3y ≥22x ·3y =26xy , ∴26xy ≤18,得xy ≤272,即S ≤272,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =4.5,y =3.故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 解法二:∵2x +3y =18,∴S =xy =16·(2x )·(3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=816=272.(以下同解法一)(2)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y . ∵2x +3y ≥22x ·3y =26xy =24,∴l =4x +6y =2(2x +3y )≥48,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3y ,xy =24,解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.解决实际问题时,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).[针对训练]4.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000 m 2的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)[解] 设将楼房建为x 层,则每平方米的平均购地费用为2160×1042000 x =10800x .于是每平方米的平均综合费用y =560+48x +10800x=560+48⎝ ⎛⎭⎪⎫x +225x (x ≥10),当x +225x取最小时,y 有最小值.∵x >0,∴x +225x≥2x ·225x=30,当且仅当x =225x,即x =15时,上式等号成立.∴当x =15时,y 有最小值2000元.因此该楼房建为15层时,每平方米的平均综合费用最小.课堂归纳小结1.利用基本不等式求最大值或最小值时应注意: (1)x ,y 一定要都是正数;(2)求积xy 最大值时,应看和x +y 是否为定值;求和x +y 最小值时,应看积xy 是否为定值;(3)等号是否能够成立.以上三点可简记为“一正、二定、三相等”.2.利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用.3.求解应用题的方法与步骤(1)审题;(2)建模(列式);(3)解模;(4)作答.1.已知y =x +1x-2(x >0),则y 有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2[答案] B2.已知0<x <1,则当x (1-x )取最大值时,x 的值为( )A.13B.12C.14D.23[解析] ∵0<x <1,∴1-x >0.∴x (1-x )≤⎝ ⎛⎭⎪⎫x +1-x 22=14,当且仅当x =1-x ,即x =12时,等号成立.[答案] B3.已知p ,q ∈R ,pq =100,则p 2+q 2的最小值是________. [答案] 2004.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.[解析] 由基本不等式,得4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即x =a2时,等号成立,即a2=3,a =36.[答案] 365.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?[解] 由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x-200≥212x ·80000x-200=200, 当且仅当12x =80000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.课后作业(十二)复习巩固一、选择题1.当x >0时,y =12x+4x 的最小值为( )A .4B .8C .8 3D .16 [解析] ∵x >0,∴12x >0,4x >0.∴y =12x +4x ≥212x ·4x =8 3.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,y 的最小值为8 3.[答案] C2.设x ,y 为正数,则(x +y )⎝⎛⎭⎪⎫1x +4y的最小值为( ) A .6 B .9 C .12D .15[解析] (x +y )⎝ ⎛⎭⎪⎫1x +4y =x ·1x +4x y +y x +y ·4y =1+4+4x y +y x ≥5+24x y ·yx=9.[答案] B3.若x >0,y >0,且2x +8y=1,则xy 有( )A .最大值64B .最小值164C .最小值12D .最小值64[解析] 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.[答案] D4.已知p >0,q >0,p +q =1,且x =p +1p ,y =q +1q,则x +y 的最小值为( )A .6B .5C .4D .3[解析] 由p +q =1,∴x +y =p +1p +q +1q =1+1p +1q=1+⎝ ⎛⎭⎪⎫1p +1q (p +q )=1+2+q p +p q ≥3+2q p ·pq=5,当且仅当q p =p q 即p =q =12时取等号,所以B 选项是正确的. [答案] B 5.若a <1,则a +1a -1有最________(填“大”或“小”)值,为________. [解析] ∵a <1, ∴a -1<0, ∴-⎝⎛⎭⎪⎫a -1+1a -1=(1-a )+11-a≥2, ∴a -1+1a -1≤-2, ∴a +1a -1≤-1. 当且仅当a =0时取等号. [答案] 大 -1 二、填空题6.已知0<x <1,则x (3-3x )取得最大值时x 的值为________.[解析] 由x (3-3x )=13×3x (3-3x )≤13×⎝ ⎛⎭⎪⎫3x +3-3x 22=34,当且仅当3x =3-3x ,即x =12时等号成立.[答案] 127.已知正数x ,y 满足x +2y =1,则1x +1y的最小值为________.[解析] ∵x ,y 为正数,且x +2y =1, ∴1x +1y=(x +2y )⎝ ⎛⎭⎪⎫1x +1y =3+2y x +x y≥3+22,当且仅当2y x =x y ,即当x =2-1,y =1-22时等号成立.∴1x +1y的最小值为3+2 2.[答案] 3+2 28.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.[解析] 每年购买次数为400x次.∴总费用=400x·4+4x ≥26400=160,当且仅当1600x=4x ,即x =20时等号成立.[答案] 20 三、解答题9.已知a ,b ,x ,y >0,x ,y 为变量,a ,b 为常数,且a +b =10,a x +by=1,x +y 的最小值为18,求a ,b .[解] x +y =(x +y )⎝⎛⎭⎪⎫a x +by=a +b +bx y +ay x≥a +b +2ab =(a +b )2, 当且仅当bx y =ayx时取等号. 故(x +y )min =(a +b )2=18, 即a +b +2ab =18,① 又a +b =10,②由①②可得{ a =2,b =8或{ a =8,b =2. 10.(1)已知x <3,求f (x )=4x -3+x 的最大值; (2)设x >0,y >0,且2x +8y =xy ,求x +y 的最小值. [解] (1)∵x <3,∴x -3<0. ∴f (x )=4x -3+x =4x -3+x -3+3 =-⎝⎛⎭⎪⎫43-x +3-x +3≤-243-x·(3-x )+3=-1, 当且仅当43-x =3-x ,即x =1时取等号,∴f (x )的最大值为-1.(2)解法一:由2x +8y -xy =0,得y (x -8)=2x ,∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2x x -8=x +(2x -16)+16x -8 =(x -8)+16x -8+10 ≥2(x -8)×16x -8+10 =18. 当且仅当x -8=16x -8,即x =12时,等号成立. ∴x +y 的最小值是18.解法二:由2x +8y -xy =0及x >0,y >0,得8x +2y=1, ∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =8y x +2x y +10≥2 8y x ·2x y+10 =18.当且仅当8y x =2x y,即x =2y =12时等号成立, ∴x +y 的最小值是18.综合运用11.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( ) A.72 B .4 C.92D .5 [解析] ∵a +b =2,∴a +b2=1,∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝ ⎛⎭⎪⎫a +b 2=52+⎝ ⎛⎭⎪⎫2a b +b 2a ≥52+22a b ·b 2a =92(当且仅当2a b =b 2a ,即b =2a 时,“=”成立),故y =1a +4b 的最小值为92. [答案] C12.若xy 是正数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是( ) A .3 B.72 C .4 D.92[解析] ⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2 =x 2+y 2+14⎝ ⎛⎭⎪⎫1x 2+1y 2+x y +y x=⎝ ⎛⎭⎪⎫x 2+14x 2+⎝ ⎛⎭⎪⎫y 2+14y 2+⎝ ⎛⎭⎪⎫x y +y x ≥1+1+2=4.当且仅当x =y =22或x =y =-22时取等号. [答案] C13.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是________. [解析] 因为x >0,所以x +1x≥2, 当且仅当x =1时取等号,所以有x x 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. [答案] ⎣⎢⎡⎭⎪⎫15,+∞ 14.设x >-1,则函数y =(x +5)(x +2)x +1的最小值是________. [解析] ∵x >-1,∴x +1>0,设x +1=t >0,则x =t -1,于是有y =(t +4)(t +1)t =t 2+5t +4t=t +4t +5≥2t ·4t +5=9, 当且仅当t =4t,即t =2时取等号,此时x =1, ∴当x =1时,函数y =(x +5)(x +2)x +1取得最小值9.[答案] 915.阳光蔬菜生产基地计划建造一个室内面积为800 m 2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?[解] 设矩形温室的一边长为x m ,则另一边长为800xm(2<x <200).依题意得种植面积:S =(x -2)⎝ ⎛⎭⎪⎫800x -4=800-1600x -4x +8 =808-⎝ ⎛⎭⎪⎫1600x +4x ≤808-21600x ·4x =648, 当且仅当1600x =4x ,即x =20时,等号成立.即当矩形温室的一边长为20 m ,另一边长为40 m 时种植面积最大,最大种植面积是648 m 2.。
基本不等式以及恒成立【教学目标】一、基本不等式基本不等式:如果,a b R ∈,那么22222a b a b ab ++⎛⎫≤≤ ⎪⎝⎭(当且仅当a b =时取“=”号)当0,0a b >>时,22+≥即a b +≥a b =时取“=”号)【例题讲解】 二、基本不等式的构造(一)分式分离【知识点】分式函数求最值,二次比一次型,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。
即化为()(0,0)()A y mg xB A B g x =++>>,()g x 恒正或恒负的形式,然后运用均值不等式来求最值。
【例题讲解】★☆☆例题1.已知0x >,求函数254x x y x++=的最小值; 答案:9★☆☆练习1.函数241x x y x −+=−在1x >的条件下的最小值为_________;此时x =_________. 答案:5,3★☆☆练习2.已知0x >,则24x x x−+的最小值是 答案:3解:由于0x >, 41213x x−=,当且仅当2x =时取等号,此时取得最小值3.★★☆练习3. 求2710(1)1x x y x x ++=>−+的最小值。
答案:9解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(1)x +的项,再将其分离。
知识点要点总结:关键点在于对分式不等式的分离,明确对于分式不等式以低次幂的为主导来进行配凑,并且注意对于正负的讨论。
(二)整式凑分式分母形式【知识点】对整式加分式的形式求最值,使用配凑法。
需要调整项的符号,配凑项的系数,使其积为定值,从而利用基本不等式求解最值。
【例题讲解】★☆☆例题1.已知54x <,求函数14245y x x =−+−的最大值。
答案:1 12)45x −不是常数,所以对拆、凑项, 5,4x <∴1⎫当且仅当5备注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
专题训练:基本不等式求最值(原卷版)公开课教案教学设计课件资料一、教学目标1. 让学生掌握基本不等式的性质和应用。
2. 培养学生运用基本不等式求解最值问题的能力。
3. 提高学生分析问题、解决问题的能力,培养学生的创新思维和合作精神。
二、教学内容1. 基本不等式的定义和性质。
2. 基本不等式在求最值问题中的应用。
3. 典型例题解析。
三、教学重点与难点1. 基本不等式的性质和推导。
2. 运用基本不等式求解最值问题的方法和技巧。
四、教学过程1. 导入:通过复习初中阶段的不等式知识,引导学生回顾不等式的基本性质,为新课的学习做好铺垫。
2. 基本不等式的定义和性质:讲解基本不等式的定义,引导学生理解基本不等式的意义,并通过图形、实例等方式展示基本不等式的性质。
3. 基本不等式在求最值问题中的应用:讲解如何运用基本不等式解决最值问题,引导学生掌握解题思路和方法。
4. 典型例题解析:分析典型例题,引导学生运用基本不等式求解最值问题,培养学生分析问题、解决问题的能力。
5. 课堂练习:布置练习题,让学生巩固所学知识,提高运用基本不等式求解最值问题的能力。
五、教学评价1. 课堂问答:检查学生对基本不等式定义和性质的理解。
2. 练习题:评估学生运用基本不等式求解最值问题的能力。
3. 小组讨论:评价学生在合作中的参与程度和创新思维。
教学课件和资料:1. 基本不等式的定义和性质PPT。
2. 基本不等式求最值问题案例PPT。
3. 典型例题解析PPT。
4. 课堂练习题PDF。
教学建议:1. 注重引导学生主动探究,培养学生的创新思维。
2. 加强课堂练习,及时巩固所学知识。
3. 鼓励学生参与小组讨论,提高合作能力。
4. 注重个体差异,给予每个学生充分的关注和指导。
六、教学策略1. 案例教学:通过具体案例的分析和讨论,使学生理解和掌握基本不等式的应用。
2. 问题驱动:设计一系列问题,引导学生思考和探索,激发学生的学习兴趣和动力。
3. 合作学习:组织学生进行小组讨论和合作,培养学生的团队协作能力和沟通能力。
课题:七.不等式 3.利用基本不等式求最值 主备课人:戴立先教学目标:理解基本不等式的适用条件,掌握利用基本不等式解决最值问题.教学重点:结合配凑、换元、常量代换、消元法等利用基本不等式求最值.教学难点:把式子变形,使其符合“一正,二定,三相等”的要求.考点要求:一. 基础回归:1.已知,,)0(,∞+∈b a 若1=ab ,则b a +的最小值为_______;若1=+b a ,则ab 的最大值为________.2.下列正确结论的有 .(填序号) ①若x R ∈, 则1x x+的最小值为2; ②若0x >2+≥; ③若()0,x π∈,则sin 22sin x x+最小值为2; ④当20≤<x 时,x x 1-无最大值.3.(1)若1>a 那么11-+a a 的最小值是 .(2)若x y R +∈,,且14=+y x ,则y x ⋅的最大值是 ;的最大值 .二. 例题选讲:题型一: 例1:当23<x 时,求函数328-+=x x y 的最大值.变式:求函数21()1x x f x x -+=+)1(->x 的最小值.题型二:例2:(11重庆)已知00>>b a ,,2=+b a ,则14y a b=+的最小值是______________.变式:已1402,y 2x x x<<=+-求的最小值 .题型三:例3:已知y x ,为正实数,x y xy += ,则y x +最小值为 .变式:(10重庆)已知822,0,0=++>>xy y x y x ,则y x 2+的最小值为___________.xy 的最大值为 .三.巩固练习1.已知,,,a b x y R +∈(,a b 为常数),1a bx y+=,x y +的最小值为 .2.当210<<x时,求函数y =的最大值 .3.(11浙江)设22,1,2x y x y xy x y ++=+为实数,若4则的最大值是 . 四.小结五.作业 A 组1. 设函数)0(112)(<-+=x xx x f ,则)(x f 的最大值为__________. 2. 当822<-x x 时,函数252+--=x x x y 的最小值是____________.3.函数)1,0(1)3(log ≠>-+=a a x y a 的图象恒过定点A ,若点A 在直线01=++ny mx 上,其中nm mn 21,0+>则的最小值为_____________. 4.(08江苏)若正实数z y x ,,满足032=+-z y x ,则xzy 2的最小值为 .5.(07江苏)已知二次函数c bx ax x f ++=2)(的导数为0)0()(''>f x f ,,且对于任意实数x ,有,0)(≥x f 则)0()1('f f 的最小值为 . 6. 若正实数,2+y+6=,x y x xy 满足则3x y +的最小值是______.B 组7.已知不等式9)1)((≥++yax y x 对任意正实数y x ,恒成立,则正实数a 的最小值是___________. 8.已知0x >,0y >,且1x y +=,求的最大值 .9. (0,0)by ax a b x=+>>,(二次分式型函数) (1)简图的形状?(2)单调增区间 ; 单调减区间 .(3)当(]0,,x c ∈求函数的最小值? 该函数在(]0,c 上满足什么条件时可以运用基本不等式求最值。
专题训练:基本不等式求最值(原卷版)公开课教案教学设计课件资料第一章:基本不等式概念及性质1.1 基本不等式的定义介绍基本不等式的概念,例如算术平均数不小于几何平均数(AM-GM不等式)通过具体例子让学生理解基本不等式的含义和应用1.2 基本不等式的性质讲解基本不等式的性质,如对称性、可加性、可乘性等通过示例展示基本不等式的性质在解决问题中的应用第二章:一元二次不等式的解法2.1 一元二次不等式的标准形式介绍一元二次不等式的标准形式,如ax^2 + bx + c > 0解释一元二次不等式的解与判别式的关系2.2 一元二次不等式的解法讲解一元二次不等式的解法,包括因式分解法、配方法、判别式法等通过例题展示一元二次不等式解法的应用第三章:分式不等式的解法3.1 分式不等式的定义介绍分式不等式的概念,如a/x > b 或者(ax + b)(cx + d) > 0解释分式不等式的解与分母、分子的关系3.2 分式不等式的解法讲解分式不等式的解法,包括通分法、交叉相乘法、不等式转换法等通过例题展示分式不等式解法的应用第四章:绝对值不等式的解法4.1 绝对值不等式的定义介绍绝对值不等式的概念,如|x| > a 或者|x b| ≤c解释绝对值不等式的解与绝对值的关系4.2 绝对值不等式的解法讲解绝对值不等式的解法,包括绝对值性质法、分段法、图像法等通过例题展示绝对值不等式解法的应用第五章:不等式的应用与拓展5.1 不等式的应用介绍不等式在实际问题中的应用,如优化问题、经济问题等通过具体例子展示不等式在解决问题中的应用5.2 不等式的拓展讲解不等式的拓展知识,如柯西不等式、赫尔德不等式等介绍不等式在高等数学中的应用和研究方向第六章:利用基本不等式求最值6.1 基本不等式求最值的基本步骤介绍利用基本不等式求最值的基本步骤:构造、变形、应用不等式通过具体例子让学生理解并掌握基本步骤6.2 基本不等式在求最值中的应用讲解基本不等式在求最值中的应用,如求函数的最值、求解不等式组的最解等通过例题展示基本不等式在求最值中的应用第七章:利用导数求最值7.1 导数与最值的关系介绍导数与最值的关系,如函数在某点取得最值的必要条件是导数为0解释利用导数求最值的基本思路和方法7.2 利用导数求最值的方法与步骤讲解利用导数求最值的方法与步骤,如求导数、找临界点、判断最值等通过例题展示利用导数求最值的方法与步骤第八章:利用函数性质求最值8.1 函数的单调性与最值介绍函数的单调性与最值的关系,如单调递增函数在定义域内取得最小值解释利用函数单调性求最值的基本思路和方法8.2 利用函数性质求最值的例子讲解利用函数性质求最值的例子,如利用函数的单调性、周期性、奇偶性等通过例题展示利用函数性质求最值的方法与步骤第九章:不等式求最值的综合应用9.1 不等式求最值的综合应用例子介绍不等式求最值的综合应用,如求解多元不等式组的最解、最值问题与实际问题的结合等通过具体例子展示不等式求最值的综合应用9.2 不等式求最值的综合应用技巧讲解不等式求最值的综合应用技巧,如合理运用不等式性质、转化思想等通过例题展示不等式求最值的综合应用技巧第十章:复习与拓展10.1 不等式求最值的复习通过练习题帮助学生巩固所学知识10.2 不等式求最值的拓展介绍不等式求最值的拓展知识,如不等式的推广、最值问题的研究现状等激发学生对不等式求最值问题的研究兴趣,引导学生进行深入探究重点和难点解析第六章:利用基本不等式求最值。
专题训练:基本不等式求最值(原卷版)公开课教案教学设计课件资料一、教学目标1. 让学生掌握基本不等式的性质和运用,能够运用基本不等式求解最值问题。
2. 培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维和运算能力。
3. 通过对基本不等式的学习,激发学生对数学的兴趣和热情,培养学生的团队协作和表达能力。
二、教学内容1. 基本不等式的概念和性质。
2. 基本不等式的运用,求解最值问题。
3. 典型例题解析和练习。
三、教学重点与难点1. 重点:基本不等式的概念和性质,基本不等式的运用。
2. 难点:如何灵活运用基本不等式求解实际问题,解决最值问题。
四、教学方法1. 采用讲授法,讲解基本不等式的概念和性质,引导学生理解并掌握基本不等式的运用。
2. 采用案例分析法,分析典型例题,让学生通过实例学会解决最值问题。
3. 采用练习法,布置课堂练习和课后作业,巩固所学知识。
1. 导入:通过生活中的实例,引入基本不等式的概念,激发学生的兴趣。
2. 讲解:讲解基本不等式的性质和运用,引导学生掌握基本不等式的求解方法。
3. 例题解析:分析典型例题,让学生通过实例学会解决最值问题。
4. 课堂练习:布置课堂练习,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调基本不等式的运用和解决实际问题的方法。
6. 课后作业:布置课后作业,巩固所学知识。
六、教学评估1. 课堂练习:通过课堂练习,了解学生对基本不等式的理解和运用情况,及时发现并解决学生在学习过程中遇到的问题。
2. 课后作业:布置与本节课内容相关的课后作业,要求学生在规定时间内完成,以检验学生对知识的掌握程度。
3. 学生互评:组织学生进行小组讨论,互相评价解题过程和结果,提高学生的团队协作和沟通能力。
七、教学反思1. 教师应在课后对课堂教学进行反思,总结教学过程中的优点和不足,不断优化教学方法,提高教学效果。
2. 学生应对自己的学习过程进行反思,找出自己在学习中的薄弱环节,调整学习方法,提高学习效率。
3.4 基本不等式:√ab≤(a+b)2(二)[学习目标] 1.熟练掌握基本不等式及其变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点一基本不等式求最值1.理论依据:(1)设x,y为正实数,若x+y=s(和s为定值),则当x=y时,积xy有最大值,且这个值为s2 4 .(2)设x,y为正实数,若xy=p(积p为定值),则当x=y时,和x+y有最小值,且这个值为2p.2.基本不等式求最值的条件:(1)x,y必须是正数;(2)求积xy的最大值时,应看和x+y是否为定值;求和x+y的最小值时,应看积xy是否为定值.(3)等号成立的条件是否满足.3.利用基本不等式求最值需注意的问题:(1)各数(或式)均为正.(2)和或积为定值.(3)判断等号能否成立,“一正、二定、三相等”这三个条件缺一不可.(4)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性.知识点二基本不等式在实际中的应用基本不等式在实际中的应用是指利用基本不等式解决生产、科研和日常生活中的问题.解答不等式的应用题一般可分为四步:(1)阅读并理解材料;(2)建立数学模型;(3)讨论不等关系;(4)作出结论.题型一利用基本不等式求最值例1 (1)已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值1(2)已知t >0,则函数y =t 2-4t +1t的最小值为____.(3)已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为____.答案 (1)D (2)-2 (3)3解析 (1)f (x )=x 2-4x +52x -4=(x -2)2+12(x -2)=12⎣⎢⎡⎦⎥⎤(x -2)+1x -2≥1.当且仅当x -2=1x -2,即x =3时,等号成立. (2)y =t 2+1-4t t =t +1t-4≥2-4=-2,当且仅当t =1t,即t =1或t =-1(舍)时,等号成立,∴y 的最小值为-2.(3)xy =12·⎝ ⎛⎭⎪⎫x 3·y 4≤12·⎝ ⎛⎭⎪⎪⎫x 3+y 422=12·⎝ ⎛⎭⎪⎫122=3, 当且仅当x 3=y 4=12,即x =32,y =2时,等号成立,∴xy 的最大值为3.反思与感悟 在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件. 跟踪训练1 (1)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( )A .1B .2C .3D .4(2)已知x ,y 为正数,且2x +y =1,则1x +1y的最小值为________.答案 (1)D (2)3+2 2 解析 (1)a 2+1ab+1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab≥2+2=4.当且仅当a (a -b )=1且ab =1, 即a =2,b =22时取“=”. (2)由2x +y =1,得1x +1y =2x +y x +2x +yy=3+y x+2xy ≥3+2 y x ·2xy=3+22, 当且仅当y x =2xy,即x =2-22,y =2-1时,等号成立.题型二 基本不等式的综合应用例2 (1)已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( )A .有最大值eB .有最大值 eC .有最小值eD .有最小值 e 答案 C解析 由题意得⎝ ⎛⎭⎪⎫142=14ln x ln y ,∴ln x ln y =14,∵x >1,y >1,∴ln x ln y >0, 又ln(xy )=ln x ln y ≥2ln x ln y =1, ∴xy ≥e ,即xy 有最小值为e. (2)若对任意x >0,xx 2+3x +1≤a 恒成立,求a 的取值范围.解 设f (x )=x x 2+3x +1=1x +1x +3,∵x >0,∴x +1x≥2,∴f (x )≤15,即f (x )max =15,∴a ≥15.反思与感悟将不等式恒成立问题转化为求函数最值问题的处理方法,其一般类型有: (1)f (x )>a 恒成立⇔a <f (x )min . (2)f (x )<a 恒成立⇔a >f (x )max .跟踪训练2 (1)设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为( )A .2B .4C .1 D.12(2)函数y =kx +2k -1的图象恒过定点A ,若点A 又在直线mx +ny +1=0上,则mn 的最大值为________. 答案 (1)B (2)18解析 (1)由题意得,3a·3b=(3)2,即a +b =1, ∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab =4, 当且仅当b a =a b ,即a =b =12时,等号成立.(2)y =k (x +2)-1必经过(-2,-1),即点A (-2,-1), 代入得-2m -n +1=0, ∴2m +n =1,∴mn =12(2mn )≤12·⎝ ⎛⎭⎪⎫2m +n 22=18,当且仅当2m =n =12时,等号成立.题型三 基本不等式的实际应用例3 要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm ,请确定广告的高与宽的尺寸(单位:cm),使矩形广告面积最小,并求出最小值. 解 设矩形栏目的高为a cm ,宽为b cm ,ab =9 000.① 广告的高为a +20,宽为2b +25,其中a >0,b >0. 广告的面积S =(a +20)(2b +25)=2ab +40b +25a +500 =18 500+25a +40b ≥18 500+225a ×40b =18 500+2 1 000ab =24 500.当且仅当25a =40b 时,等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24 500,故广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小,最小值为24 500 cm 2. 反思与感悟 利用基本不等式解决实际问题的步骤(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,应用基本不等式求出函数的最大值或最小值. (4)正确写出答案.跟踪训练3 一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝ ⎛⎭⎪⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时. 答案 8解析 设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝ ⎛⎭⎪⎫v 202v=400v +16v 400≥2 400v ×16v400=8(小时), 当且仅当400v =16v400,即v =100时,等号成立,此时t =8小时.1.下列函数中,最小值为4的函数是( ) A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x+4e -xD .y =log 3x +log x 81 答案 C解析 A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C.2.函数y =x 2-x +1x -1(x >1)在x =t 处取得最小值,则t 等于( )A .1+ 2B .2C .3D .4 答案 B 解析 y =x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3, 当且仅当x -1=1x -1,即x =2时,等号成立. 3.将一根铁丝切割成三段做一个面积为 2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m 答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a+b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C. 4.函数f (x )=x (4-2x )的最大值为________. 答案 2解析 ①当x ∈(0,2)时,x ,4-2x >0, f (x )=x (4-2x )≤12⎣⎢⎡⎦⎥⎤2x +(4-2x )22=2,当且仅当2x =4-2x ,即x =1时,等号成立. ②当x ≤0或x ≥2时,f (x )≤0,故f (x )max =2.5.当x <54时,函数y =4x -2+14x -5的最大值为________.答案 1解析 ∵x <54,∴4x -5<0,∴y =4x -5+14x -5+3=-⎣⎢⎡⎦⎥⎤(5-4x )+15-4x +3 ≤-2(5-4x )·15-4x+3=1当且仅当5-4x =15-4x,即x =1时,等号成立.1.用基本不等式求最值(1)利用基本不等式求最值要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.(2)利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用基本不等式的条件.(3)在求最值的一些问题中,有时看起来可以运用基本不等式求最值,但由于其中的等号取不到,所以运用基本不等式得到的结果往往是错误的,这时通常可以借助函数y =x +px(p >0)的单调性求得函数的最值. 2.求解应用题的方法与步骤:(1)审题;(2)建模(列式);(3)解模;(4)作答.。
3.2 基本不等式与最大(小)值阅读教材P90~P91“例2”以上部分,完成下列问题.x,y都为正数时,下面的命题成立(1)若x+y=s(和为定值),则当x=y时,积xy取得最大值s24;(2)若xy=p(积为定值),则当x=y时,和x+y取得最小值思考:(1) 函数y=x+1x的最小值是2吗?[提示] 不是,只有当x>0时,才有x+1x≥2,当x<0时,没有最小值.(2)设a>0,2a+3a取得最小值时,a的值是什么?[提示] 2a+3a≥22a×3a=26,当且仅当2a=3a,即a=62时,取得最小值.1.下列函数中,最小值为4的函数是( )A.y=x+4xB.y=sin x+4sin x(0<x<π) C.y=e x+4e-x D.y=log3x+log x81C [A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C .]2.当x >0时,x +9x的最小值为________.6 [因为x >0,所以x +9x≥2x ×9x =6,当且仅当x =9x,即x =3时等号成立.]3.当x ∈(0,1)时,x (1-x )的最大值为________. 14[因为x ∈(0,1), 所以1-x >0,故x (1-x )≤⎝⎛⎭⎪⎫x +1-x 22=14, 当x =1-x ,即x =12时等号成立.]4.若点A (-2,-1)在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.8 [由已知点A 在直线mx +ny +1=0上 所以2m +n =1, 所以1m +2n =2m +n m +22m +nn=4+⎝ ⎛⎭⎪⎫n m+4m n ≥8.]利用基本不等式求最值【例1】 (1)已知x >2,则y =x +4x -2的最小值为(2)若0<x <12,则函数y =12x (1-2x )的最大值是________.(1)6 (2)116 [(1)因为x >2,所以x -2>0,所以y =x +4x -2=x -2+4x -2+2 ≥2x -2·4x -2+2=6,当且仅当x -2=4x -2,即x =4时,等号成立.所以y =x +4x -2的最小值为6.(2)因为0<x <12,所以1-2x >0,所以y =12x ·(1-2x )=14×2x ×(1-2x )≤14⎝⎛⎭⎪⎫2x +1-2x 22=14×14=116,当且仅当2x =1-2x ,即当x =14时,y max =116.]在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件.1.(1)已知t >0,则函数y =t 2-4t +1t的最小值为________.(2)设0<x ≤2,则函数ƒ(x )=x8-2x的最大值为(1)-2 (2)2 2 [(1)依题意得y =t +1t-4≥2t ·1t-4=-2,等号成立时t =1,即函数y =t 2-4t +1t(t >0)的最小值是-2.(2)因为0<x ≤2,所以0<2x ≤4,8-2x ≥4>0, 故ƒ(x )=x 8-2x=12·2x ·8-2x=12·2x ·8-2x ≤12×82=22, 当且仅当2x =8-2x ,即x =2时取等号, 所以当x =2时,ƒ(x )=x8-2x的最大值为2 2.]利用基本不等式解实际应用题相等的左右两个矩形栏目(如图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌面积最小?[解] 法一:设矩形广告牌的高为x cm ,宽为y cm ,则每栏的高和宽分别为(x -20) cm ,⎝⎛⎭⎪⎫y -252cm ,其中x >20,y >25,则两栏面积之和为2(x -20)×y -252=18 000,由此得y =18 000x -20+25,所以广告牌的面积S =xy =x ⎝ ⎛⎭⎪⎫18 000x -20+25=18 000xx -20+25x ,整理得S =360 000x -20+25(x -20)+18 500.因为x -20>0, 所以S ≥2360 000x -20×25x -20+18 500=24 500.当且仅当360 000x -20=25(x -20)时等号成立,此时有(x -20)2=14 400,解得x =140, 代入y =18 000x -20+25,得y =175.即当x =140,y =175时,S 取得最小值24 500.故当广告牌的高为140 cm ,宽为175 cm 时,可使矩形广告牌的面积最小.法二:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000,其中a >0,b >0.易知广告牌的高为(a +20) cm ,宽为(2b +25)cm.广告牌的面积S =(a +20)(2b +25)=2ab +40b +25a +500=18 500+25a +40b ≥18 500+225a ·40b =24 500,当且仅当25a =40b 时等号成立,此时b =58a ,代入ab =9 000得a =120,b =75.即当a =120,b =75时,S 取得最小值24 500.故当广告牌的高为140 cm ,宽为175 cm 时,可使矩形广告牌的面积最小.在应用基本不等式解决实际问题时,要注意以下四点: (1)先理解题意,设变量时一般把要求最值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最值问题;(3)在定义域内,求出函数的最值; (4)写出正确答案.2.(1)某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N +),则当每台机器运转________年时,年平均利润最大,最大值是________万元.(2)用一段长为36 m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?(1)5 8 [每台机器运转x 年的年平均利润为yx=18-⎝ ⎛⎭⎪⎫x +25x ,且x >0,故y x ≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.](2)[解] 设矩形菜园的长为x m 、宽为y m ,则2(x +y )=36,x +y =18,矩形菜园的面积为xy m 2.由xy ≤x +y 2=182=9,可得xy ≤81,当且仅当x =y ,即x =y =9时,等号成立.因此,这个矩形的长、宽都为9 m 时,菜园的面积最大,最大面积为81 m 2.基本不等式的综合应用[探究问题]1.(1)当x >0时,x 2+1x有最大值,还是最小值?(2)当x >0时,xx 2+1有最大值,还是最小值?[提示] (1)当x >0时,x 2+1x =x +1x ≥2x ×1x=2,当x =1时等号成立,即x 2+1x有最小值2.(2)当x >0时,xx 2+1=1x +1x,因为x +1x ≥2,所以x x 2+1≤12,故xx 2+1有最大值12. 2.(1)设a >0,b >0,(a +b )⎝ ⎛⎭⎪⎫1a +2b 的最小值是什么?(2)设a >0,b >0,且a +b =1,1a +2b的最小值是什么?[提示](1)(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b ≥3+22,当b =2a时等号成立;(2)由于a +b =1,所以1a +2b=(a +b )⎝ ⎛⎭⎪⎫1a +2b ≥22+3,当b =2a ,即a =2-1,b =2-2时,1a +2b的最小值为3+2 2.【例3】 (1)若对任意的x >0,xx 2+3x +1≤a 恒成立,求a的取值范围.(2)设a >0,b >0,若3是3a 与3b的等比中项,求1a +1b的最小值.思路探究:(1)在xx 2+3x +1中,分子、分母同时除以x ,求得xx 2+3x +1的最大值,可得a 的范围.(2)由条件求得a 与b 的关系式,可求1a +1b的最小值.[解] (1)设f (x )=x x 2+3x +1=1x +1x+3,∵x >0,∴x +1x≥2,∴f (x )≤15,即f (x )max =15,∴a ≥15.(2)由题意得,3a·3b=(3)2,即a +b =1, ∴1a +1b=⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +ab≥2+2b a ·ab=4, 当且仅当b a =a b ,即a =b =12时,等号成立.1.(变条件)(1)在例3(2)中,若3是3a与3b的等比中项,求1a+1b的最小值.(2)在例3(2)中,把条件换为“2a 和1b 的等差中项是12”,求2a+b 的最小值.[解] (1)由3是3a与3b的等比中项,得3a +b=32,即a +b =2,故12(a +b )=1,所以1a +1b =12(a +b )⎝ ⎛⎭⎪⎫1a +1b =12⎝ ⎛⎭⎪⎫2+b a +a b ≥12⎝ ⎛⎭⎪⎪⎫2+2b a ×a b =2, 当a =b =1时等号成立.(2)由于2a 和1b 的等差中项是12,则2a +1b=1,故2a +b =(2a +b )⎝ ⎛⎭⎪⎫2a +1b =5+2b a +2ab ≥5+22b a ×2ab=9.当a =b =3时等号成立.2.(变条件)把例3(2)的条件换为“a >0,b >0,且a +b +ab =1”,求a +b 的最小值.[解] a +b +ab =1,得b =1-aa +1>0,故0<a <1,故a +b =a +1-a a +1=a +-1-a +2a +1=a +2a +1-1=a +1+2a +1-2≥2a +1×2a +1-2=22-2,当a +1=2a +1,即a =2-1时等号成立.最值法解答恒成立问题将不等式恒成立问题转化为求函数最值问题的处理方法,其一般类型有:(1)f (x )>a 恒成立⇔a <f (x )min . (2)f (x )<a 恒成立⇔a >f (x )max .1.利用基本不等式求最值必须满足“一正、二定、三相等”三个条件,并且和为定值,积有最大值;积为定值,和有最小值.2.使用基本不等式求最值时,若等号取不到,则考虑用函数单调性求解.3.解决实际应用问题,关键在于弄清问题的各种数量关系,抽象出数学模型,利用基本不等式解应用题,既要注意条件是否具备,还要注意有关量的实际含义.1.判断正误(正确的打“√”,错误的打“×”)(1)两个正数的积为定值,它们的和一定能在两个数相等时取得最小值.( )(2)函数y=sin x+1sin x的最小值为2.( )(3)函数y=x2+4+1x2+4的最小值为2.( )[答案] (1)×(2)×(3)×[提示] (1)错误,这两个数可能不相等,如当x∈(0,π)时,sin x与4sin x 的积为定值,但sin x≠4sin x;(2)错误,sin x<0时,函数不存在最小值.(3)错误,因为只有x2+4=1x2+4,即x2+4=1,x2=-3时才能取到最小值,但x2=-3不成立,故(3)错.2.若x>0,y>0且2(x+y)=36,则xy的最大值为( ) A.9 B.18C.36 D.81A[由2(x+y)=36得x+y=18.所以xy ≤x +y 2=9,当且仅当x =y =9时,等号成立.]3.一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝ ⎛⎭⎪⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时.8 [设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝ ⎛⎭⎪⎫v 202v =400v +16v 400≥2400v ×16v 400=8(小时), 当且仅当400v =16v 400,即v =100时,等号成立,此时t =8小时.] 4.求函数f (x )=x x +1的最大值. [解] f (x )=x x +1=1x +1x , 因为x +1x ≥2x ×1x =2,当x =1时等号成立,所以f (x )≤12.。
高三数学复习课“基本不等式求最值”教学简案华南师范大学附属中学 xx一、教学目标复习巩固对基本不等式及其变形的理解,掌握使用基本不等式解决高考中常见的求最值问题的方法与技巧。
二、教学难点1. 如何通过代数式的变形想到或理解基本不等式的几何解释;2.使用基本不等式解决最值问题的技巧.三、教学过程1. 直接引入课题内容,开门见山(屏幕显示)1. 考纲① 了解基本不等式的证明过程;② 会用基本不等式解决简单的最大(小)值问题02.a b a b a b +>≥=2.基本不等式:如果,,那么当且仅当时,等号成立 ()()33.133()22112a b c a b c abc a b c R a b c a b a b +++++⎛⎫≥⇔≤ ⎪⎝⎭∈==+≤≤≤+基本不等式的常见变形及推广、、,当且仅当时,等号成立;2. 师生讨论不等式链的证明,数形结合加深对基本不等式的理解(1)代数证明2112a b a b +≤≤≤+ (2)几何解释:如图1,设2a b AD a BD b CD AB DE OC OC +==⊥⊥=,,,,则,211CD DEa b==+,借助几何画板软件,移动点D,可以分析三条线段的关系.图1 图2如图2,ADF BDG∆∆⊥⊥与是等腰直角三角形,FM AD于M,GN BD于N,则连结FG,可证明FG,其中2a bMN+=,比较线段MN FG与即可.3.展示同一问题使用基本不等式的三种解法,分析得出“一正二定三相等”14x y x yx y+问题:已知,都是正数,且+=1,求的最小值.1410014.8x yx yx y x y>>=+≥≥+≥≥+解法:因为,,所以所以,即的最小值是8.()11500444599.4x yx y x y x yx y y xx y⎛⎫>>+=++=++⎪⎝⎭≥+=+解法2:因为,,所以,即的最小值是()()414144414,11144441511159xxyx y x x xxx y x xx x x-++====+---+==++=-++≥---+=解法3:由,得所以,其中,等号成立的充要条件11361x x yx-===-是,即,此时.4. 基本不等式求最值的常见类型()11y x x =+型分式问题: 41,6.1x y x x >-=+++已知求的最值解:41 5 , 110159y x x x x y =+++>-+>+∴≥=由有4 ( 11,"")1x x x +===+当且仅当即时取4691y x x ∴=+++有最小值 备注:让学生做完后,追问“如果条件改为2x ≥呢”变式:()()()5211x x A x y x ++>-=+设,求的最值;()()()1152x B x y x x +>-=++设,求的最值. ()221(1)2(1)y x x x =+>-求几个正数和的最小值求函数的最小值. ()23sin cos (0).2y x x x π=<<求几个正数积的最大值求函数的最大值 ()48112x y x y x y +=+条件最值问题已知正数、满足,求的最小值. ()53x y xy x y xy =++利用均值不等式化归为其它不等式求解的问题已知正数、满足,试求的范围.5. 高考试题赏识 (1)[2010·山东卷]若对任意x >0,≤a 恒成立,则a 的取值范围_.解析:若对任意x >0,≤a 恒成立,只需求得y =的最大值即可.因为x >0,所以y ==≤=,当且仅当x =1时取等号,所以a 的取值范围是[,+∞).(2)[2011·重庆]若实数a ,b ,c 满足2a +2b =2a +b ,2a +2b +2c =2a +b +c ,则c 的最大值是________.解析:依题意得2a +2b =2a +b =2a ·2b ≤()2,由此得2a +2b ≥4;由2a +2b +2c =2a +b +c =(2a +2b )·2c 得=1-,≥1-=,2c≤,c≤log2=2-log23,当且仅当a=b=1时,c≤2-log23取等号,因此c的最大值是2-log23.(3)2211(2)(2)()A6 B7 C16 D9x y x yy x+++若,为正数,则的最小值是 ....22222222221100(2)(2)1144(4)(4)()114444C.216:x y x yy xy xx yx y x yy xx y x yx y x y+++=+++++≥=====因为>,>,所以当且仅当,,,即时取等号,即所求的最小值为,故选解析6. 小结(1)注意使用基本不等式的三个条件“一正二定三相等”;(2)若和为定值时,积有最大值;若积为定值时,和有最小值;(3)有时需要结合题意适当拼凑,需要细心观察。
基本不等式【学习目标】1.通过两个探究实例,引导学生基本不等式,了解基本不等式的几何背景,体会数形结合的思想;2.借助基本不等式解决简单的最值问题,【学习难点】1.基本不等式成立时的三个限制条件(简称一正、二定、三相等); 2.利用基本不等式求解实际问题中的最大值和最小值。
【学习重点】应用数形结合的思想证明基本不等式,并从不同角度探索基本不等式的证明过程及应用。
【学习过程】一、自主预习1.两个非负实数的算术平均值________它们的几何平均值2.若0a ≥,取0b ≥,x y =,则:2a b+≥当且仅当a b =时,等号成立这个不等式称为__________3.当x ,y 均为正数时,下面的命题均成立:(1)若x y s +=(s 为定值)则当且仅当x y =时,xy 取得最大值________ (2)若xy p =(p 为定值)则当且仅当x y =时,x y +取得最小值_____ 二、例题探究1.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示的图形,在AB 上取一点C ,使得AC a =,BC b =,过点C 作CD AB ⊥交圆周于D ,连接OD .作CE OD ⊥交OD 于E .由CD DE ≥可以证明的不等式为( )A .2(0,0)aba b a b+>>B .0,0)2a ba b +>>C (0,0)2a ba b +>>D .2220,0a b ab a b +≥(>>)2.若,0a b >,24ab a b ++=,则a b +的最小值为( ) A .2B .1C .2D .3-3.若矩形ABCD 的周长1为定值,则该矩形的面积的最大值是( )A .116 B .14C .2116D .2144.已知0m >,0xy >,当2x y +=时,不等式24mx y+≥恒成立,则m 的取值范围是( )A .)+∞B .[2,)+∞C .D .【课后巩固】1.下列命题中正确的是( )A .若,a b ∈R ,则2b a ab+≥ B .若0x >,则12x x+>C .若0x <,则44x x+≥-- D .若x ∈R ,则222222x x x --+⋅= 2.下列函数中,最小值是2的是( ) A .22x y x=+B .yC .77x x y -=+D .28(0)y x x x=+>3.函数16(0)y x x x =++>的最小值为( ) A .6 B .7 C .8 D .94.已知实数a b ∈+R ,,且2a b +=,则的最小值为( )A .9B .92C .5D .45.已知0x >,则16y x x=+的最小值为( ) A .4B .16C .8D .106.若正数a ,b 满足12ab+=ab 取最小值时,b 的值为( ) A .BC .D7.已知,0x y >,33122x y +=++,则2x y +的最小值为( ) A .9 B .12 C .15 D.3+8.已知正实数满足21a b +=,则12a b+最小值为( ) A .8 B .9 C .10 D .119.(1)设302x <<,求函数32y x x =-()的最大值; (2)解关于x 的不等式210x a x a -++()<.10.如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为245 m ,四周空白的宽度为0.5 m ,两栏之间的中缝空白的宽度为0.25 m ,设广告牌的高为 m x .(1)求广告牌的面积关于x 的函数S x (); (2)求广告牌的面积的最小值.【答案解析】1.【解析】解:由射影定理可知2CD DE OD =⋅,即222DC ab abDE a b OD a b =⋅=++,由DC DE ≥2aba b=+,2.【解析】解:∵ ,a b =*R ,24ab a b ++=,∴142b a a +=-(), ∴42242(1)6621111a a ab a a a a --+-=--=-+++++, ∴6621311a b a a a a +=-+=++-++ ∵0a >,0b >,∴3a b +≥, 当且仅当611a a +=+即1a =时取“=”, 故选:D .3.【解析】解:设矩形ABCD 的长为x ,宽为y ,则其周长122x y =+为定值,即12x y +=;所以该矩形的面积为2221()1224416x y x y S xy ⎛⎫⎪++⎛⎫⎝⎭=≤=== ⎪⎝⎭, 当且仅当14x y ==时S 取得最大值是2116.故选:C .4.【解答】解:∵0m >,0xy >,2x y +=,∴211212()222m m y mx x y m xy x y x y ⎛⎫⎛⎫-+-++=+++ ⎪ ⎪⎝⎭⎝⎭1(22m ≥++1(22m =++, ∵不等式24m x y +≥恒成立,∴1(242m ++≥,整理得0+≥2m ≥, ∴m 的取值范围为[2+∞,).【课后巩固答案解析】1.D 2.C 3.C 4.B 5.C 6.A 7.D 8.B9.【解析】解:(1)设302x <<,∵函数293(32)284y x x x ⎛⎫=-=-- ⎪⎝⎭,故当34x =时,函数取得最大值为98.(2)关于x 的不等式210x a x a -++()<,即()()10x x a --<.当1a =时,不等式即210x -()<,不等式无解;当1a >时,不等式的解集为{|}1x x a <<; 当1a <时,不等式的解集为1{|}x a x <<. 综上可得,当1a =时,不等式的解集为∅,当1a >时,不等式的解集为{|}1x x a <<,当1a <时,不等式的解集为1{|}x a x <<. 10.【解析】解:(1)依题意广告牌的高为 m t ,则()112545x t --=()., 所以451.251t x =+-,且1x >, 所以广告牌的面积45() 1.25(1)1s x tx x x x ⎛⎫==+⎪-⎝⎭>. (2)由(1)知,45() 1.251s x tx x x ⎛⎫==+⎪-⎝⎭451.25(1)46.252 1.25(46.2561.251x x x =-++=-,当且仅当451.25(1)1x x -=-,即7x =号成立. 所以76125min s x s ==()()., 广告牌的面积的最小值为61.25.。
专题训练:基本不等式求最值(原卷版)公开课教案教学设计课件资料一、教学目标1. 让学生掌握基本不等式的性质和应用。
2. 培养学生运用基本不等式求解最值问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 基本不等式的概念及性质。
2. 基本不等式在求最值中的应用。
3. 典型例题解析。
三、教学过程1. 导入:回顾基本不等式的概念及性质。
2. 新课讲解:介绍基本不等式在求最值中的应用。
3. 典型例题解析:分析并解决实际问题。
4. 课堂练习:让学生独立解决一些最值问题。
5. 总结:回顾本节课所学内容,强调重点。
四、教学方法1. 采用讲授法讲解基本不等式的性质和应用。
2. 运用案例分析法讲解典型例题。
3. 组织课堂练习,让学生参与互动。
4. 总结归纳法,帮助学生巩固知识。
五、教学评价1. 课堂练习的完成情况。
2. 学生对典型例题的理解和应用能力。
3. 学生对基本不等式求最值方法的掌握程度。
4. 学生对所学知识的总结和归纳能力。
教案设计注意事项:1. 注重基础知识的教学,让学生掌握基本不等式的性质。
2. 结合典型例题,引导学生运用基本不等式解决实际问题。
3. 注重培养学生的动手能力和思维能力,提高他们分析问题、解决问题的能力。
4. 鼓励学生提问、讨论,激发他们的学习兴趣。
5. 及时进行教学评价,了解学生掌握情况,调整教学方法。
六、教学资源1. PPT课件:包含基本不等式的性质、应用案例、典型例题等。
2. 练习题:涵盖不同难度的最值问题。
3. 教学视频:讲解基本不等式的证明和应用。
4. 教学素材:相关论文、书籍推荐。
七、教学环境1. 教室:多媒体设备、黑板、投影仪等。
2. 网络:确保教学资源的和分享。
3. 学生活动区:方便学生进行课堂练习和讨论。
八、教学策略1. 案例教学:通过分析典型例题,让学生了解基本不等式在实际问题中的应用。
2. 问题驱动:提出问题,引导学生思考和探讨,提高学生的参与度。
____第38课__基本不等式及其简单应用(2)____1. 运用基本不等式求最值、取值范围及不等式恒成立问题.2. 运用基本不等式解决实际应用问题中的最值问题.1. 阅读:必修5第99~101页.2. 解悟:①应用基本不等式解决实际问题,首先要正确理解题意,然后通过分析、思考,将实际问题转化为数学模型,再应用基本不等式求解;②解应用题时,一定要注意变量的实际意义及其取值范围;③解应用问题时,若等号取得的条件不足,应如何处理?3. 践习:在教材上的空白处,完成必修5第102页习题第3、4题.基础诊断1. 在平面直角坐标系Oy 中,曲线4x 2+9y 2=1上的点到原点O 的最短距离为__5__.解析:设曲线4x 2+9y 2=1上的点P(,y).设P(,y)到原点的距离为d =x 2+y 2=(x 2+y 2)⎝ ⎛⎭⎪⎫4x 2+9y 2=13+4y 2x 2+9x 2y2≥13+24y 2x 2·9x 2y 2=5,当且仅当4y 2x 2=9x 2y2时,d 取最小值,所以曲线4x 2+9y2=1上的点到原点O 的最短距离为5.2. 已知,y ,∈R +,-2y +3=0,则y 2xz的最小值是__3__.解析:因为,y ,>0,-2y +3=0,所以2y =+3,所以4y 2=2+6+92≥2x 2·9z 2+6=12,当且仅当2=92,即=3时取等号,所以4y 2≥12,y 2xz≥3.3. 已知函数y =log a (+3)-1(a>0且a ≠1)的图象恒过定点A ,若点A 在直线m +ny +1=0上(其中mn>0),则1m +2n的最小值是__8__.解析:由题意可得定点A(-2,-1),又因为点A 在直线m +ny +1=0上,所以2m +n =1,且mn>0,所以m>0,n>0.则1m +2n =2m +n m +4m +2n n =4+n m +4m n ≥4+4=8,当且仅当n m =4mn 时取等号,故1m +2n的最小值是8.4. 从等腰直角三角形纸片ABC 上剪下如图所示的两个正方形,其中,BC =2,∠A =90°,则这两个正方形面积之和的最小值为__12__.解析:设两个正方形的边长分别为a ,b ,则由题意可得a +b =BC 2=1,且13≤a ,b ≤23,所以两个正方形面积之和为S =a 2+b 2≥2×⎝ ⎛⎭⎪⎫a +b 22=12,当且仅当a =b =12时取等号,故两个正方形面积之和最小为12.范例导航考向❶ 基本不等式与函数综合问题例1 设,y 是正实数,且+y =1,求x 2x +2+y 2y +1的最小值.解析:设+2=m ,y +1=n.因为+y =1,所以m +n =+y +3=4,所以x 2x +2+y 2y +1=(m -2)2m +(n -1)2n =m +n +4m +1n -6=4m +1n -2.因为m +n =4,所以1=14(m +n),所以4m +1n -2=14(m +n)⎝ ⎛⎭⎪⎫4m +1n -2=14⎝ ⎛⎭⎪⎫5+4n m +m n -2≥14.当且仅当m =2n 时,取等号, 由+2=2(y +1)得=2y ,即当=23,y =13时,x 2x +2+y 2y +1取得最小值14.已知实数,y 满足>y>0,且log 2+log 2y =1,求x 2+y 2x -y的最小值.解析:因为log 2+log 2y =1,所以log 2y =1,所以y =2,所以x 2+y 2x -y =(x -y )2+2xy x -y =-y +4x -y ≥2×2=4,当且仅当=1+3,y =3-1时取等号,故x 2+y 2x -y 的最小值为4.考向❷ 基本不等式在实际应用问题中的运用例2 某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建宿舍的费用与宿舍到工厂的距离有关. 若建造宿舍的所有费用p(万元)和宿舍与工厂的距离(m )的关系式为p =k3x +5(0≤≤8),若距离为1m 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每千米成本为6万元.设 f()为建造宿舍与修路费用之和.(1) 求f()的表达式;(2) 宿舍应建在离工厂多远处,可使总费用f()最小?并求最小值.解析:(1) 根据题意得100=k 3×1+5,所以=800.故f()=8003x +5+5+6,∈[0,8].(2) f()=8003x +5+2(3+5)-5≥28003x +5·2(3x +5)-5=80-5=75, 当且仅当8003x +5=2(3+5),即=5时,取等号,此时f()的最小值是75,所以宿舍应建在离工厂5m 处,可使总费用f()最小,最小值为75万元.在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业,其用氧量包含3个方面:①下潜时,平均速度为v(米/单位时间),单位时间内用氧量为cv 2(c 为正常数);②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为v2(米/单位时间),单位时间用氧量为0.2,记该潜水员在此次考古活动中,总用氧量为y.(1) 将y 表示为v 的函数.(2) 设0<v ≤5,试确定下潜速度v ,使总的用氧量最少. 解析:(1) 潜入水底用时30v ,用氧量30v ·cv 2=30cv ,水底作业时用氧量为5×0.4=2, 返回水面用时60v ,用氧量60v ×0.2=12v ,所以y =30cv +2+12v (v>0).(2) y =30cv +2+12v≥2+230cv ·12v=2+1210c ,当且仅当30cv =12v ,即v =25c时取等号. 当25c ≤5,即c ≥2125时,v =25c时,y 取得最小 值为2+1210c. 当25c >5,即0<c<2125时,y ′=30c -12v 2=30cv 2-12v 2<0, 因此函数y =30cv +2+12v 在(0,5]上为减函数,所以当v =5时,y 的最小值为150c +225.综上,当c ≥2125时,下潜速度为25c时,用氧量最小为2+1210c ; 当0<c<2125时,下潜速度为5时,用氧量最小为150c +225.自测反馈1. 已知点(,y)在直线+3y -2=0上运动,则函数=3+27y +3的最小值是__9__.解析:因为+3y -2=0,所以+3y =2.又因为3>0,27y >0,所以=3+27y +3=3+33y +3≥23x ·33y +3=232+3=9,当且仅当3=33y ,即=3y =1时取等号.2. 过点(1,2)的直线l 与轴的正半轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,当△AOB 的面积最小时,直线l 的方程为__2+y -4=0__.解析:由题意可设直线l 的方程为x a +y b =1,a>0,b>0.因为直线l 过点(1,2),所以1a +2b =1,所以1=1a +2b≥22ab ,所以ab ≥8,当且仅当1a =2b =12,即a =2,b =4时取等号,此时△AOB 的面积取得最小值12ab =4,所以直线l 的方程为x 2+y4=1,即2+y -4=0.3. 已知a>0,b>0,若不等式m 3a +b -3a -1b ≤0恒成立,则实数m 的最大值为__16__.解析:根据已知不等式,分离变量得m ≤(3a +b)⎝ ⎛⎭⎪⎫3a +1b ,a>0,b>0.由(3a +b)⎝ ⎛⎭⎪⎫3a +1b =10+3b a +3ab≥10+23b a ·3a b =16,当且仅当3a b =3ba,即a =b 时取等号,故m 最大值为16. 4. 对于任意∈R ,不等式22-a x 2+1+3>0恒成立,则实数a 的取值范围为__(-∞,3)__.解析:由题意得22-a x 2+1+3>0对于∈R 恒成立,即a <2x 2+3x 2+1对于∈R 恒成立.令x 2+1=t (t ≥1),则2=t 2-1,所以y =2t 2+1t =2t +1t .因为y =2t +1t在[1,+∞)上单调递增,所以当t =1时,y 有最小值3,所以a <3.1. 最值问题的处理方法:①直接利用基本不等式放缩(几种配凑的技巧);②消元转化为函数求最值.2. 在运用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.3. 你还有哪些体悟,写下;:。
专题2:基本不等式1.≤a +b 2(1)基本不等式成立的条件:a >0,b >0 ;(2)等号成立的条件:当且仅当a =b 时取等号.注意:(1)a +b 2和ab 分别叫a ,b 的算术平均数和几何平均数 ;(2)两种重要变形:①a +b ab ≤⎝⎛⎭⎫a +b 22 ;2.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,则x +y x =y 时,和x +y 有最小 值2p .(简记:积定和最小 )(2)如果和x +y 是定值p ,则xy ≤⎝⎛⎭⎫a +b 22 ,那么当且仅当x =y 时,xy 有最大 值p 24.(简记:和定积最大 ) 3.几个重要的不等式(1)a 2+b 2≥ 2ab (a ,b ∈R); (2)b a +a b≥2 (a ,b 同号 ); (3)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0).※考点自测1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数y =x +1x的最小值是2.( × ) (2)当x >1时,函数y =x +1x的最小值等于2.( × ) (3)“x >0且y >0”是“x y +y x≥2”的充要条件.( × ) (4)若a >0,则a 3+1a2的最小值为2a .( × ) 2.设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82答案 C3.若函数y =x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4答案 C4.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.答案 25 m 25.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________.答案 116※题型讲练题型一 利用基本不等式求最值命题点1 配凑法求最值例1 (1)已知x <54,则f (x )=4x -2+14x -5的最大值为________. (2)函数y =x 2+2x -1(x >1)的最小值为________. 答案 (1)1 (2)23+2命题点2 “1”字代换法求最值例2 (1)已知x >0,y >0,且1x +9y =1,则x +y 的最小值为 .(2)已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是 .答案 (1)16 (2)92命题点3 换元法求最值例3 (1)函数y =x -1x +3+x -1的最大值为________.(2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.答案 (1)15 (2)6(2)已知0<x <12,则y =12x (1-2x )的最大值为 .(3)已知x ,y 满足x 2+y 2-xy =1,则x +y 的最大值为_____.答案 (1)C (2)116 (3)2题型二 利用基本不等式解决恒成立问题例4 (1)已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为() A .9 B .12 C .18 D .24(2)若对任意x >0,xx 2+3x +1≤a 恒成立,则实数a 的取值范围是________.答案 (1)B (2)a ≥15.变式训练2:(1)当x <32时,不等式a ≥x +82x -3恒成立,则实数a 的取值范围是________.(2)若对于任意x ∈N *,x 2+ax +11x +1≥3恒成立,则a 的取值范围_______.答案 (1) a ≥-52 (2)[-83,+∞)变式训练3:(1)如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36 m 长的钢筋网材料,则每间虎笼的长= ,宽= 时,可使每间虎笼面积最大,最大面积为 . 答案 长为4.5 m ,宽为3 m 时,面积最大272. (2)已知a >0,b >0,a +b =1,求证:(1+1a )(1+1b)≥9. 证明: 因为a >0,b >0,a +b =1,所以1+1a =1+a +b a =2+b a. 同理1+1b =2+a b. 所以(1+1a )(1+1b )=(2+b a )(2+a b) =5+2(b a +a b)≥5+4=9. 所以(1+1a )(1+1b )≥9(当且仅当a =b =12时等号成立).※课后练习(时间:45分钟)1.下列不等式中,一定正确的是( )A .a +4a≥4 B .a 2+b 2≥4ab C .ab ≥a +b 2 D .x 2+3x2≥2 3 答案:D2.已知x >0,y >0,x +y =3,若1x +m y(m >0)的最小值为3,则m 等于( ) A .2 B .2 2 C .3 D .4答案 D3.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( )A .1ab ≤14B .1a +1b≤1 C .ab ≥2 D .a 2+b 2≥8 答案 D4.正数a ,b 满足a +b =2,则1a +1+4b +1的最小值是( ) A .1 B .94C .9D .16 答案 B5.设a >0,b >0,且不等式1a +1b +k a +b≥0恒成立,则实数k 的最小值等于( ) A .0 B .4 C .-4 D .-2答案 C6.若y =x +1x -2(x >2)在x =a 处取最小值,则a 等于 . 答案 37.已知x ,y >0,且4x +3y =12,则xy 的最大值为_______.答案:38.设0<x <2,则函数y =x (4-2x )的最大值为 .答案 29.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元)答案:16010.已知不等式(x +y )()1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值是________.答案: 411.已知正数x ,y 满足:x +2y -xy =0,则x +2y 的最小值为 .答案 812.正数x ,y 满足1x +9y=1. (1)求xy 的最小值; (2)求x +2y 的最小值.解:(1)由1=1x +9y ≥2 1x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )()1x +9y =19+2y x +9x y ≥19+2 2y x ·9x y =19+62,当且仅当2y x =9x y ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.13.已知a 、b 、c 都是正实数,且满足9a +b =ab ,求使4a +b ≥c 恒成立的c 的取值范围.解:9a +b =ab ,故9b +1a=1, 所以4a +b =(4a +b )(9b +1a )=13+36a b +b a ≥13+236a b ·b a=25,即4a +b ≥25, 当且仅当36a b =b a,即b =6a 时等号成立. 而c >0,所以要使4a +b ≥c 恒成立,c 的取值范围为0<c ≤25.14.求函数y =x 2+7x +10x +1(x >-1)的最小值. 解析 ∵x >-1,∴x +1>0.∴y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5≥2 (x +1)4x +1+5=9. 当且仅当x +1=4x +1,即x =1时,等号成立. ∴当x =1时,函数y =x 2+7x +10x +1(x >-1)的最小值为9.。
专题训练:基本不等式求最值(原卷版)公开课教案教学设计课件资料教学目标:1. 理解基本不等式的概念和性质;2. 学会运用基本不等式求解最值问题;3. 提高解题能力和逻辑思维能力。
教学重点:1. 基本不等式的概念和性质;2. 运用基本不等式求解最值问题的方法和步骤。
教学难点:1. 基本不等式的灵活运用;2. 求解最值问题时的细节处理。
教学准备:1. PPT课件;2. 练习题。
教学过程:一、导入(5分钟)1. 引入基本不等式的概念,引导学生回顾已学过的不等式知识;2. 提问:什么是基本不等式?它有什么特点?二、知识讲解(15分钟)1. 讲解基本不等式的性质和定理;2. 举例说明基本不等式在求解最值问题中的应用;3. 引导学生理解运用基本不等式求解最值问题的方法和步骤。
三、案例分析(15分钟)1. 给出一个具体的求最值问题,引导学生运用基本不等式进行解答;2. 分析解题过程,讲解关键步骤和注意事项;四、练习与讨论(15分钟)1. 给出几道运用基本不等式求解最值问题的练习题;2. 引导学生独立解答,互相讨论和交流;3. 讲解答案,分析解题思路和方法。
2. 引导学生反思自己在解题过程中的优点和不足,提出改进措施;3. 布置作业,要求学生巩固所学知识,提高解题能力。
教学反思:本节课通过讲解基本不等式的概念、性质和应用,引导学生学会运用基本不等式求解最值问题。
在教学过程中,要注意引导学生理解基本不等式的灵活运用,以及解题过程中的细节处理。
通过练习和讨论,巩固所学知识,提高学生的解题能力和逻辑思维能力。
六、实践练习(15分钟)1. 提供一系列有关基本不等式求最值的问题,让学生独立解决;2. 鼓励学生分享解题思路和心得,讨论解决过程中遇到的问题;3. 教师对学生的解答进行点评,指出解题的关键点和常见错误。
七、拓展与应用(15分钟)1. 引导学生思考基本不等式在实际问题中的应用,例如优化问题、经济问题等;2. 提供一些实际问题,让学生尝试运用基本不等式求解;3. 学生展示解题成果,教师进行点评和指导。
3.4利用基本不等式求最值班级:_________ 姓名:_________一、学习目标:1、理解利用基本不等式求最值的原理2、掌握利用基本不等式求最值的条件3、会用基本不等式解决简单的最值问题二、学习重点与难点:重点:运用基本不等式求最值难点:利用基本不等式求最值满足的条件三、学习方法:自主探究式 四、学习过程:1、探究一:极值定理问题1:利用不等式(,)2a b ab a b R ++≤∈,已知2(0,0)x y x y ⋅=>>,你能求出x y + 的最小值吗?何时取小值?问题2:利用不等式(,)2a b ab a b R ++≤∈,已知2(0,0)x y x y +=>>,你能求出x y ⋅ 的最大值吗?何时取大值?问题3:已知0,0x y >>(1)若x y ⋅是定值p ,求min ()x y +,等号何时成立?(2)若x y +是定值s ,求max ()x y ⋅,等号何时成立?问题4:你能由问题1—3得出一般结论吗?已知,x y R +∈则:(1)若积x y p ⋅=(定值),则和x y +有最___值2p . (当日仅当_____时,取“=”号)(2)若和x y s +=(定值),则积x y ⋅有最___值24s . (当日仅当_____时,取“=”号) 即:______________________________________自主练习1:①若0x >时,求1y x x=+的最小值. ②若1x >,求11y x x =+-的最小值. ③若01x <<,求(1)y x x =⋅-的最大值.2、探究二:利用基本不等式求最值满足的条件问题5:若0x <,求1y x x=+的最大值。
条件1:由问题5,你能总结出利用基本不等式求最值时字母必须满足什么条件?自主练习2:若0x <,求21x x y x++=的最大值。
提升课基本不等式和不等式恒成立、能成立问题一、分离消元法求最值例1已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值.延伸探究已知x>0,y>0,满足xy=x+y+3,求xy的最小值.反思感悟含有多个变量的条件最值问题的解决方法对含有多个变量的条件最值问题,若无法直接利用基本不等式求解,可尝试减少变量的个数,即用其中一个变量表示另一个,再代入代数式中转化为只含有一个变量的最值问题.跟踪训练1已知a>0,b>0,且2a+b=ab-1,则a+2b的最小值为________.二、巧用“1”的代换求最值问题例2已知a>0,b>0,a+2b=1,求t=1a+1b的最小值.延伸探究若x>0,y>0,且1x+9y=1,求x+y的最小值.反思感悟 常数代换法,常数代换法解题的关键是通过代数式的变形,构造和式或积式为定值的式子,然后利用基本不等式求解最值.应用此种方法求解最值时,应把“1”的表达式与所求最值的表达式相乘求积或相除求商. 跟踪训练2 已知x >0,y >0,x +8y =xy ,求x +2y 的最小值.三、利用基本不等式求参数的值或取值范围例3 已知4x +a x(x >0,a >0)在x =3时取得最小值,则a 的值为________.反思感悟 求参数的值或取值范围的一般方法(1)分离参数,转化为求代数式的最值问题.(2)观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或取值范围.跟踪训练3 已知a >0,b >0,若不等式2a +1b ≥m 2a +b恒成立,则m 的最大值等于( ) A .10 B .9 C .8 D .7四、基本不等式的综合运用例4 已知a >0,b >0,求1a +1b+2ab 的最小值.反思感悟 多次使用基本不等式时,一定要保证几次等号成立的条件能同时成立,要善于发现“定值”,在使用时可采用拼凑法、换元法、常数代换等方法.跟踪训练3 设a >0,b >0,a +b =5,求a +1+b +3的最大值.不等式恒成立、能成立问题一、在R 上的恒成立问题例1 已知不等式kx 2+2kx -(k +2)<0恒成立,求实数k 的取值范围.注意点:若题目中未强调是一元二次不等式,且二次项系数含参,则一定要讨论二次项系数是否为0. 跟踪训练1 若关于x 的不等式kx 2+3kx +k -2≤0的解集为R ,则实数k 的取值范围是( ) A.⎩⎨⎧⎭⎬⎫k ⎪⎪ -45≤k <0 B.⎩⎨⎧⎭⎬⎫k ⎪⎪ -85≤k <0 C.⎩⎨⎧⎭⎬⎫k ⎪⎪ -45≤k ≤0 D.⎩⎨⎧⎭⎬⎫k ⎪⎪-85≤k ≤0二、在给定区间上恒成立的问题例2 当1≤x ≤2时,不等式x 2+mx +4<0恒成立,求实数m 的取值范围.反思感悟 在给定区间上的恒成立问题(1)a >0时,ax 2+bx +c <0在x ∈{x |α≤x ≤β}上恒成立⇔y =ax 2+bx +c 在x =α,x =β时的函数值同时小于0.(2)a <0时,ax 2+bx +c >0在x ∈{x |α≤x ≤β}上恒成立⇔y =ax 2+bx +c 在x =α,x =β时的函数值同时大于0. 跟踪训练2 若对任意的-3≤x ≤-1都有ax 2-x -3<0成立,则实数a 的取值范围是________.三、解决简单的能成立问题例3 当1<x <2时,关于x 的不等式x 2+mx +4>0有解,则实数m 的取值范围为________.反思感悟(1)结合二次函数图象,将问题转化为端点值的问题解决;(2)对一些简单的问题,可转化为m>y min或m<y max的形式,通过求y的最小值与最大值,求得参数的取值范围.跟踪训练3若存在x∈R,使得4x+mx2-2x+3≥2成立,求实数m的取值范围.课时对点练1.下列命题中,正确的是()A.x+4x的最小值是4B.x2+4+1x2+4的最小值是2C.如果a>b,c>d,那么a-c>b-d D.如果ac2>bc2,那么a>b2.已知a>0,b>0,2a+1b=16,若不等式2a+b≥9m恒成立,则m的最大值为()A.8 B.7 C.6 D.53.若正数x,y满足x+4y-xy=0,则3x+y的最大值为()A.13 B.38 C.37D.14.已知x,y是正数,且满足x+2y+xy=30.(1)求xy的最大值及此时的x,y值;(2)求x+y的最小值及此时的x,y值.5.已知不等式x2+ax+4<0的解集为空集,则a的取值范围是()A.{a|-4≤a≤4} B.{a|-4<a<4}C.{a|a≤-4或a≥4} D.{a|a<-4或a>4}6.若存在1≤a≤3,使得不等式ax2+(a-2)x-2>0成立,则实数x的取值范围为________.7.关于x的不等式(a2-1)x2-(a-1)x-1≤0的解集为R,则实数a的取值范围是________.8.不等式x2+8y2≥λy(x+y)对于任意的x,y∈R恒成立,求实数λ的取值范围.。