第四章 车辆的蛇行运动稳定性
- 格式:ppt
- 大小:5.27 MB
- 文档页数:25
车辆蛇形运动稳定性及运行振动分析1、车辆蛇形运动稳定性具有一定他面形状的轨道轮对即使沿着平直轨道运转,受到微小激扰后就会产生一种振幅保持现状或继续增大直道轮缘受到约束的特有运动,此时轮对向前滚动一面横向往摆动,一面又绕铅锤中心来回转动,其轮对中心轨迹呈波浪形,称蛇形运动,当激扰消失而剧烈的蛇形运动不能收敛时,则称蛇行失稳。
表面上轮对并未受到钢轨的纵向或横向位移激振,实际上这是一种自激振动,试论对对钢轨的相对运动产生了内部激振力,由这种激振力维持轮对相对运动,由机车牵引力提供的非振动能量由于轮轨间的自激机制转换为蛇形运动的能量。
当车辆运行到某速度时车辆系统中的阻尼无法消耗这种能量。
蛇形运动就失稳,该速度就称为蛇形失稳临界速度,轮轨间的蛇形运动是由等效斜率的踏面产生的,这种踏面避免轮对的轮缘始终贴靠在轨侧运动而采取的自动取中措施,正是这种取中的能力在一定条件下转化为失稳的动力。
在纯粘着滚动假设条件下,由锥形踏面轮对与钢轨间的几何关系可以推导出一个无约束自由轮对的蛇形运动频率W w及波长L w的公式,之后又推出了轴距为2L w的刚性二轴结构转向架的蛇形波长L t及蛇形频率W t的相关公式。
W w = 2πv/L w,L w =2πbr×1/λe2, W t =2πv/L t,影响蛇形运动因素很多,主要有以下几个,1轮对定位刚度,2轮对踏面等效斜率λe,3蠕滑系数,4转向架固定轴距,5中央悬挂装置。
2、车辆运行振动分析车辆垂直振动,城市轨道车辆的转向架通常采用二系悬挂,力求在有限的空间获得柔性,研究表明,车辆的两个自由度简化的垂直振动系统有两个自振频率,低频P1与总静挠度f st有关,而高频P2除与静挠度有关外,还与刚度及车体质量和簧上部分质量之比有关。
低频对应的振动型为车体与构架做相同振动,而高频振动对应车体与构架做反向振动,车体以低频振动为主,而构架则以高频振动为主干线客车及地铁轻轨车辆的两系垂直总挠度通常均在160mm以上。
车辆蛇形运动稳定性及运行振动分析车辆蛇形运动稳定性及运行振动分析1、车辆蛇形运动稳定性具有一定他面形状的轨道轮对即使沿着平直轨道运转,受到微小激扰后就会产生一种振幅保持现状或继续增大直道轮缘受到约束的特有运动,此时轮对向前滚动一面横向往摆动,一面又绕铅锤中心来回转动,其轮对中心轨迹呈波浪形,称蛇形运动,当激扰消失而剧烈的蛇形运动不能收敛时,则称蛇行失稳。
表面上轮对并未受到钢轨的纵向或横向位移激振,实际上这是一种自激振动,试论对对钢轨的相对运动产生了内部激振力,由这种激振力维持轮对相对运动,由机车牵引力提供的非振动能量由于轮轨间的自激机制转换为蛇形运动的能量。
当车辆运行到某速度时车辆系统中的阻尼无法消耗这种能量。
蛇形运动就失稳,该速度就称为蛇形失稳临界速度,轮轨间的蛇形运动是由等效斜率的踏面产生的,这种踏面避免轮对的轮缘始终贴靠在轨侧运动而采取的自动取中措施,正是这种取中的能力在一定条件下转化为失稳的动力。
在纯粘着滚动假设条件下,由锥形踏面轮对与钢轨间的几何关系可以推导出一个无约束自由轮对的蛇形运动频率W w及波长L w的公式,之后又推出了轴距为2L w的刚性二轴结构转向架的蛇形波长L t及蛇形频率W t的相关公式。
W w = 2πv/L w,L w =2πbr×1/λe2, W t =2πv/L t,影响蛇形运动因素很多,主要有以下几个,1轮对定位刚度,2轮对踏面等效斜率λe,3蠕滑系数,4转向架固定轴距,5中央悬挂装置。
2、车辆运行振动分析车辆垂直振动,城市轨道车辆的转向架通常采用二系悬挂,力求在有限的空间获得柔性,研究表明,车辆的两个自由度简化的垂直振动系统有两个自振频率,低频P1与总静挠度f st有关,而高频P2除与静挠度有关外,还与刚度及车体质量和簧上部分质量之比有关。
低频对应的振动型为车体与构架做相同振动,而高频振动对应车体与构架做反向振动,车体以低频振动为主,而构架则以高频振动为主干线客车及地铁轻轨车辆的两系垂直总挠度通常均在160mm以上。
车辆蛇形运动稳定性及运行振动分析1、车辆蛇形运动稳定性具有一定他面形状的轨道轮对即使沿着平直轨道运转,受到微小激扰后就会产生一种振幅保持现状或继续增大直道轮缘受到约束的特有运动,此时轮对向前滚动一面横向往摆动,一面又绕铅锤中心来回转动,其轮对中心轨迹呈波浪形,称蛇形运动,当激扰消失而剧烈的蛇形运动不能收敛时,则称蛇行失稳。
表面上轮对并未受到钢轨的纵向或横向位移激振,实际上这是一种自激振动,试论对对钢轨的相对运动产生了内部激振力,由这种激振力维持轮对相对运动,由机车牵引力提供的非振动能量由于轮轨间的自激机制转换为蛇形运动的能量。
当车辆运行到某速度时车辆系统中的阻尼无法消耗这种能量。
蛇形运动就失稳,该速度就称为蛇形失稳临界速度,轮轨间的蛇形运动是由等效斜率的踏面产生的,这种踏面避免轮对的轮缘始终贴靠在轨侧运动而采取的自动取中措施,正是这种取中的能力在一定条件下转化为失稳的动力。
在纯粘着滚动假设条件下,由锥形踏面轮对与钢轨间的几何关系可以推导出一个无约束自由轮对的蛇形运动频率W w及波长L w的公式,之后又推出了轴距为2L w的刚性二轴结构转向架的蛇形波长L t及蛇形频率W t的相关公式。
W w = 2πv/L w,L w =2πbr×1/λe2, W t =2πv/L t,影响蛇形运动因素很多,主要有以下几个,1轮对定位刚度,2轮对踏面等效斜率λe,3蠕滑系数,4转向架固定轴距,5中央悬挂装置。
2、车辆运行振动分析车辆垂直振动,城市轨道车辆的转向架通常采用二系悬挂,力求在有限的空间获得柔性,研究表明,车辆的两个自由度简化的垂直振动系统有两个自振频率,低频P1与总静挠度f st有关,而高频P2除与静挠度有关外,还与刚度及车体质量和簧上部分质量之比有关。
低频对应的振动型为车体与构架做相同振动,而高频振动对应车体与构架做反向振动,车体以低频振动为主,而构架则以高频振动为主干线客车及地铁轻轨车辆的两系垂直总挠度通常均在160mm以上。
车辆蛇形运动稳定性及运行振动分析1、车辆蛇形运动稳定性具有一定他面形状的轨道轮对即使沿着平直轨道运转,受到微小激扰后就会产生一种振幅保持现状或继续增大直道轮缘受到约束的特有运动,此时轮对向前滚动一面横向往摆动,一面又绕铅锤中心来回转动,其轮对中心轨迹呈波浪形,称蛇形运动,当激扰消失而剧烈的蛇形运动不能收敛时,则称蛇行失稳。
表面上轮对并未受到钢轨的纵向或横向位移激振,实际上这是一种自激振动,试论对对钢轨的相对运动产生了内部激振力,由这种激振力维持轮对相对运动,由机车牵引力提供的非振动能量由于轮轨间的自激机制转换为蛇形运动的能量。
当车辆运行到某速度时车辆系统中的阻尼无法消耗这种能量。
蛇形运动就失稳,该速度就称为蛇形失稳临界速度,轮轨间的蛇形运动是由等效斜率的踏面产生的,这种踏面避免轮对的轮缘始终贴靠在轨侧运动而采取的自动取中措施,正是这种取中的能力在一定条件下转化为失稳的动力。
在纯粘着滚动假设条件下,由锥形踏面轮对与钢轨间的几何关系可以推导出一个无约束自由轮对的蛇形运动频率W w及波长L w的公式,之后又推出了轴距为2L w的刚性二轴结构转向架的蛇形波长L t及蛇形频率W t的相关公式。
W w = 2πv/L w,L w =2πbr×1/λe2, W t =2πv/L t,影响蛇形运动因素很多,主要有以下几个,1轮对定位刚度,2轮对踏面等效斜率λe,3蠕滑系数,4转向架固定轴距,5中央悬挂装置。
2、车辆运行振动分析车辆垂直振动,城市轨道车辆的转向架通常采用二系悬挂,力求在有限的空间获得柔性,研究表明,车辆的两个自由度简化的垂直振动系统有两个自振频率,低频P1与总静挠度f st有关,而高频P2除与静挠度有关外,还与刚度及车体质量和簧上部分质量之比有关。
低频对应的振动型为车体与构架做相同振动,而高频振动对应车体与构架做反向振动,车体以低频振动为主,而构架则以高频振动为主干线客车及地铁轻轨车辆的两系垂直总挠度通常均在160mm以上。
车辆蛇形运动稳定性及运行振动分析1、车辆蛇形运动稳定性具有一定他面形状的轨道轮对即使沿着平直轨道运转,受到微小激扰后就会产生一种振幅保持现状或继续增大直道轮缘受到约束的特有运动,此时轮对向前滚动一面横向往摆动,一面又绕铅锤中心来回转动,其轮对中心轨迹呈波浪形,称蛇形运动,当激扰消失而剧烈的蛇形运动不能收敛时,则称蛇行失稳。
表面上轮对并未受到钢轨的纵向或横向位移激振,实际上这是一种自激振动,试论对对钢轨的相对运动产生了内部激振力,由这种激振力维持轮对相对运动,由机车牵引力提供的非振动能量由于轮轨间的自激机制转换为蛇形运动的能量。
当车辆运行到某速度时车辆系统中的阻尼无法消耗这种能量。
蛇形运动就失稳,该速度就称为蛇形失稳临界速度,轮轨间的蛇形运动是由等效斜率的踏面产生的,这种踏面避免轮对的轮缘始终贴靠在轨侧运动而采取的自动取中措施,正是这种取中的能力在一定条件下转化为失稳的动力。
在纯粘着滚动假设条件下,由锥形踏面轮对与钢轨间的几何关系可以推导出一个无约束自由轮对的蛇形运动频率W w及波长L w的公式,之后又推出了轴距为2L w的刚性二轴结构转向架的蛇形波长L t及蛇形频率W t的相关公式。
W w = 2πv/L w,L w =2πbr×1/λe2, W t =2πv/L t,影响蛇形运动因素很多,主要有以下几个,1轮对定位刚度,2轮对踏面等效斜率λe,3蠕滑系数,4转向架固定轴距,5中央悬挂装置。
2、车辆运行振动分析车辆垂直振动,城市轨道车辆的转向架通常采用二系悬挂,力求在有限的空间获得柔性,研究表明,车辆的两个自由度简化的垂直振动系统有两个自振频率,低频P1与总静挠度f st有关,而高频P2除与静挠度有关外,还与刚度及车体质量和簧上部分质量之比有关。
低频对应的振动型为车体与构架做相同振动,而高频振动对应车体与构架做反向振动,车体以低频振动为主,而构架则以高频振动为主干线客车及地铁轻轨车辆的两系垂直总挠度通常均在160mm以上。
§7车辆的的蛇行运动稳定性稳定性包括:静态平衡稳定性和动态(运动)稳定性两大类 静态平衡稳定性:可从静力平衡条件来判定车体在弹簧上的搞倾覆稳定性;车辆抗倾覆稳定性; 轮对抗脱轨稳定性。
动态稳定性:必须从运动方程或者其解的特征来判定。
一、自由轮对的蛇行运动 (三个问题) ○1 基本假设 ○2 运动方程及其解 ○3 解答结果讨论1.其本假设有四点:(1) 自由轮对沿着轨距不变、刚性路面上的平直钢轨作等速运动;(2) 轮对为一刚体,其两个车轮连续不断与钢轨接触; (3) 轮对的运动属微幅振动。
因此轮轨接触几何关系。
蠕滑率-力规律均为线性,且认为纵向蠕滑与横向蠕滑系数相等即f f f ==2211;(4) 自由轮对带有锥形踏面,在新轮与新轨接角时,踏面斜率较小,因此不计重力刚度产生的力和重力角刚度产生的力矩。
以上各条中,假设轮对为刚体并不合适。
1. 运动方程及其解y w ωλ y 受力分析轮对受到蠕滑力的作用(由轮对横摆和摇头引起) 蠕滑力的计算 fv T -= VVv ∆= 设轮对前进速度为V ,角速度为ω。
由轮对横摆引起的蠕滑率左轮 轮对中心 右轮 纵向 滚动圆半径 y r r l λ-=0 r 0 y r r R λ+=0 理论速度 ω(y r λ-0) ωr 0 ω(y r λ+0)滑动速度V -ω(y r λ-0) V -ω(y r λ+0) w y ωλ -w y ωλ纵向蠕滑率)(w x y vr y wλ -r y wλ横向蠕滑率)(w y y v Vw y ∙Vw y ∙由轮对摇头引起的蠕滑率纵向滑动速度: b w ψ -b w ψ 蠕滑率)(w x v ψ:V b ∙ψ -Vb ∙ψ横向 由于的存在,V 的横向分速度:-V w ψ -V w ψ 蠕滑率)(w y v ψ -w ψ -w ψ 合成蠕滑率 1vr y wλ+V b ∙ψ -0r y w λ-V b ∙ψ2vVwy ∙-w ψVwy ∙-w ψ纵向蠕滑力: -f (r y wλ+V b ∙ψ) f (0r y w λ+V b ∙ψ) 横向蠕滑力: -f (Vw y ∙-w ψ) -f (Vw y∙-w ψ)轮对的左右车轮上作用着纵向蠕滑力大小相等、方向相反,形成一力偶,力偶矩为: M Z =2b f (r y wλ+V b ∙ψ)=2f (w y r bλ+V b ∙ψ2) 横向力大小相等方向相同,其受力图如下Vwy ∙-w ψ)f (Vw y∙应用牛顿定律。