单相交流通用电动机控制电路
- 格式:ppt
- 大小:1.25 MB
- 文档页数:23
单相电动机正反转互锁控制电路研究1 单相电动机正反转控制电路单相电动机是一种由单相电源驱动的电动机,其工作原理是在拉绳开关的不断开关控制下,使电源通过可调节抗拉绳开关绕组接线而产生不同的正反转电流,从本质上控制单相电动机的正反转。
由于普通拉绳自启动保护功能较差,容易引起电动机在起动时的大反作用力,引来电动机的损坏。
此时就需要设计一种单相电动机正反转控制电路来解决这一问题。
2 单相电动机正反转控制电路结构根据单相电源的正反转控制需求,提出一种基于三个按键控制开关(拉绳开关,触点开关及双摆动位置)的单相电动机正反转控制电路。
单相电动机正反转控制电路由供电路和控制路两部分组成,前者由拉绳开关(RS-L)、触点开关(FS-K)、双摆动位置(IB-8W)等主要元器件组成,而后者由直流电流调节器电路和欠压带动器的组成。
拉绳开关和双摆动位置的工作状态可以根据单相电源的正反转控制需求,方便操作者控制三种不同的电源状态,而触点开关可以通过控制电路的输出控制单相电动机的正反转。
3 单相电动机正反转互锁控制的特殊功能单相电动机正反转控制电路有一个特殊的功能,即互锁控制功能。
单相电动机正反转控制电路中,拉绳开关与触点开关是具有互锁性质:当触点开关在功率端与地点之间常闭,拉绳开关处于接通状态,此时可以进行正反转控制;而当触点开关断开,拉绳开关处于断开状态,此时就不能继续进行正反转控制,从而保证电动机的起动安全。
4 结论电动机正反转控制电路是电动机的一种重要的控制方式,它简单的控制方式以及具有互锁性质的特殊功能,可以有效地实现电动机的正反转控制,减轻拉绳起动时的大反作用力,而不会损坏电动机。
单相相控整流电路的应用单相相控整流电路的应用随着现代技术的不断发展,单相相控整流电路已经成为了常见的电子电路之一。
这种电路主要是通过控制半导体开关元件的导通时间来实现对电源电压的调节。
相较于传统的整流电路,相控整流电路不仅具有更加准确和稳定的电源输出特性,而且也可以应用于许多不同领域的技术设备中。
下面,我们将会详细介绍单相相控整流电路的应用以及其在不同设备中的作用。
一、单相相控整流电路的基本工作原理在介绍单相相控整流电路的应用之前,让我们先来了解一下这种电路的基本工作原理。
单相相控整流电路主要由两个部分组成:整流桥和相控电路。
整流桥是由四个可控的半导体元件组成,能够实现交流电到直流电的转换。
而控制电路则通过检测电源电压,控制半导体元件的导通时间,从而实现对整流电路输出电压的调节。
二、单相相控整流电路的应用1、电力电子调节器单相相控整流电路可以应用于电力电子调节器中。
这种调节器由交流电源、单相半波整流电路、交流过滤器、可调变压器以及直流负载组成。
电力电子调节器可以对交流电进行整流和平滑,实现调节输出电压的功能。
这种调节器已经广泛应用于电力系统调节中,可以实现电流、电压和功率的控制。
2、光伏逆变器单相相控整流电路还可以应用于光伏逆变器中。
光伏逆变器能够将太阳能板产生的直流电转换成为交流电,并将其送回电网。
光伏逆变器由整流模块、过滤器、逆变模块以及控制电路组成。
其中,整流模块使用单相相控整流电路,能够将太阳能板收集到的交流电转换为直流电,并保证电路的输出电压稳定。
3、交流调光器单相相控整流电路还可以应用于交流调光器中。
在传统的交流调光器中,常使用三角型调制电路或方波调制电路对电源电压进行调节。
但是这种调制方式会引起电容滤波器的谐波产生,从而影响电灯的寿命。
单相相控整流电路则通过减小谐波的产生,能够实现更加平滑的调光效果。
4、电动机调速器单相相控整流电路还可以应用于电动机调速器中。
电动机调速器是一种常见的电气控制设备,能够通过对电机输入电压的控制来实现对电机转速的调节。
目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。
最全直流电机工作原理与控制电路解析(无刷+有刷+伺服+步进)直流电动机是连续的执行器,可将电能转换为(机械)能。
直流电动机通过产生连续的角旋转来实现此目的,该角旋转可用于旋转泵,风扇,压缩机,车轮等。
与传统的旋转直流电动机一样,也可以使用线性电动机,它们能够产生连续的衬套运动。
基本上有三种类型的常规电动机可用:AC 型电动机,(DC)型电动机和步进电动机。
典型的小型直流电动机交流电动机通常用于高功率的单相或多相(工业)应用中,需要恒定的旋转扭矩和速度来控制大负载,例如风扇或泵。
在本(教程)中,我们仅介绍简单的轻型直流电动机和步进电动机,这些电动机用于许多不同类型的(电子),位置控制,微处理器,(PI)C和(机器人)类型的电路中。
基本直流电动机该直流电动机或直流电动机,以给它的完整的标题,是用于产生连续运动和旋转,其速度可以容易地控制,从而使它们适合于应用中使用是速度控制,伺服控制类型的最常用的致动器,和/或需要定位。
直流电动机由两部分组成,“定子”是固定部分,而“转子”是旋转部分。
结果是基本上可以使用三种类型的直流电动机。
有刷(电机)–这种类型的电机通过使(电流)流经换向器和碳刷组件而在绕线转子(旋转的零件)中产生磁场,因此称为“有刷”。
定子(静止部分)的磁场是通过使用绕制的定子励磁绕组或永磁体产生的。
通常,有刷直流电动机便宜,体积小且易于控制。
无刷电动机–这种电动机通过使用附着在其上的永磁体在转子中产生磁场,并通过电子方式实现换向。
它们通常比常规的有刷型直流电动机更小,但价格更高,因为它们在定子中使用“霍尔效应”开关来产生所需的定子磁场旋转顺序,但是它们具有更好的转矩/速度特性,效率更高且使用寿命更长比同等拉丝类型。
伺服电动机–这种电动机基本上是一种有刷直流电动机,带有某种形式的位置反馈控制连接到转子轴。
它们连接到PWM型控制器并由其控制,主要用于位置(控制系统)和无线电控制模型。
普通的直流电动机具有几乎线性的特性,其旋转速度取决于所施加的直流电压,输出转矩则取决于流经电动机绕组的电流。