第八章分光光度法分析
- 格式:ppt
- 大小:1.52 MB
- 文档页数:105
【关键字】分析第八章吸光光度法基于物质对光的选择性吸收而建立的分析方法称为吸光光度法。
包括比色法、看来及紫外分光光度法等。
本章主要讨论看来光区的吸光光度法。
利用看来光进行分光光度法分析时,通常将被测组分通过化学反应转变成有色化合物,然后进行吸光度的测量。
例如:测量钢样中Mn的含量,在酸性溶液中将Mn 氧化为MnO4-,然后进行吸光度的测量。
与化学分析法比较它具有如下特点:(一)灵敏度高分光光度法常用于测定试样中1-0.001%的微量组分。
对固体试样一般可测至10-4%。
(二)分析微量组分的准确度高例如:含铁量为0.001%的试样,如果用滴定法测定,称量试样,仅含铁0.01mg,无法用滴定分析法测定。
如果用显色剂1,10-邻二氮杂菲与铁生成橙红色的1,10-邻二氮杂菲亚铁配合物就可用吸光光度法来测定。
Fe2+ + 3(1,10-phen) → [ Fe(1,10-phen)3] 2+(三)操作简便,测定快速(四)应用广泛几乎所有的无机离子和许多有机化合物都可直接或间接地用分光光度法测定。
可用来研究化学反应的机理、溶液中配合物的组成、测定一些酸碱的离解常数等。
§8-1 吸光光度法基本原理一、物质对光的选择吸收当光束照射到物质上时,光与物质发生相互作用,产生了反射、散射、吸收或透射(p241, 图9-1)。
若被照射的是均匀的溶液,则光在溶液中的散射损失可以忽略。
当一束由红、橙、黄、绿、青、蓝、紫等各种颜色的光复合而成的白光通过某一有色溶液时,一些波长的光被溶液吸收,另一些波长的光则透过。
当透射光波长在400-700nm范围时,人眼可觉察到颜色的存在,这部分光被称为看来光。
透射光和吸收光呈互补色,即物质呈现的颜色是与其吸收光呈互补色的透射光的颜色。
例如:CuSO4溶液由于吸收了580-600 nm的黄色光,呈现的是与黄色呈互补色的蓝色。
不同波长的光具有不同的颜色,见P294,表9-1。
物质吸收了光子的能量由基态跃迁到较高能态(激发态),这个过程叫做物质对光的吸收。
分光光度分析法分光光度分析法(Spectrophotometric Analysis)是一种常用的分析方法,用于定量或定性分析物质的成分和浓度。
它基于物质对光的吸收、散射和发射的特性,通过测量样品与光的相互作用,来推断其化学和物理性质。
分光光度分析法的基本原理是光的吸收定律,即黄色光穿过物质后,光的强度与物质浓度之间呈现一定的定量关系。
光学分光仪是分光光度分析法中的关键仪器,它能够将可见光谱或紫外光谱拆分成不同波长的光束,进而进行分析。
使用分光光度分析法前,需要先构建标准曲线。
标准曲线是一种已知浓度的标准溶液与吸收光强度之间的关系曲线。
以溴酸钾溶液为例,将一系列不同浓度的溴酸钾溶液分别放入分光光度计中,测量它们在一定波长下的吸收光强度。
再将吸收光强度与溴酸钾溶液的浓度绘制成标准曲线,利用该曲线可以推断未知溴酸钾溶液的浓度。
在环境监测中,分光光度分析法通常用于对水质污染物的检测。
例如,对于水中的重金属离子,可以使用分光光度计检测特定波长下吸收光的强度,从而推断其浓度。
分光光度分析法不仅具有高灵敏度和高准确性,还可以同时检测多种污染物,提高检测效率。
在食品安全方面,分光光度分析法被广泛应用于食品添加剂和残留农药的检测。
通过构建标准曲线,可以准确测量食品中添加剂和农药的浓度,从而保障食品质量和安全。
例如,对于食品中的硝酸盐含量的检测,可以使用分光光度法对其吸收光强度进行测量,从而推测其浓度是否超过安全限值。
在药物研发中,分光光度分析法被广泛用于新药活性成分的测定。
例如,一些药物分子能够吸收特定波长的光,因此可以通过分光光度法来测量其在不同波长处的吸收光强度,从而推测其浓度和纯度。
这对于药物研发过程中药物含量和质量的检测非常重要。
总之,分光光度分析法是一种精密、灵敏、准确的分析方法,被广泛应用于多个领域。
其基本原理是通过检测物质对特定波长光的吸收来推断其浓度和成分。
对于分析样品中微量物质和复杂混合物具有很高的适应性和可靠性,并且能够同时检测多种成分,提高分析效率。
1.电磁波谱紫光波长:400~450nm红光650~750nm一、光的基本性质吸光光度法(分光光度法):根据物质对光的选择性吸收来进行测定的一种方法可见光教材:199页,表8-1光学光谱区(真空紫外)远红外中红外近红外可见近紫外远紫外10nm~200nm200nm ~380nm 380nm ~780nm 780 nm ~2.5 µm 2.5 µm ~50 µm 50 µm ~300 µm2. 光的波粒二象性波动性:λ=νC 粒子性:E波粒二象性:λC E=h ν=h结论:一定波长的光具有一定的能量,波长越长(频率越低),光量子的能量越低。
单色光:具有相同能量(相同波长)的光。
混合光:具有不同能量(不同波长)的光复合在一起,例如白光。
h 为普朗克常数:6.63×10-34J.s二、物质对光的选择性吸收1.物质对光的选择性吸收青(蓝绿)红橙黄绿绿蓝蓝紫物质的分子具有一系列不连续的特征能级,通常分子处于能量最低的基态,吸收了一定入射光的能量后产生能级跃迁,进入能量较高的激发态,当入射光的能量与物质分子的某一能级差恰好相等时,才有可能发生能级跃迁(1)(2)基态第一激发态第一激发态λC E=h ν=hλ/nm:650~700λ/nm:400~450λmax 440nm540nmAλnmK 2Cr 2O 7KMnO 4K 2Cr 2O 7和KMnO 4的吸收曲线定量分析基础定性分析基础c增大2.吸收曲线三、吸光光度法的特点1.灵敏度高(0.01克黄金/吨矿石)2.操作简便,测定速度快3.应用广泛,几乎可测所有无机离子,广泛应用于冶金,环境,生物,医学等领域吸收光谱峰的位置(λmax )定性峰的高矮(吸收程度的大小)定量I a =I 0 -I一、朗伯-比尔定律I oIbSdx I a当一束平行单色光垂直照到某均匀溶液时,假设:液层厚度b ,截面积为s ,溶液浓度为c ,入射光强度为I 0,该溶液吸收光的强度为I a ,透过光的强度为I将b 切割为dx ,薄层中所含吸光质点数为dN ,入射光强度为I b ,穿过薄层后光的强度减弱了dI b-dI b = K 1I b dN dN = 6.02×1023cSdx -dI b = K 16.02×1023S cI b dx 令:K 2= 6.02×1023K 1S ∴-dI b = K 2I b cdx ,cdx K I dI 2b b =−∫∫=−bI I b b cdx K I dI20cb K I I20ln=−Kcb I I=−∴0lg303.22K K =令:液层厚度b ,截面积S ,吸光物质浓度c ,薄层中所含吸光质点数为dNI 0dx bII bI t根据光的量子理论:透光率或透射比T (0~1, 0~100%)定义透光率:I I T =定义吸光度:有意义的取值范围为∞-0KbcI I T A =−=−=0lglg 透过光强度入射光的强度朗伯-比尔定律的数学表达式Kcb I I=−0lgI II I A 00lg lg =−=朗伯-比尔定律朗伯-比耳定律是吸光光度法的理论基础,是用光度法进行定量测定的依据朗伯-比耳定律的物理意义:当一束平行单色光垂直通过某均匀溶液时,溶液的吸光度A 与液层厚度b 及吸光物质的浓度c 成正比:A= Kbc单色平行光均匀溶液注意:A=-lg= KcbI I 0吸光度与光程的关系A = K b c0.10b0.202b0.00光源检测器显示器参比吸光度与浓度的关系A = Kb c0.10c0.202c0.00光源检测器显示器参比二、光度法的灵敏度1.吸光系数a (吸收系数)当液层厚度b 以cm ,吸光物质的浓度c 以g/L 为单位时,朗伯-比尔定律表示为A = abca 称为吸光系数,单位为L/(g ⋅cm)在朗伯-比尔定律A = Kbc 中,系数K 在一定条件下是常数,表明用光度法进行测定的灵敏度KλT吸光物质性质K=cbA 2.摩尔吸光系数εc mol/L b cm εL/(mol.cm)A= bcεε吸光物质的灵敏度吸光物质对光的吸收能力ε=cbA 当液层厚度b 以cm ,吸光物质浓度c 以mol/L 为单位时,朗伯-比尔定律表示为二乙基胺二硫代甲酸钠(铜试剂,DDTC )双硫腙ε436=12800 L/(mol.cm)CuCuε495=158000 L/(mol.cm)<ελT吸光物质性质λmaxεmaxA= -lgT = -lg0.603 = 0.220c=140×10-6112.4=1.25 ×10-6mol/Lε=bcA =2 ×1.25 ×10-60.220= 8.8×104 L/(mol.cm)例1 (203页,8-1),利用双硫腙光度法测Cd 2+,已知Cd 2+的质量浓度为140µg/L,比色皿厚度为2cm,在520nm 处测得透光率为0.603,求吸光度A 及摩尔吸光系数ε(M cd =112.4g/mol)解:A= εbcε=bc A A= εbc c mol/Lbcmmol/1000cm 3bc/1000mol/cm 2bcM ×1061000S(µg/cm 2)∴S=bcM ×103将代入得bc=εAS=εAM ×103µg/cm 23.桑德尔灵敏度SA=0.001时(检测极限),单位截面积光程内所能检出吸光物质的最低含量µg/cm 2bc →单位截面积光程所能检出吸光物质的最低含量因为:A=0.001,代入上式:S 灵敏度ε灵敏度S=εM ∴例2(205页,8-2)、已知双硫腙光度法测定Cd 2+时ε520nm =8.8×104L/(mol ·cm),求桑德尔灵敏度S.A=0.001时,单位截面积光程内所能检出吸光物质的最低含量µg/cm 2解,S=εM cd =8.8×104112.4=1.3 ×10-3µg/cm 2A= εbcS=εAM ×103例3,Fe 2+用邻二氮菲显色,当c=0.76 µg/ml,于波长λ510nm,吸收池厚度b=2.0cm 时,测得T%=50.2,求摩尔吸光系数和桑德尔灵敏度各为多少?(M Fe =55.85 g/mol)c= 0.76 µg/ml=7.6 ×10-4g/L=1.36 ×10-5mol/L由A=εbc 得:解:A=-lgT=-lg0.502=0.299ε=A bc =0.2992.0×1.36 ×10-5=1.1 ×104L/(cm.mol)S=εM Fe =1.1×10455.85= 5.1 ×10-3µg/cm 2三、利用朗伯-比尔定律进行定量分析A= εbc b 一定, λmax 一定,同一种物质,ε一定配制一系列标准溶液,由标准溶液:c 1, c 2, c 3……测得吸光度:A 1, A 2, A 3…...A 对c 作图工作曲线1.工作曲线法(标准曲线法)c (mg/ml)c 1c 2c 3c 4c 5A.....A xc x 工作曲线(标准曲线)A 1A 2A 3A 4A 5A 标A x=ε标b c 标εx b c x2.比较法:四、对朗伯-比尔定律偏离.工作曲线(标准曲线)A= εbccc 1c 2c 3c 4c 5A..原因:仪器或溶液的实际条件与朗伯-比尔定律所要求的前提条件不一致..A 总=-lg I t1+I t2I o1+I o2=-lgI o110-ε1bc +I o210-ε2bc I o1+I o2(一)、由于非单色光引起的偏移∴I t =I o 10-εbcA= εbc =-lgII o假设:入射光I oλ2I o2I t2A 2λ1I o1I t1A 1A 总=-lg10-εbc (I o1+I o2)I o1+I o2= εbc 造成偏离A 总= εbc若λ1与λ2相差很大,ε1= ε2=ε如果λ1和λ2相差不大,即∆λ= |λ1-λ2|很小,可以近似认为ε1= ε2= εA 总=-lg I t1+I t2I o1+I o2=-lgI o110-ε1bc +I o210-ε2bcI o1+I o2克服由非单色光所造成的偏离¾选择单色器(单色性能较好)¾选择入射光波长(λmax )¾选择适当的浓度范围(不应过高)浓度及非单色光的影响λ1λ2abA 5A 1A 4A 2λ3λ/nmA浓度: b>a波长: λ3>λ2>λ1A 3A 6(二)、由于溶液本身的化学和物理性质所引起的偏离1.由于介质不均匀所引起的偏离bI oI I a 发生散射:T 实I o -I a -I r=I o=II o2.由于溶液的化学反应所引起的偏离分析浓度或总浓度C 总吸光质点浓度C 质C工作曲线A=Kcb I r因为:T 实<T 理∴A 实>A 理T 理I o -I a =I o =I I o 吸光物质因解离、络合、缔合等化学变化而改变浓度如:Cr 2O 72-+H 2O 2CrO 42-+2H +λ=375nmλ=350nm单体:SNH +(CH 3)2NN(CH 3)22SNH +(CH 3)2NN(CH 3)22λmax = 660 nm 二聚体:λmax = 610 nmAcλmax = 660 nmAλ660 nm 610 nm亚甲基蓝阳离子(MB )方便、较灵敏,准确度差(半定量)一、光度分析的几种方法1.目视比色法观察方向空白c 1c 2c 3c 4c x1).可以任意选择某种波长的单色光2).扩大入射光波长的范围3)灵敏度、准确度高2.光电比色法和吸光光度法:共同点:以朗伯-比尔定律为基础的仪器分析方法主要区别:获得单色光的手段不同光电比色法以滤光片为单色器,谱带宽度约有几十纳米吸光光度法以棱镜或光栅为单色器,谱带宽度约有几纳米光源单色器狭缝样品室检测器二、紫外-可见分光光度计氙灯氢灯钨灯1.光源卤钨灯。