四面体外接球的球心、半径求法教师
- 格式:doc
- 大小:383.00 KB
- 文档页数:4
四面体外接球的球心、在立体几何中,几何体外接球是一个常考的知识点,对于学生来说这是一个难点,一方面图形不会画,另一方面在画出图形的情况下无从下手,不知道球心在什么位置,半径是多少而无法解题。
本文章在给出图形的情况下解决球心位置、半径大小的问题。
、出现“墙角”结构利用补形知识,联系长方体。
【原理】:长方体中从一个顶点出发的三条棱长分别为a,b,c,则体对角线长为________ / 2 . b2 + ~2I = J a2+b2+C2,几何体的外接球直径2R为体对角线长I即R = ---------- --【例题】:在四面体ABCD中,共顶点的三条棱两两垂直, 其长度分别为1, V6,3,若该四面体的四个顶点在一个球面上,求这个球的表面积。
解:因为:长方体外接球的直径为长方体的体对角线长所以:四面体外接球的直径为AE的长即:4R2=AB2+AC2+AD2C 4R2 =12+32+ 府=16 所以R =2球的表面积为S=4;IR2=16;I二、出现两个垂直关系,利用直角三角形结论。
【原理】:直角三角形斜边中线等于斜边一半。
球心为直角三角形斜边中点。
【例题】:已知三棱锥的四个顶点都在球0的球面上,AB丄BC且PA =7,PB=5, PC =751,AC =10,求球0 的体积。
解:AB 丄BC 且PA =7,PB=5,P C=妬,AC =10,!_ 2因为=102所以知AC2=PA2+ PC2设球心坐标为O(x, y,z)贝U AO=BO=CO =DO ,由空间两点间距离公式知x 2 +y 2 +z 2 =(x -1)2 +(y -73)2 +z 2J 3解得 “1 y=- z =1所以PA 丄PC 所以可得图形为:在RtAABC 中斜边为AC 在RU PAC 中斜边为AC取斜边的中点0 , 在 RUABC 中 0A = 0B = 0C在 RtiPAC中 OP = OB =OC 所以在几何体中OP = OB =OC =OA ,即O 为该四面体的外接球的球心1R = — AC = 52 所以该外接球的体积为V 丄职―500工3 3 【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。
内接球和外接球半径计算公式
内接球和外接球是几何学中的概念,它们分别是指一个多面体内部最大的(最小的)球和一个多面体外部最小的(最大的)球。
下面是内接球和外接球的半径计算公式。
(以下解释中,我们以正四面体为例)
内接球半径计算公式:
正四面体的内接球是四面体内部最大的球,它的半径可以通过正四面体的棱长计算得出。
设正四面体的棱长为a,则正四面体的内接球半径R为:
R = a / (2√3)
其中√3表示根号下3,也就是3的平方根。
该公式适用于所有正多面体内接球的半径计算。
外接球半径计算公式:
正四面体的外接球是四面体外部最小的球,它的半径可以通过正四面体的边长计算得出。
设正四面体的边长为a,则正四面体的外接球半径r为:
r = a / (2√6)
其中√6表示根号下6,也就是6的平方根。
该公式同样适用于所有正多面体外接球的半径计算。
需要注意的是,以上公式仅适用于正多面体,对于其他不规则多面体,内接球和外接球的半径计算需要用到其他方法。
解析正四面体外接球内切球半径正四面体是一种非常特殊的多面体,其四个面都是等边三角形,相互之间都是等角的。
正四面体有个很有意思的性质,就是它的外接球和内切球的半径是相等的。
这个性质可以通过以下步骤进行证明:首先,我们需要知道正四面体外接球和内切球的半径分别为r和R。
我们可以画出如下的图形:正四面体的四个顶点分别为A、B、C、D。
正四面体外接球的圆心为O,内切球的圆心为I。
现在我们来证明r=R。
步骤1:连接OI,这条线段的长度为r+R。
步骤2:连接AB、AC、AD、BC、BD、CD,将正四面体分成四个小正三角形。
步骤3:我们知道正四面体每个小正三角形的面积都相等,设为S。
步骤4:我们可以通过三角形的面积公式求出AO、BO、CO、DO的长度。
AO=BO=CO=DO=√(3S)/3步骤5:再通过余弦定理求出角AOI的大小。
cos(AOI)=(OI²+AO²-AI²)/(2×OI×AO)=(r+R)/(2r)步骤6:由于AOI是一个等腰三角形,所以角OAI也等于角OIA。
因此,我们可以用余弦定理求出AI的长度。
cos(OAI)=(OI²+AI²-OA²)/(2×OI×AI)=cos(AOI)AI=√(OI²+OA²-2×OI×OA×cos(AOI))步骤7:我们可以用同样的方法求出BI、CI、DI的长度。
BI=√(OI²+OB²-2×OI×OB×cos(BOI))CI=√(OI²+OC²-2×OI×OC×cos(COI))DI=√(OI²+OD²-2×OI×OD×cos(DOI))步骤8:根据勾股定理,我们可以求出AB、AC、AD、BC、BD、CD 的长度。
正四面体外接球公式
正四面体外接球,也叫正四面体旋转体,是一种数学上的几何体,是由单一晶体构成的固体物质,也是数学上的重要几何体之一。
正四面体外接球的公式成为正四面体外接球公式,它是一种用来确定正四面体外接球的体积和表面积的公式。
正四面体外接球公式中的前提条件是正四面体是一种球体,它由六个正四面体面构成,六个面相互接触,相互垂直。
正四面体外接球的公式计算非常简单,可以用来计算正四面体的表面积和体积。
正四面体外接球公式的具体形式如下:V=√2r3/3,其中V表示正四面体外接球的体积,r表示正四面体外接球的半径。
在计算正四面体外接球体积时,我们只需要计算出外接球半径,然后代入公式中就可以计算出外接球的体积。
正四面体外接球半径可以通过一个简单的公式来计算:r=a√3/6,其中a表示正四面体每个面的边长。
正四面体外接球公式不仅可以用来计算外接球的体积,而且还可以用来计算外接球的表面积,表面积的公式如下:S=4πr2,其中S 表示外接球的表面积,r表示外接球的半径。
要计算出表面积,只需要把外接球半径代入公式中就可以得出外接球的表面积。
在数学和计算机科学中,正四面体外接球的应用非常广泛,它可以用在很多不同的领域中。
比如在计算机中,正四面体外接球可以用来表示物体的大小,控制物体的移动,同时用来判断两个物体是否在特定距离内。
此外,正四面体外接球的体积和表面积公式在几何学和
微积分中也有着广泛的应用。
正四面体外接球公式是一种非常有用的工具,可以根据不同的计算要求来高效率地计算出正四面体外接球的体积和表面积。
同时,它也有着广泛的应用,可以用在计算机科学,几何学和数学上的不同领域中。
正四面体的外接球半径的求法
正四面体是一种比较灵活的多面体,而球又是高中教材中唯一保
留下来的旋转体,此两种几何的组合无疑有着特殊的意义。
现把求四
面体外接球的半径的几种方法总结如下,本人认为很有代表意义,希
望它对高三备考的师生能有启发作用。
如右图:已知正四面体A BCD -,H 为底面的中心,O 为外接球的球
心,设棱长为a,外接球半径为R,内切球半径为r,试求R .
方法一:易知R+r=AH=63a ,由等积法得: A BCD O ABC O BCD O CDA O DAB V V V V V -----=+++
所以:
11433BCD BCD AH S r S ∆∆⋅=⋅⋅ 故14r AH =,34
R AH = 所以 64
R a =.
方法二:如图AHM BNM ∆≅∆所
HM ON AM OA =,即13r R
=,又由R6可得 64R a =.
方法三:
如图设延长AH交球面上一点K,则AK=2R,在直角三角形AB K中由
射影定理得2AB AH AK =⋅ 即2623a a R =⋅ 故得64
R a =. 方法四:如图正四面体可补成一个边长为
22a 的正方体,显然正方体的外接球即为正四面体的外接球,而23()22a R =故可得64
R a =.
小结:此四种方法立体交叉,思想性、艺术性各有千秋,对培养学生的
空间想象能力以及综合解题能很有帮助。
龙源期刊网
正四面体外接球和内切球的半径的求法
作者:李凤华
来源:《中学数学杂志(高中版)》2008年第01期
题已知正四面体ABCD的棱长为a,求其外接球的半径R和内切球的半径r.
分析如图1,因为正四面体ABCD的外接球的球心O到点B,C,D的距离相等,所以O 在平面BCD内的射影O1到点B,C,D的距离也相等. 又因为在正四面体ABCD中△BCD是正三角形,所以O1是△BCD的中心,进而在正四面体ABCD中,有AO1⊥平面BCD,所以球心O在高线AO1上;同理:球心O也在其它面的高线上. 又正四面体ABCD中各面上的高都相等,所以,由OA=OB=OC=OD,得:点O到正四面体各面的距离相等,所以点O也是正四面体ABCD的内切球的球心. 这样,正四面体的内切球的球心与外接球的球心重合. 记正四面体ABCD的高为h,则 . 因此,只要求出r和R中的一个,便可求出另一个.
注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
”。
四面体外接球得球心、半径求法在立体几何中,几何体外接球就是一个常考得知识点,对于学生来说这就是一个难点,一方面图形不会画,另一方面在画出图形得情况下无从下手,不知道球心在什么位置,半径就是多少而无法解题。
本文章在给出图形得情况下解决球心位置、半径大小得问题、一、出现“墙角”结构利用补形知识,联系长方体。
【原理】:长方体中从一个顶点出发得三条棱长分别为,则体对角线长为,几何体得外接球直径为体对角线长 即【例题】:在四面体中,共顶点得三条棱两两垂直,其长度分别为,若该四面体得四个顶点在一个球面上,求这个球得表面积。
解:因为:长方体外接球得直径为长方体得体对角线长所以:四面体外接球得直径为得长即:所以球得表面积为二、出现两个垂直关系,利用直角三角形结论。
【原理】:直角三角形斜边中线等于斜边一半。
球心为直角三角形斜边中点。
【例题】:已知三棱锥得四个顶点都在球得球面上,且,,,,求球得体积。
解:且,,,,因为 所以知所以 所以可得图形为:在中斜边为在中斜边为取斜边得中点,在中在中 所以在几何体中,即为该四面体得外接球得球心A C所以该外接球得体积为【总结】斜边一般为四面体中除了直角顶点以外得两个点连线、三、出现多个垂直关系时建立空间直角坐标系,利用向量知识求解ﻩ【例题】:已知在三棱锥中,,,,求该棱锥得外接球半径、解:由已知建立空间直角坐标系解得所以半径为【结论】:空间两点间距离公式:四、四面体就是正四面体处理球得“内切”“外接"问题与球有关得组合体问题,一种就是内切,一种就是外接。
作为这种特殊得位置关系在高考中也就是考查得重点,但同学们又因缺乏较强得空间想象能力而感到模糊。
解决这类题目时要认真分析图形,明确切点与接点得位置及球心得位置,画好截面图就是关键,可使这类问题迎刃而解。
一、棱锥得内切、外接球问题例1.正四面体得外接球与内切球得半径就是多少?分析:运用正四面体得二心合一性质,作出截面图,通过点、线、面关系解之。
正四面体外接球的半径
正四面体外接球是几何中用于计算直角三角形每个边长度的技术。
它是一个三维坐标系下的球体结构,由四个相互重叠的圆柱体所构成,每个圆柱体都具有相同的半径,形状独特。
外接球的半径定义为圆柱
结构的半径,与它自身有关。
因此,计算正四面体外接球的半径可以按以下方式进行:首先,测量正四面体的四边长度,然后在三维坐标系中考虑直角三角形的余
弦定理,以计算外接球半径R:
R=边长/4*sin60°。
给定一个正四面体外接球,可以通过测量每个圆柱体的高度来计
算出外接球的半径,并通过余弦定理来求出球的表面积。
这项技术广
泛应用于几何计算中,可以帮助我们更准确地衡量物体大小和体积。
总的来说,正四面体外接球是一种非常棒的几何计算技术,它可
以帮助我们精准地计算出外接球的半径。
通过理解正四面体外接球半
径的计算,可以更好地利用这项技术进行精准测量。
高等数学求四面体公式
四面体是由四个面和四个角组成的,其中每个面都是三角形。
四面体
的公式涉及到体积、表面积、外接球半径、内切球半径以及距离等多个方面。
1.体积公式:
四面体的体积可以用以下公式表示:
V=(1/6)*,(a-d)·(b-d)×(c-d)
其中V表示四面体的体积,a、b、c、d分别是四面体四个顶点的坐标。
2.表面积公式:
四面体的表面积由所有的面积之和组成,可以用以下公式表示:
S=(1/2)*[S1+S2+S3+S4]
其中S表示四面体的表面积,S1、S2、S3、S4分别是四个三角形面
的面积。
3.外接球半径公式:
四面体的外接球半径可以用以下公式表示:
R=a/(4*V)
其中R表示外接球半径,a表示四面体的边长,V表示四面体的体积。
4.内切球半径公式:
四面体的内切球半径可以用以下公式表示:
r=(3*V)/(S
其中r表示内切球半径,V表示四面体的体积,S表示四面体的表面积。
5.距离公式:
对于四面体的任意两个顶点A(X1,Y1,Z1)和B(X2,Y2,Z2),可以通过以下公式计算它们的距离:
d=√[(X2-X1)^2+(Y2-Y1)^2+(Z2-Z1)^2]
其中d表示AB两点之间的距离。
以上公式是四面体的基本公式,通过这些公式我们可以计算四面体的各项属性。
对于特定的四面体问题,还可以应用其他的几何知识来进行求解。
正四面体相关结论正四面体是一种具有特殊性质的几何图形,它由四个相等的正三角形组成,每个角都是60度。
在正四面体中,有一些重要的结论和性质,这些结论和性质在解决相关的几何问题时非常有用。
1、中心与顶点之间的关系正四面体的中心到四个顶点的距离相等,也就是说,中心是四个顶点所组成的菱形的中心。
这个结论可以用于计算正四面体的半径和中心到顶点的距离。
2、边长与高之间的关系正四面体的边长和高之间有一个重要的关系,即高是边长的2/3。
这个结论可以用于计算正四面体的高,也可以用于解决与正四面体的边长和高有关的问题。
3、体积与半径之间的关系正四面体的体积与半径之间有一个重要的关系,即体积是半径的立方根。
这个结论可以用于计算正四面体的体积,也可以用于解决与正四面体的体积和半径有关的问题。
4、三个两两垂直的平面相交于一点在正四面体中,三个两两垂直的平面相交于一点,这个结论可以用于解决与正四面体的三个两两垂直的平面相交有关的问题。
5、相对的两条边互相垂直在正四面体中,相对的两条边互相垂直,这个结论可以用于解决与正四面体的相对的两条边互相垂直有关的问题。
正四面体的一些重要结论和性质在解决相关的几何问题时非常有用,这些结论和性质可以帮助我们更好地理解和解决正四面体的问题。
正四面体外接球和内切球的半径的求法在几何学中,正四面体是一种具有特殊性质的几何形态。
它由四个相等的正三角形构成,每个面都是一个等边三角形。
这种几何形态在许多领域都有广泛的应用,包括物理学、化学、工程学等。
在解决实际问题时,我们常常需要找出正四面体的外接球和内切球的半径。
下面将介绍两种求法。
第一种方法是通过几何计算直接求解。
首先,我们需要找到正四面体的中心点。
这个点可以通过连接正四面体的四个顶点并取其中间位置来找到。
一旦找到了中心点,我们就可以通过连接这个点和正四面体的各个顶点,找到外接球的球心。
外接球的半径就是从球心到正四面体顶点的距离。
内切球的半径则是从球心到正四面体四个面的中心的距离。
多面体外接球、内切球半径常见的5种求法 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧棱两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图3所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. 出现多个垂直关系时建立空间直角坐标系,利用向量知识求解【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,2===AC AD AB解:由已知建立空间直角坐标系)000(,,A )002(,,B )200(,,D 3,, CD A B S O 1图3A O D B 图4C y设球心坐标为),,(z y x O 则DO CO BO AO ===,由空间两点间距离公式知222222)2(z y x z y x ++-=++ 222222)2(-++=++z y x z y x 222222)3()1(z y x z y x +-+-=++解得 1331===z y x所以半径为3211331222=++=)(R 【结论】:空间两点间距离公式:221221221)()()(z z y y x x PQ -+-+-=四面体是正四面体外接球与内切球的圆心为正四面体高上的一个点,根据勾股定理知,假设正四面体的边长为a 时,它的外接球半径为a 46。
外接球半径求法
外接球半径是指一个几何体的外接球的半径,它可以通过该几何体的某些特征来求解。
以下是几种常见的求解方法:
1. 对于正四面体、正六面体、正八面体等正多面体,其外接球半径可以直接通过公式计算得出。
例如,对于正四面体,其外接球半径R等于边长a乘以根号2除以4,即R=a√2/4。
2. 对于任意三角形ABC,其外接圆的半径R可以通过三角形的三边长度a、b、c来计算。
具体而言,可以使用海伦公式计算三角形的面积S,然后通过公式R=abc/4S求解外接圆半径R。
其中a、b、c分别为三角形的三边长度。
3. 对于任意四面体ABCD,其外接球半径可以通过四个顶点之间的距离来计算。
具体而言,假设四个顶点分别为A、B、C和D,则可以先计算出任意两个顶点之间的距离(如AB、AC等),然后使用这些距离来计算四面体各个侧面上三角形的面积,并使用这些面积来计算四面体总表面积S。
最后使用公式R=abc/4S求解出外接球半径R。
以上是几种常见的求解外接球半径的方法,不同的几何体可能需要使
用不同的方法来求解。
在实际应用中,可以根据具体情况选择合适的方法来计算外接球半径。
教学参谋解法探究2018年9月四面体外接球半径的常规求法⑩湖北省武汉市第四十三中学卢伟近几年来,随着三视图的引人,使得立体几何客观 题的考查形式趋于多样化,这其中表现突出的就是四面 体外接球球心在哪里的问题.下面结合具体例题的分 析,归纳,并得出结论,以期能够对这一类问题有一个较 为广泛的认识.(以下例题均只求取四面体外接球的半 径")一、定义法球心到球面上各点的距离相等,即为半径.下面通过对两大类型的分析,从而确定相关特征的 四面体外接球球心的位置.第一类型:“垂直+条件”型(有一条侧棱与底面垂直的四面体)例i在四面体中,丄平面&'(,"&'(为 边长是3的正三角形,且&4)6,求".解析:首先找到的外心G,作OG丄面&'(,且使得〇*)丄$4,则满足条件的02即为该四面体外接球的球心,再取$4的中点,,连接0,,如图1所示,经计算知")2#3.小结:这里不妨设A')-,4S).,V3 4例2在四面体中,S4丄平酿'(,&'丄B(,S()2,求".解析:如图2,易证'(丄邠,由直角三角形斜边的中线等于斜边 '图2的一半知SC的中点0即为球心,故 w")i.(事实上,这里与例i的解题思想是一致的y 例3在四面体中,S4丄平面4'(,120",4')4()4S)2,求".$S去.在双曲线^#02)1中,过右焦点(左焦点对称可得) a1〇的两条垂直相交弦4'与C1,有如下结论:结论4:当(.222-a2)(.2-a222)>0时,|其中2=^ —&=la2-.2l■2a.22-a222)<0时,=la2-.2l2a.2结论5 :当(.222-a2)(. 2-a222)>0时,当(.222-a2)(. 2-a222)<0 时,114'卜1(11丨>-$^.la2- .2l结论6:若4'与(1的中点分别记为,,7,则直线,7结论7:丄+丄=丄.l4'l l(1l2p结论 8:l4'l+l(1l'8p.结论9:若4'与C1的中点分别记为,,7,则直线,7恒过定点|%,0&.五、结语限于篇幅,上述对双曲线与抛物线的证明过程都没 有给出来,感兴趣的读者可以验证一下.至此,我们感叹 于圆锥曲线内部的和谐与统一,同时也激起我们对未知 领域的向往.我们相信如果能够把这样的一种追求与探 索的情感融入到平时的教学中去,感染学生,使之成为 他们学习与成长中的一道风景,帮助学生领悟数学的魅 力所在.l4'l+ l(1l 当(222-a2l4'l l(1l恒过定点(%2,0).在抛物线02=29中,过焦点的两条垂直相交弦4'与 (1,有如下结论:参考文献:1.钟长彬,杨苍洲,圆锥曲线两垂直焦点弦的一组 结论[J].中学数学研究,2014(6).|!94十•?•!{:,■?高中2018年9月解法探究解析:根据例1的作图,结合正弦定理知,2!= —isin 30o !!=2,其中!为外接圆的半径,则可知&=#T .小结:这3个例题都是属于“垂直+条件”型的四面体 外接球球心的问题.根据例1的作图方式我们知道,关键 是先找到底面A #$C 的外心,这里是分别以特殊三角形 (等边三角形,直角三角形h 与一般三角形(利用正弦定 理)为背景,寻找突破口,则可以得到这类问题的统一计算公式这里底面三角形的外接圆半径,*为垂线段#+的长)第二类型:“等腰+条件”型(定义一类特殊的四面体---等腰四面体:三条侧棱相等的四面体)例4已知在四面体+-#$%", ++#)+$)+%)2,$ $#%)30。
克列尔公式求外接球半径克列尔公式求外接球半径克列尔公式源于18世纪法国数学家克列尔的研究,该公式用于计算一个正四面体外接球的半径。
由于正四面体是一种重要的多面体,而外接球半径又是其重要参数之一,因此克列尔公式被广泛地应用于物理、化学、材料科学等领域。
下面将详细介绍克列尔公式的原理、推导和应用。
一、克列尔公式的原理正四面体是一种多面体,具有4个面、6条棱和4个顶点。
如果在正四面体的每个面上取一个点,那么这4个点的凸包就是该正四面体。
同时,如果在正四面体外部构造一个球,该球可以切到正四面体的每个面上且仅切到各个面的一个点上,那么这个球就是该正四面体的外接球。
在任意一个正四面体中,外接球的半径都可以由克列尔公式计算得到。
二、克列尔公式的推导设正四面体ABCD中,A点到外接球的球心O的距离为R,边长为a,则有:AB = AC = AD = aBC = BD = a√2CD = a√3设O为球心,OA = OB = OC = OD = R,则有:∠AOD = 3π/2,∠BOC = π/2,∠AOC = ∠BOD = π/3,则△AOD、△BOC、△AOC、△BOD都是等边三角形。
设M为OA的中点,则有:OM = OA/2 = R/2AD = a√3/3 = 2OM,即 AD/OM = 2∠AOD = 3π/2,∠ADO = π/6△AMO、△ADO相似,则有:AD/OA = OM/AMAD/R = R/2OM2R³ = a³ + 4OM³R³ = a³/(2√3)由此可得:R = a/√6三、克列尔公式的应用克列尔公式的应用非常广泛,特别是在物理、化学和材料科学等领域。
例如,利用克列尔公式可以计算出各种晶体的晶格常数、原子半径和空隙率等参数,进而进一步研究晶体结构和物理性质。
此外,该公式还可以用于诸如密排球堆、分子包装和天然晶体形态等问题的计算。
综上所述,克列尔公式是一种极其重要的数学工具,它不仅有着理论上的重要性,还具有广泛的实际应用价值。
四面体外接球半径公式
四面体外接球半径公式是指计算四面体外接球半径的数学公式。
这种公式可以用来确定一个四面体的外接球半径,它是三角形的一个扩展,主要用于三维几何数学中。
四面体外接球半径公式可以用来计算一个四面体的外接球半径(R)。
它通过以下公式来计算:
R=a*√3/2
其中a是四面体的每个面的边长。
四面体外接球半径公式可以用来计算一个四面体外接球的体积,以及四面体的表面积。
根据外接球半径,可以推导出体积公式和表面积公式,计算四面体的体积和表面积。
四面体外接球半径公式还可以用来计算四面体的重心,重心是指四面体三角形的重心,它的位置取决于四面体的形状。
四面体重心的计算也可以通过该公式来完成。
四面体外接球半径公式是一种简单、实用的公式,可以用来计算四面体外接球半径和其他物理参数,为后续计算提供了基础。
特别是在三维几何数学中,该公式可以极大程度地提高几何计算的准确性和精度,为工程计算提供了有力的支持。
一、出现“墙角”结构利用补形知识,联系长方体。
【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为
2
22c b a l ++=,几何体的外接球直径R 2为体对角线长l 即22
22c b a R ++= 【例题】:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为3,61,,若该四面体的四个顶点在一个球面上,求这个球的表面积。
二、出现两个垂直关系,利用直角三角形结论。
【原理】:直角三角形斜边中线等于斜边一半。
球心为直角三角形斜边中点。
【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC ,求球O 的体积。
总结】斜边一般为四面体中除了直角顶点以外的两个点连线。
三、出现多个垂直关系时建立空间直角坐标系,利用向量知识求解
【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒
=∠120BAC ,2===AC AD AB ,求该棱锥的外接球半径。
【结论】:空间两点间距离公式:221221221)()()(z z y y x x PQ -+-+-=
A B C D z x y
四、四面体是正四面体
外接球与内切球的圆心为正四面体高上的一个点,
根据勾股定理知,假设正四面体的边长为a 时,它的外接球半径为
a 4
6。
典型例题1——球的截面
例 1 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.
说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.
【练习】过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.
典型例题2——球面距离
例2 过球面上两点作球的大圆,可能的个数是( ).
A .有且只有一个
B .一个或无穷多个
C .无数个
D .以上均不正确
例3 球面上有3个点,其中任意两点的球面距离都等于大圆周长的6
1,经过3个点的小圆的周长为π4,求这个球的半径.
分析:利用球的概念性质和球面距离的知识求解.
说明:本题是近年来球这部分所出的最为综合全面的一道题,除了考查常规的与多面体综合外,还考查了球面距离,几乎涵盖了球这部分所有的主要知识点,是一道不可多得的好题.
例4 A 、B 是半径为R 的球O 的球面上两点,它们的球面距离为
R 2π,求过A 、B
的平面中,与球心的最大距离是多少?
说明:利用关系式2
22d R r -=不仅可以知二求一,而且可以借此分析截面的半径r 与球心到截面的距离d 之间的变化规律.此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角AOB ∠有关,而球心角AOB ∠又直接与AB 长度发生联系,这是使用或者求球面距离的一条基本线索. 典型例题3——其它问题
例5.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.
分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.
说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.
例6.试比较等体积的球与正方体的表面积的大小.
分析:首先抓好球与正方体的基本量半径和棱长,找出等量关系,再转化为其面积的大小关系.
典型例题4——球与几何体的切、接问题
例7 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放
入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?
分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,
锥内下降部分(圆台)的体积等于球的体积,列式求解.
例8.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.
分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.
说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 4
1=(h 为正四面体的高),且外接球的半径r R 3=.
例9.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.
分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2.
作业
1. 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面
相切.求球的表面积与体积.
2. 求球与它的外切圆柱、外切等边圆锥的体积之比.
3 在球心同侧有相距cm 9的两个平行截面,它们的面积分别为2
49cm π和2400
cm π.求球的表面积.。