数理统计答案(汪荣鑫)
- 格式:pdf
- 大小:389.90 KB
- 文档页数:95
P1682解:假设01234:H μμμμ=== 11234:H μμμμ不全为零1234454562024.52r n n n n n X =======经计算可得下列反差分析表:查表得0.05(3,16) 3.24F =0.0517.88370.4745(3,16)37.6887F F ==<故接受0H 即可认为四个干电池寿命无显着差异 3 解:假设0123:H μμμ==1123:H μμμ不全相等12336140.9278r n n n X =====经计算可得下列方差分析表:0.050.05(2,15) 3.684.373 3.68(2,15)F F F ==>=∴拒绝0H 故可认为该地区三所小学五年级男生平均身高有显着差异。
4 解: 假设01234:H μμμμ===11234:H μμμμ不全相等123445100.535r n n n n X ======0.05(3,16) 3.24F = 0.05(3,16) 3.24F F >=∴拒绝0H 故可认为这几支伏特计之间有显着差异。
5 解:假设012345:H μμμμμ====112345:H μμμμμ不全相等60 123455389.6r n n n n n X =======0.050.05(4,10) 3.4815.18(4,10)F F F ==>∴拒绝0H 故可认为温度对得率有显着影响215151511(,())X X N n n μμσ--+ 由T 检验法知:()T t n r =-给定的置信概率为10.95α-=0.025{()}0.95P T t n r <-=故15μμ-的置信概率为的置信区间为150.025150.025((,()E E X X t n r X X t n r ----+-2.236E S === 0.025(10) 2.2281t =由上面的数据代入计算可得:150.025150.0259084 2.2281 2.236 1.932210.0678E E X X t X X t --=--⨯=-+=故15μμ-的置信区间为( , )234343411(,())X X N n n μμσ--+ 由T 检验法知:()X X T t n r =-34μμ-的置信区间为:340.025340.025((,()E E X X t n r X X t n r ----+-代入数据计算得:340.025340.02510 2.2281 2.236 5.932714.0678E E X X t X X t --=-⨯=-+=故34μμ-的置信区间为( , ) 8 解:假设01123:0H ααα=== 假设021234:0H ββββ====r0.01(2,6)10.92F = 0.01(3,6)9.78F = 0.01(2,6)A F F < 0.01(3,6)B F F >故接受01H ,拒绝02H即可认为不同加压水平对纱支强度无显着差异;既可认为不同机器对纱支强度有显着差异。
数理统计习题答案第一章1.解: ()()()()()()()12252112222219294103105106100511100519210094100103100105100106100534n i i n i i i i X x n S x x x n ===++++====-=-⎡⎤=-+-+-+-+-⎣⎦=∑∑∑2. 解:子样平均数 *11li i i X m x n ==∑()118340610262604=⨯+⨯+⨯+⨯=子样方差 ()22*11l i i i S m x x n ==-∑()()()()222218144034106422646018.67⎡⎤=⨯-+⨯-+⨯-+⨯-⎣⎦=子样标准差 2 4.32S S == 3. 解:因为i i x ay c-=所以 i i x a cy =+11ni i x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a cy==+=+∑ 所以 x a cy =+ 成立()2211nxi i s x x n ==-∑()()()22122111ni i ini i nii a cy a c y n cy c yn c y y n====+--=-=-∑∑∑因为 ()2211nyi i s y yn ==-∑ 所以222x ys c s = 成立 ()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====4. 解:变换 2000i i y x =-i1 2 3 4 5 6 7 8 9 i x 1939 1697 3030 2424 2020 2909 1815 2020 2310 i y-61-303103042420909-1852031011n i i y y n ==∑()161303103042420909185203109240.444=--++++-++=()2211n y i i s y y n ==-∑()()()()()()()()()222222222161240.444303240.4441030240.4449424240.44420240.444909240.444185240.44420240.444310240.444197032.247=--+--+-+⎡⎣-+-+-+⎤--+-+-⎦=利用3题的结果可知2220002240.444197032.247xyx y s s =+===5. 解:变换 ()10080i i y x =-i1 2 3 4 5 6 7 8 9 10 11 12 13 i x 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.00 80.02 i y-2424334-3532213111113n i i i i y y y n ====∑∑ []12424334353202132.00=-++++++-+++++=()2211n y i i s y y n ==-∑()()()()()()22222212 2.0032 2.005 2.0034 2.001333 2.003 2.005.3077=--+⨯-+-+⨯-⎡⎣⎤+⨯-+--⎦=利用3题的结果可知2248080.021005.30771010000yx yx s s -=+===⨯ 6. 解:变换()1027i i y x =-*i x23.5 26.1 28.2 30.4 i y -35 -9 12 34 i m234111li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=-2710yx =+=26.85 ()2211lyi i i s m y y n ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s ==7解:身高 154158 158162 162166 166170 170174 174178 178182 组中值 156 160 164 168 172 176180学生数101426281282*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11l i i i s m x x n ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大)-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====9解: 121211121211n n i ji j n x n x n n x n n ==+=+∑∑112212n x n xn n +=+()12221121n n i i s x x n n +==-+∑10.某射手进行20次独立、重复的射手,击中靶子的环数如下表所示:环数 10 9 8 7 6 5 4 频数23942试写出子样的频数分布,再写出经验分布函数并作出其图形。
数理统计习题答案第一 章1.解: ()()()()()()()12252112222219294103105106100511100519210094100103100105100106100534n i i n i i i i X x n S x x x n ===++++====-=-⎡⎤=-+-+-+-+-⎣⎦=∑∑∑2. 解:子样平均数 *11li i i X m x n ==∑()118340610262604=⨯+⨯+⨯+⨯=子样方差 ()22*11li i i S m x x n ==-∑()()()()222218144034106422646018.67⎡⎤=⨯-+⨯-+⨯-+⨯-⎣⎦=子样标准差 4.32S == 3. 解:因为i i x ay c-=所以 i i x a cy =+11ni i x x n ==∑()1111ni i ni i a c y n n a c y n ===+⎛⎫=+ ⎪⎝⎭∑∑1ni i ca y n a c y==+=+∑所以 x a c y =+ 成立()2211nxi i s x x n ==-∑()()()22122111ni i ini i nii a cy a c y n cy c yn c y y n====+--=-=-∑∑∑因为 ()2211nyi i s y yn ==-∑ 所以222x y s c s = 成立()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====4. 解:变换 2000i i y x =-11n i i y y n ==∑()61303103042420909185203109240.444=--++++-++= ()2211n y i i s y y n ==-∑()()()()()()()()()222222222161240.444303240.4441030240.4449424240.44420240.444909240.444185240.44420240.444310240.444197032.247=--+--+-+⎡⎣-+-+-+⎤--+-+-⎦=利用3题的结果可知2220002240.444197032.247x y x y s s =+===5. 解:变换 ()10080i i y x =-13111113n i i i i y y y n ====∑∑[]12424334353202132.00=-++++++-+++++=()2211nyi i s y y n ==-∑()()()()()()22222212 2.0032 2.005 2.0034 2.001333 2.003 2.005.3077=--+⨯-+-+⨯-⎡⎣⎤+⨯-+--⎦=利用3题的结果可知2248080.021005.30771010000yx yx s s -=+===⨯6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=-2710yx =+=26.85 ()2211lyi ii s m y y n ==-∑()()()()222212351.5391.54121.5341.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s ==162 *11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯= ()22*11li i i s m x x n ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦= 8解:将子样值重新排列(由小到大)-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====9解: 121211121211n n i ji j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+ ()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n iji j x xn n x xn x n x n n n n n s x n s x n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n s n n n n +-++++-=+++-+=+++解:()200.1460.3670.75790.9910110x x F x x x x ⎧⎪≤<⎪⎪≤<=⎨≤<⎪⎪≤<⎪≥⎩158 162 166 170 174 178 18212. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni i i i n E X E x Ex n n n n DX Dx Dx n n n nλλλλ============∑∑∑∑13.解:(),ix U a b 2i a bEx += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中 ()1,1ix U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni i i i E X E x Ex n n DX Dx Dx n n n==========∑∑∑∑14.解:因为 ()2,iX N μσ 0i X Eμσ-= 1i X Dμσ-=所以()0,1i X N μσ- 1,2,,i n =⋅⋅⋅ 由2χ分布定义可知 ()222111nni ii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以 ()2Yn χ15. 解:因为 ()0,1i X N 1,2,,i n =⋅⋅⋅ ()1230,3X X X N ++0=1= 所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C =16. 解:(1)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x d xσχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200n y n n Y y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311ni Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩(4)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅ 所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故 ()242000y Y y f y y σ-⎧>=≤⎩17.解:因为 ()X t n存在相互独立的U ,V()0,1UN ()2Vn χ使X =()221U χ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫⎪⎝⎭∑所以()1nniX Y t m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n m n mi ii n i n X m X n Y F n m X n X m σσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ= 查表得 0.012.33U =代入上式计算可得 ()20.01909031.26121.26χ=+= 20.解:因为 ()2X n χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P≤=≤22lim tnP dt-→∞-∞≤==Φ故{}P X c≤≈Φ第二章1.00,0()0,0()()1()111xxx xxe xf xxE x f x xdx xe dxxe e d xexλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1xλ∧=2.()111121).()(1)(1)1111k kx xE x k p p p k pppp∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p=X所以有1pX∧=2).其似然函数为1`11()(1)(1)nix i in X nniL P P p p p-=-=∑=-=-∏1ln()ln()ln(1)niiL P n p X n p==+--∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12n i i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=-⎪⎨⎪=+⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b 2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0n ni i i nii inii L x x i nL n x d L nxd θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。
n i 1n i 1n i 1第一章1•在五块条件基本相同的田地上种植某种作物,亩产量分别为 (单位:斤) ,求子样平均数和子样方差。
解: -1 nX x i 100n i 121 n2 —2SX i x 34n i 12•从母体中抽取容量为 60的子样,它的频数分布求子样平均数与子样方差,并求子样标准差。
s .18.67 4.322 2 2x a cy,s x c s y 。
解:由变换y inX ii 1X i a 即X icy i ,nxa cy ina cnycnai 1X a cy由2 1n _21 n2c 2 n_ 2 2 2而s xX i Xa cy i a cy yi y C解:—1l* .Xmi i X4n i 1 2 1* 2 — 2sm i x i x 18.67ni 192, 94, 103, 105, 1063•子样平均数和子样方差的简化计算如下:设子样值 X i ,X 2, ,X n 的平均数为为x 。
作变换 y占一a ,得到y i , y 2,c,y n ,它的平均数为— 2y 和方差为S y X 和方差。
试证:ni 110得到它的子样的下列观测数据 (单位:磅/英寸2): 1815, 2020, 2310后利用第3题中的公式获得X 和s 2的数值。
i*m i y i4.对某种混凝土的抗压强度进行研究,1939, 1697, 3030, 2424, 2020, 2909,采用下面简化计算法计算子样平均数和方差。
先作变换 y iX i2000,再计算y 与s :,然解:作变换yX i2000,a 2000Y i2164 240.442240.444 2S X2Sy1 nn 2 — y iyi 12197032.2475.在冰的溶解热研究中, 测量从0.72 r 的冰变成 0c 的水所需热量,取作试验得到热量数据如下 :79.98, 80.04, 80.02,80.04,80.03,80.03, 80.04,79.97, 80.05, 80.03, 80.02, 80.00,80.02试用变换y i 100X i 80 简化计算法计算子样平均数和子样方差。
第一章3. 解:因为i i x ay c-=所以 i i x a cy =+11nii x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑所以 x a c y =+ 成立因为 ()2211nxi i s x xn ==-∑()()()22122111ni i ini i nii a cy a c y n cy c y n c y y n====+--=-=-∑∑∑又因为 ()2211n y i i s y yn ==-∑所以 222xys c s = 成立 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=- 2710yx=+= ()2211lyi i i s m y yn ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s == 7解: 6266707478*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯= ()22*11li i i s m x xn ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大) -4,,,,,0,0,,,,,,()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--==== 9解:121211121211n n i ji j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n i ji j x xn n x x n x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n s n n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n s n n n n +-++++-=+++-+=+++12. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni ii i n E X E x Ex n n n n DX Dx Dxn nn nλλλλ============∑∑∑∑13.解:(),ix U a b 2i a b Ex += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中 ()1,1i x U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni ii i E X E x Ex n n DX Dx Dxn nn==========∑∑∑∑14.解:因为()2,iX N μσ 0i X Eμσ-= 1i X Dμσ-=所以 ()0,1i X N μσ- 1,2,,in =⋅⋅⋅由2χ分布定义可知()222111nni ii i X Y Xμμσσ==-⎛⎫=-=⎪⎝⎭∑∑服从2χ分布 所以 ()2Yn χ15. 解:因为()0,1iX N1,2,,i n =⋅⋅⋅()1230,3X X X N ++0=1=所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C=16. 解:(1)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dx σχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200n yn nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311n i Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故()232000y n Y y f y y σ-⎧>=≤⎩(4)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211y Y Y Yy F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰故()242000y Y y f y y σ-⎧>=≤⎩17.解:因为 ()Xt n存在相互独立的U ,V()0,1UN ()2Vn χ使X = ()221Uχ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑所以()1nniX Yt m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n mn mi ii n i n X m X n Y F n m X n X mσσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ=查表得 0.01 2.33U =代入上式计算可得()20.01909031.26121.26χ=+=20.解:因为()2Xn χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ 故 {}PX c ≤≈Φ第 二 章 1. 0,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e xλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有 1x λ∧=2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X所以有1p X ∧=2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏1ln ()ln ()ln(1)ni i L P n p X n p ==+--∑1ln 1()01ni i d L n X n dp p p ==--=-∑解之得11nii np X X∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=⎪⎨⎪=⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为111()(),01,1,2,,ln ()ln ln ln ln 0nni i i nii ini i L x x i nL n x d L nx d θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1ni i X x n E x X X Xθ=∧===-∑令得5.。