湖南省长沙一中2011届高三年级第七次月考数学文
- 格式:doc
- 大小:180.00 KB
- 文档页数:8
湖南省长沙市一中2011 届高三月考(七)英语试题(考试范围:全部内容)本试卷分为四个部分,包括听力、语言知识运用、阅读和书面表达。
时量120分钟。
满分150分。
PART ONE LISTENING COMPREHENSION(30 marks)SECTION A(22.5 marks)Directions:In this section,you’ll hear six conversations between two speakers.For each conversation,there are several questions and each question is followed by three choices marked A,B and C.Listen carefully and then choose the best answer for each question.You will hear each conversation TWICE.Conversation 11.Why is the man going to read the book?A.Because it is homework.B.Because it is interesting.C.Because it is mysterious.2.What will the man do next?A.Going to the library.B.Going to the bookstore.C.Going to David’s dorm.Conversation 23.What will they do first?A.Buying some food.B.Having supper.C.Reading a newspaper.4.Who will drive the car?A.The man.B.The woman.C.They will drive by turns.Conversation 35.What happened last night?A.There was a big dinner.B.There was a party.C.There was a meeting.6.What is the man going to do?A.Cleaning the apartment.B.Quarrelling with the woman.C.Having a rest.Conversation 47.What probably is Steve?A.A mechanical engineer.B.A shop assistant.C.A hotel chef.8.What does Steve find difficult in his job?A.Working long hours.B.Dealing with customers.C.Keeping everything clean.9.What does Steve hope to do in the future?A.Becoming an expert.B.Becoming a manager.C.Becoming a boss.Conversation 510.What table did the speakers talk about first?A.A table about how children get their pocket money.B.A table about how children spend their pocket money.C.A table about how much pocket money children receive.11.How has the amount of children’s pocket money changed in Britain?A.It has been increasing.B.It has been decreasing.C.It has remained almost the same.12.What can be inferred from the conversation?A.The man thinks pocket money is for school things.B.The man thinks pocket money is for personal things.C.The man thinks pocket money is for Christmas things.Conversation 613.What are the two speakers going to do?A.They are going to sell a farm.B.They are going to buy a farm.C.They are going to rent a farm.14.What do they plan to do when they live on the farm?A.They plan to keep some fish.B.They plan to keep some cows.C.They plan to keep some chickens.15.Why won’t they grow corn on the farm?A.Because the farm is small.B.Because growing corn is tiring.C.Because growing corn isn’t a good way to earn money.SECTION B(7.5 marks)Directions:In this section,you will hear a short passage.Listen carefully and then fill in the numbered blanks with the information you have heard.Fill in each blank with NO MORE THAN THREE WORDS.You’ll hear the short passage TWICE.PART TWO LANGUAGE KNOWLEDGE(45 marks)SECTION A(15 marks)Directions:Beneath each of the following sentences there are four choices marked A,B,C and D.Choose the one answer that best completes the sentence.21.—We have waited for almost 30 minutes.How much longer do we have to wait?—the meeting finishes.I’m afraid there will be another 20 minutes.A.When B.Unless C.Until D.Since22.I’m trying to meet the deadline of my report;on no account me when I’m working.A.you will disturb B.will you disturbC.you must disturb D.must you disturb23.He said we could make it home before 9 p.m.,I personally doubt.A.where B.when C.that D.which24.All along the way to the tourist destination,he would sometimes slow down the car sure if we were going the right way.A.making B.to make C.made D.to be making 25.Sometimes,money is tight and on other occasions time is tight;on occasion,a travel is out of the question.A.all B.any C.either C.every26.It was obvious the moment I got in something unpleasant had happened in the office.A.that B.which C.whether D.so27.When asked which floor Mr.Smith lived,the gatekeeper said there was such person.A.no B.not a C.not any D.never28.Living cost is rising and by the end of last month the prices of most foods .A.increased B.have increased C.would increase D.had increased29.—I hope you can go over to have dinner with my family.—Sorry,you see I’m in such a hurry,but remember me your parents.A.at B.to C.on D.for30.—How do you plan to spend the weekend?—I plan to go boating in the park.fun it will be boating in the warm autumn sunshine!A.What B.What a C.How D.How a31.I spent several years in Spain,I never learnt to speak Spanish.A.and B.yet C.so D.as32.At the entrance of the hall hangs a picture of an elegant and graceful old woman,at everyone passing her.A.seated smiling B.seating smilingC.seating smiled D.seated smiled33.I’m afraid I couldn’t mail you the report until about 8 o’clock in the evening because I on my way to Guangzhou the whole afternoon but my train hasn’t arrived yet.A.had been B.was C.am D.will be34.What is Tom up to?He’s seldom turned in his assignments these days,?A.is he B.isn’t he C.has he D.hasn’t he 35.—We are reading advertisement after advertisement for a suitable decoration company to get my apartment redecorated.—So I before I finally fixed on Oriental,a reliable and experienced company.A.have B.had D.am D.wasSECTION B(18 marks)Directions:For each blank in the following passage there are four words or phrases marked A,B,C and D.Fill in each blank with a word or phrase that best fits the context.Two friends visited the zoo together.The zoo was very large and it was impossible to go 36.They had to decide where and which animal to visit as their time was 37.So both of them agreed not to repeat the journey after choosing a branch road at every fork.A road sign at the first fork indicated one way to the 38quarters and the other to the tiger hill.They decided on the former after a brief discussion because lions were “the king of the grassland”.The second showed a division going 39to the panda and the peacock.They favored panda as it was the nation’s treasure and went its way.Thus they made choices all along the way and each choice meant a rejection that they couldn’t help 40.But they had to 41it,and immediately,for it brooked (容忍)no delay.If they 42they would miss more.Only 43decision could offer more chances for sightseeing and 44possible regret.Life is more or less like this—alternatives often occur that one has to choose,for example,between two 45jobs,two fascinating wooers (追求者).To obtain one you have to 46the other—you can only get 47of it.If you spend time weighing the pros and cons and calculating gains and losses,you will most likely end up in empty-handedness.Don’t be sad about it.At least you have got half of the desirable things in life—something that is hard to come by.36.A.anywhere B.everywhere C.somewhere D.nowhere37.A.limited B.spared C.lengthened D.permitted 38.A.bear B.monkey C.elephant D.lion 39.A.directly B.immediately C.separately D.deeply 40.A.remembering B.regretting C.refusing D.receiving 41.A.make B.put C.set D.take42.A.left B.went C.hurried D.hesitated 43.A.important B.serious C.careful D.rapid 44.A.reduce B.cause C.increase D.lose 45.A.terrible B.easy C.desirable D.hard46.A.give out B.give in C.give up D.give away 47.A.both B.half C.neither D.allSECTION C(12 marks)Directions:Complete the following passage by filling in each blank with one word that best fits the context.The giving of gifts has been practised in every civilization ever studied.It is 48.basic human phenomenon that has a place in every culture and religion.Gifts are given to mark occasions throughout 49.,such as birth,marriage and retirement.Sociologists view gifts as a marker of the social relationship 50.givers and recipients.When friends exchange gifts,for example,there is an unwritten expectation 51.the gifts will be of roughly the 52.value,showing that the friends have equality of status.However,in hierarchical (等级的)relationships it is a 53.story.If a(n)54.and a boss were exchanging presents,the boss would be expected to give a larger present.In 55.for this generosity,the employee would be expected to both work hard and be respectful.PART THREE READING COMPREHENSION(30 marks)Directions:Read the following three passages.Each passage is followed by several questions or unfinished statements.For each of them there are four choices marked A,B,C and D.Choose the one that fits best according to the information given in the passage.AI went into Harrods in London (a huge department store I am sure you have heard of)to buy some Minton china plates for a wedding anniversary which was to be a group gift from friends to other friends in Geneva.Having only 30 minutes between meetings,I whizzed there in a taxi from the office and battled through the milling people on the 2nd day of the sales on the ground floor up to the 5th to the china department.There was a man standing there who was obviously a sales person who I rushed up to and asked if he had this particular china in stock and if it would take long to wrap,etc..He was amazing.He got the plates in seconds,wrapped them up and asked me if I wanted a store card,to which I replied no,because I lived in Switzerland,to which he replied asking if,as I lived abroad,would like a tax rebate form (退税表).After that he showed me what to do,produced a map of the store and told me where I should go for the formalities (程序).That was fabulous!I thanked him and said what wonderful service he had given me.I even asked if he gave this to everyone,to which he answered:“I’m just doing what is required at Harrods”.With that,a tall man in a grey suit approached me and offered his hand to shake mine saying,“Can I introduce myself?I am the Chief Executive of Harrods and what an interesting conversation I have just heard...” He had been wandering through the store (as youshould do as a hands-on CEO)and had overheard me thanking this salesman,whose face,I can hardly describe,was frozen in a mixture of delight awe and astonishment!Can you imagine the salesman going home to his family and friends recounting what the CEO spoke to him after overhearing him being praised by a customer?56.The writer went to Harrods to .A.kill time B.buy some giftsC.go sightseeing D.shop for her wedding57.What does the underlined word “whiz” in Paragraph 2 most probably mean?A.Drive.B.Arrive.C.Rush.D.Leave.58.W hich of the following sentences can best replace “I’m just doing what is required at Harrods” in the second paragraph?A.“I’m an honest man”.B.“I must obey the rules.”C.“Harrods is strict with its employees.”D.“Anybody will receive our good service”.59.As soon as she bought what she wanted,the writer .A.went to a meeting B.flew back to GenevaC.visited one of her friends D.attended a wedding ceremony60.The writer wrote the above passage because she thought what she had experienced was so .A.pleasant B.strange C.exciting D.amusingBYou never see him,but they’re with you every time you fly.They record where you are going,how fast you’re traveling and whether everything on your airplane is functioning normally.Their ability to withstand (经受住)almost any disaster makes them seem like something out of a comic book.They’re known as the black box.When planes fall from the sky,as a Yemeni airliner did on its way to Comoros Islands in the India ocean June 30,2009,the black box is the best bet for identifying what went wrong.So when a French submarine (潜水艇)detected the device’s homing signal five days later,the discovery marked a huge step toward determining the cause of a tragedy in which 152 passengers were killed.In 1958,Australian scientist David Warren developed a flight-memory recorder that would track basic information like altitude and direction.That was the first mode for a black box,which became a requirement on all U.S.commercial flights by 1960.Early models often failed to withstand crashes,however,so in 1965 the device was completely redesigned and moved to the rear (后部)of the plane—the area least subject to impact—from its original position in the landing wells (起落架舱).The same year,the Federal Aviation Authority required that the boxes,which were never actually black,be painted orange or yellow to aid visibility.Modern airplanes have two black boxes: a voice recorder,which tracks pilots’conversations,and a flight-data recorder,which monitors fuel levels,engine noises and other operating functions that help investigators reconstruct the aircraft’s final moments.Placed in an insulated (隔绝的)case and surrounded by a quarter-inch-thick panels of stainless steel,theboxes can withstand massive force and temperatures up to 2,000℉.When submerged (淹没),they’re also able to emit signals from depths of 20,000 ft.Experts believe the boxes from Air France Flight 447,which crashed near Brazil on June 1,2009,are in water nearly that deep,but statistics say they’re still likely to turn up.In the approximately 20 deep-sea crashes over the past 30 years,only one plane’s black boxes were never recovered.61.Which of the following is the magic feature about a black box,according to the text?A.It can record clearly.B.It can be seen clearly.C.It can survive a serious disaster.D.It can tell altitude and direction.62.Which of the following statements about the air disaster happening to Yemeni airliner is TRUE?A.Its black box hasn’t been found yet.B.Its black box was found under the sea.C.Its black box saved all the passengers’ lives.D.Its black box was found immediately after the crash.63.When the first mode of black box appeared,.A.it wasn’t black B.it was painted yellowC.it was at the rear of the plane D.it wasn’t able to track direction 64.According to the passage,modern black boxes .A.are placed in insulated plastic boxesB.have seldom been found in deep-sea crashesC.are painted bright colors and can emit signalsD.will melt only when the temperature rises to 1,000℉65.Several changes to the black box are mentioned in the passage except the change in its .A.position B.number C.strength D.sizeCThe U.S.Food and Drug Administration (FDA)is considering to put stricter limits over tanning salons (晒黑廊)and wants to ban anyone younger than 18 years of age from using a tanning bed,an advisory panel (专家团)announced last week.The panel is calling for tighter controls on the industry such as requiring teenagers to get the approval from their parents before using tanning beds or limiting the use of artificial tanning to a certain age.“Given the absence of any demonstrated benefit,I think it is an obligation for us to ban artificial tanning for those under 18,” said panelist Dr.Michael Olding.Along with a possible ban for teenagers,the panel also recommended that visible warning labels should be placed either on the tanning machines or in the salons in order to caution tanners of the possible dangers.In addition,the committee decided that stricter regulations and classifications were critical to make the machines safer.At this time the machines are categorized as FDA Class 1 devices,the ones that are least likely to cause harm.In case the FDA decided to change their classification from Class 1 to Class 2,as advised by the panel,the FDA could limit the levels of radiation the machines emit.Class 2 devices include X-ray machines and powered wheelchairs.Getting a tan,whether from a tanning bed or the sun,increases the risk of developing skin cancer.Last year,the World Health Organization’s International Agency for Research on Cancer (IARC)declared tanning beds as “carcinogenic (致癌的)to humans”.It wasdiscovered that young individuals in their teens and 20s who use tanning beds on a regular basis have a 75 per cent higher risk of suffering from melanoma (黑素瘤),the deadliest form of skin cancer.According to the American Cancer Society,melanoma accounted for nearly 69,000 cases of skin cancer in 2009 and will account for most (about 8,650)of the 11,590 mortality cases due to skin cancer each year.66.According to the passage,what measures will U.S.FDA most probably take?A.Banning tanning salons.B.Posing heavier tax over tanning salons.C.Having tighter controls over tanning salons.D.Limiting the number of tanning salons in every state.67.Which of the following suggestions for making tanning salons safer is NOT mentioned?A.Visible Caution.B.Setting age limit.C.Professional personnel.D.Parental approval for teenagers.68.Which of the following is TRUE according to the passage?A.X-ray machines are less likely to cause harm than tanning machines.B.X-ray machines are more likely to cause harm than tanning machines.C.Powered wheelchairs are as likely to cause harm as tanning machines.D.Powered wheelchairs are less likely to cause harm than tanning machines.69.What does the writer want to express in the last paragraph?A.Tanning in one’s youth may mean death.B.Tanning in the sun is safer than on the tanning bed.C.People should get tanned without getting melanoma.D.Getting tanned is only a good idea for those above thirty years old.70.What will most probably happen,if the advisory panel’s suggestions are adopted and put into practice?A.Fewer people will suffer from skin cancer.B.Tanning salons will have more customers.C.Getting a tan in a tanning salon will cost less.D.Parents will be more anxious about their tanning children.PART FOUR WRITING(45 marks)SECTION A(10 marks)Directions:Read the following passage.Fill in the numbered blanks by using the information for the passage.Write NO MORE THAN THREE WORDS for each answer.According to the surprising findings of a new study by U.S.investigators,chewing sugarless gum during class and while doing homework can have a positive effect on academic performance in teenagers.Study leader Craig A.Johnston of the Children’s Nutrition Research Center at Baylor College of Medicine in Houston,Texas,and his colleagues studied more than 100 eighth-grade students,52 girls and 56 boys,aged between 13 and 16 years,in four math classes.The experts randomly assigned teenagers into two groups:one group was asked to chew Wrigley’s sugar-free gum during class,while doing homework,and also while performing a standardized test.They chewed at least one stick of gum 86 per cent of the time they were in math class and 36 per cent of the time they were doing homework.The participants of the other group did not.Johnston and his team found that 14 weeks later,the gum chewers had a 3 percent increasein their math scores on the Texas Assessment of Knowledge and Skills achievement test,a small but statistically significant change,according to experts.There was no difference found in math scores between the participants in the two groups in another test called the Woodcock Johnston III Tests of Achievement.However,the experiment revealed that gum-chewers had better final grades in the class compared to their non-chewing peers.According to Johnston,chewing gum reduces stress and anxiety as well as it increases arousal (兴奋).Researchers say that the studies and research are focused on investigating the effect of chewing gum on focus,alertness,concentration,situational stress,weight control and oral health.According to them,the study is really meaningful and should raise interest in parents “when related to small steps that can lead to better academic performance.”The new study is being built on previous research that was conducted in a laboratory setting and showed that gum chewing can help reduce stress,improve alertness and relieve anxiety.The current findings,for the first time,provide a possible role for chewing gum in helping to improve academic performance in a “real life” classroom setting.A surprising finding—chewing gum results in 71.Ⅰ.Purpose of the study:To investigate the effect of chewing gum on focus,alertness,concentration,situational stress,weight control and 72..Ⅱ.The research:◆Researchers:Craig A.Johnston and 73.◆Participants:74.eighth-grade students aged between 13 and 16 years◆Contents:◆Results:● Gumchewers’math scores increasing by 78.on the Texas Assessment of Knowledge and Skills achievement test● 79.in the Woodcock Johnston III Tests of Achievement between the two groups ● Gumchewers having bett er final gradesⅢ.Researchers’ Analysis:◆Chewing gum reduces 80..◆Chewing gum increases arousal.SECTION B (10 marks)Directions:Read the following passage.Answer the questions according to the information given in the passage.The period of engagement is the time between the marriage proposal and the wedding ceremony.Two people agree to marry when they decide to spend their lives together.The manusually gives the woman a diamond engagement ring.That tradition is said to have started when an Austrian man gave a diamond ring to the woman he wanted to marry.The diamond represented beauty.He placed it on the third finger of her left hand.He chose that finger because it was thought that a blood vessel (血管)in that finger went directly to the heart.Today,we know that this is not true.Yet the tradition continues.Americans generally are engaged for a period of about one year if they are planning a wedding ceremony and party.During the time,friends of the bride may hold a party at which women friends and family members give the bride gifts that she will need as a wife.These could include cooking equipment or new clothing.Friends of the man who is getting married may have a bachelor party for him.This usually takes place the night before the wedding.Only men are invited to the bachelor party.During the marriage ceremony,the bride and her would-be husband usually exchange gold rings that represent the idea that their union will continue forever.The wife often wears both the wedding ring and engagement ring on the same finger.The husband wears his ring on the third finger of his left hand.Many people say the purpose of the engagement period is to permit enough time to plan the wedding.But the main purpose is to let enough time pass so the two people are sure they want to marry each other.Either person may decide to break the engagement.If this happens,the woman usually returns the ring to the man;they also return any wedding gifts they have received.81.According to the passage,on which finger does a woman wear her engagement ring today?(No more than 12 words)(3 marks)82.Why will a bride receive such gifts as cooking equipment?(No more than 8 words)(2 marks)83.When does a bachelor party usually take place?(No more than 10 words)(2 marks)84.What is the most important reason for there to be the engagement period?(No more than 18 words)(3 marks)SECTION C(25 marks)Directions:Write an English composition according to the instructions given below in Chinese.happyfamily.com是一个致力于消除家长和孩子之间沟通障碍的网站。
湖南省雅礼中学2011届高三月考试卷(七)数 学 试 题(文)本试题卷包括选择题、填空题和解答题三部分,时量120分钟。
满分150分。
一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设{1,2,3,4},{2,3},()U U M C M N ==⋃则=( ) A .{1,2,3} B .{2} C .{1,3,4} D .{4}2.已知复数z 满足43,i z i +=则复数z 的实部与虚部之和为 ( )A .-1B .7C .7iD .-7i3.设条件:0p a >;条件2:0q a a +≥,那么p 是q 的什么条件( )A .充分非必要条件B .必要非充分条件C .充分且不必要条件D .非充分非必要条件4.如图给出的是计算111124620++++的值的一个框图,其中菱形判 断框内应填入的条件是 ( )A .8?i >B .9?i >C .10?i >D .11?i >5 )参考公式:独立性检测中,随机变量22()()()()()n ad bc K a b c d a c b d -=++++6.方程3log 30x x +-=的解所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)7.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .22(2)(1)1x y -++=B .22(2)(1)1x y -+-=C .22(2)(1)1x y ++-=D .22(3)(1)1x y -+-= 8.对任意的实数a ,b ,记()max{,}()a a b a b b a b ≥⎧=⎨<⎩若()max{(),()}()F x f x g x x R =∈,其中奇函数y=f(x)在x=1时有极小值-2,y=g(x)是正比例函数,()y f x =(0x ≥)与函数()y g x =的图象如图所示,则下列关于函数()y F x =的说法中,正确的是( )A .()y F x =为奇函数B .()y F x =有极大值(1)F 且有极小值(1)F -C .()y F x =的最小值为-2且最大值为2D .()y F x =在(-3,0)上不是单调函数二、填空题:本大题共8小题,每小题5分,满分35分,把答案填在答题卡中对应题号的横线上。
科目:数学(文科)(试题卷)策划制作:湖南炎德文化实业有限公司命题审校:长沙市一中高三数学备课组注意事项:1.答题前,考生务必将自己的姓名㊁准考证号写在答题卡和该试题卷的封面上,并认真核对条形码上的姓名㊁准考证号和科目.2.选择题和非选择题均须在答题卡上作答,在草稿纸上和本试题卷上答题无效.考生在答题卡上按如下要求答题:(1)选择题部分请用2B铅笔把对应题目的答案标号所在方框涂黑,修改时用橡皮擦干净,不留痕迹.(2)非选择题部分(包括填空题和解答题)请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效.(3)保持字体工整㊁笔迹清晰㊁卡面清洁㊁不折叠.3.考试结束后,将本试题卷和答题卡一并交回.4.本试题卷共5页.如缺页,考生须声明,否则后果自负.姓 名准考证号炎德·英才大联考长沙市一中2011届高考模拟卷(三)数 学(文科) 本试题卷包括选择题㊁填空题和解答题三部分,共5页㊂时量120分钟㊂满分150分㊂参考公式:如果事件A ㊁B 互斥,那么P (A +B )=P (A )+P (B )球的表面积公式S =4πR 2(其中R 表示球的半径)球的体积公式V =43πR 3(其中R 表示球的半径)一㊁选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x |≤2,x ∈R },B ={x |0≤x ≤2,x ∈Z },则A ∩B =A.(0,2)B .[0,2]C .{0,2} D.{0,1,2}2.已知平面向量a =(3,1),b =(x ,-3),a ∥b ,则x 等于A.9B .-9C .-1 D.13.已知f (x )在m ,[]n 上单调递增,且f (m )㊃f (n )<0,则f (x )在区间[m ,n ]上A.有三个零点B .有两个零点C .有一个零点 D.不能确定4.若抛物线x 2=2p y (p >0)的焦点在圆x 2+y 2+2x -1=0上,则抛物线的准线方程为A.y =-1B .y =1C .x =-1 D.x =15.已知函数f (x )=3s i n ωx +c o s ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则ω等于A.1B .2C .12 D.36.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则抽取的学生人数为A.46B .487.如图,A B C D -A 1B 1C 1D 1为正方体,下面结论错误∙∙的是A.B D ∥平面C B 1D 1B .A C 1⊥B D C .C D 1与面A B C D 所成的角为45°D.异面直线A D 与C B 1所成的角为60°8.在△A B C 中,|B C |=2|A B |,∠A B C =120°,则以A ,B 为焦点且过点C 的双曲线的离心率为A.7+23B .6+22C .7-2 D.3+2二㊁填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.(一)必做题(9~14题)9.已知l 是曲线y =12x 3+x 的切线中的倾斜角最小的切线,则l 的方程是 .10.某程序的框图如图所示,执行该程序,若输入6,则输出的S 为 .11.在△A B C 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若a =c s i n A ,则a +b c的最大值为 .12.已知平面区域M ={(x ,y )|y ≤x +1y ≥0x ≤ìîíïïïï1},N ={(x ,y )|y ≤-x +1y ≥{0},向区域M 内随机投一点P ,则点P 落在区域N 内的概率为 .13.已知函数f (x )是周期为2的偶函数,当x ∈[0,1]时,f (x )=x ,若在区间[-1,3]内,函数g (x )=f (x )-k x -k 有4个零点,则实数k 的取值范围是 .14.在某个Q Q 群中有n 名同学在玩一种叫数字哈哈镜”的游戏.这些同学编号依次为1,2,3, ,n .在哈哈镜中,每个同学看到的像用一组数对(p ,q )表示.规则如下:编号为k 的同学看到的像为a k ,a k ()+1,且满足:a k +1-a k =k ,已知编号为1的同学看到的像为(5,6).则(1)编号为4的同学看到的像为 ;(2)某位同学看到的像为(195,q ),其中q 的值被遮住了,请你帮这位同学猜出q = .(二)选做题(请从以下两题中任选一题,两题都做的以第15题计分)15.在极坐标系中,曲线ρ=4c o s (θ-π3)上任意两点间的距离的最大值为 .16.用对分法寻找最佳点时,达到精度为0.01的要求,至少需要 次试验.(已知三㊁解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 17.已知函数f(x)=s i n(ωx+φ)(ω>0,0<φ<π)的一系列对应值如下表:x-π40π6π4π23π4y01120-10(1)求f(x)的解析式;(2)若在△A B C中,A C=23,B C=6,A为锐角,f(A)=-12,求△A B C的面积.18.对甲㊁乙两种商品的重量的误差进行抽查,测得数据如下(单位:m g):甲:13 15 14 14 9 14 21 9 10 11乙:10 14 9 12 15 14 11 19 22 16(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;(2)现从重量误差不低于15的乙种商品中随机抽取两件,求重量误差为19的商品被抽中的概率.19.如图:在四棱锥P-A B C D中,底面A B C D是菱形,∠A B C=60°,P A⊥平面A B C D,点M㊁N分别为B C㊁P A的中点,且P A=A B=2.(1)证明:B C⊥平面AMN;(2)在线段P D上是否存在一点E,使得NM∥平面A C E;若存在,求出P E的长;若不存在,说明理由.20.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案,为了使方案切实可行,要求包括三个方面:①奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,②奖金不超过9万元,③奖金不超过投资收益的20%.(1)若建立函数模型f(x)制定奖励方案,试用数学语言表述公司对奖励函数模型f(x)的基本要求;(2)现有两个奖励函数模型:ⅰ)y=x150+2;ⅱ)y=4l g x-3.试分析这两个函数模型是否符合公司要求?21.已知圆M:(x-m)2+(y-n)2=r2及定点N(1,0),点P是圆M上的动点,点Q在N P上,点G在MP上,且满足→N P=2→N Q,→G Q㊃→N P=0.(1)若m=-1,n=0,r=4,求点G的轨迹C的方程;(2)若动圆M和(1)中所求轨迹C相交于不同两点A㊁B,是否存在一组正实数m,n,r使得直线MN垂直平分线段A B,若存在,求出这组正实数;若不存在,说明理由.22.已知函数f(x)=m x-m x,g(x)=2l n x.(1)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当m=1时,证明方程f(x)=g(x)有且仅有一个实数根;(3)若x∈1,(]e时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.。
湖南省长沙市一中2011届高三月考试卷(七)数 学(理科)长沙市一中高三理科数学备课组组稿 命题人:李湘斌 审题人:赵意扬 (考试范围:高考理科内容(不含选修系列4))本试题卷包括选择题、填空题和解答题三部分,共6页。
时量120分钟。
满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x +y -1=0的倾斜角是( )A.-π4B.π4C.3π4D.π22.“p ∧q 是真命题”是“p ∨q 是真命题”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A.9πB.10πC.11πD.12π4.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( ) A.40 B.42 C.43 D.455.设m >0,则直线x +3y +1+m =0与圆x 2+y 2=m 的位置关系是( ) A.相切 B.相交 C.相切或相离 D.相交或相切6.下列函数中,图象的一部分如右图所示的是( )A.y =sin(2x +π6)B.y =sin(2x -π6)C.y =cos(2x +π3)D.y =cos(2x -π6)7.函数y =lg x -9x的零点所在的大致区间是( )A.(6,7)B.(7,8)C.(8,9)D.(9,10)8.设m ∈N *,F (m )表示log 2m 的整数部分,则F (210+1)+F (210+2)+F (210+3)+…+F (211)的值为( )A.10×210B.10×210+1C.10×210+2D.10×210-1二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.9.∫10x 2d x = .10.某工厂生产A 、B 、C 三种不同型号的产品.产品数量之比依次为2∶3∶5,现用分层抽样方法抽出一个容量为n 的样本,已知A 种型号产品共抽取了16件,那么此样本的容量n = .11.如右图所示的算法流程图中,输出S 的值为 .12.设A 、B 为x 轴上两点,点P 的横坐标为2,且|PA|=|PB|,若直线PA 的方程为x -2y +1=0,则直线PB 的方程是 .13.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=3|PF 2|,则此双曲线的离心率e 的最大值为 .14.在△ABC 中,P 为中线AM 上的一个动点,若|AM |=2,则PA ·(PB +PC )的最小值为 .15.如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标数字0,点(1,0)处标数字1,点(1,-1)处标数字2,点(0,-1)处标数字3,点(-1,-1)处标数字4,点(-1,0)处标数字5,点(-1,1)处标数字6,点(0,1)处标数字7,…以此类推,①标数字50的格点的坐标为 .②记格点坐标为(m ,n)的点(m 、n 均为正整数)处所标的数字为f(m ,n),若n>m ,则f(m ,n)= .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知sin x 2-2cos x2=0.(1)求tan x 的值;(2)求cos 2x2cos (π4+x)·sin x的值.17.(本小题满分12分)某旅游公司为3个旅游团提供甲、乙、丙、丁4条旅游线路,每个旅游团只能任选其中一条线路,不同的旅游团可选相同的旅游线路.(1)求3个旅游团选择3条不同的线路的概率; (2)求选择甲线路旅游团的团数的分布列和期望.如右图,简单组合体ABCDPE ,其底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =2EC.(1)若N 为线段PB 的中点,求证:EN ⊥平面PDB ;(2)若PDAD =2,求平面PBE 与平面ABCD 所成的锐二面角的大小.19.(本小题满分13分)已知函数f(x)=12ax 2+(1-a)x -1-ln x ,a ∈R .(1)若函数在区间(2,4)上存在..单调递增区间,求a 的取值范围; (2)求函数的单调增区间.20.(本小题满分13分)某公园的大型中心花园的边界为椭圆,花园内种植各种花草,为增强观赏性,在椭圆内以其中心为直角顶点且关于中心对称的两个直角三角形内种植名贵花草(如图),并以该直角三角形斜边开辟观赏小道(不计小道的宽度),某园林公司承接了该中心花园的施工建设,在施工时发现,椭圆边界上任意一点到椭圆两焦点距离和为4(单位:百米),且椭圆上点到焦点的最近距离为1(单位:百米).(1)试以椭圆中心为原点建立适当的坐标系,求出该椭圆的标准方程; (2)请计算观赏小道的长度(不计小道宽度)的最大值.顶点在坐标原点,开口向上的抛物线经过A 0(1,1),过A 0作抛物线的切线交x 轴于B 1,过B 1点作x 轴的垂线交抛物线于A 1,过A 1作抛物线的切线交x 轴于B 2,…,过A n (x n ,y n )作抛物线的切线交x 轴于B n +1(x n +1,0)(1)求{x n },{y n }的通项公式;(2)设a n =11+x n +11-x n +1,数列{a n }的前n 项和为T n .求证:T n >2n -12.(3)设b n =1-log 2y n ,若对任意正整数n ,不等式(1+1b 1)(1+1b 2)…(1+1b n)≥a 2n +3成立,求正数a的取值范围.炎德·英才大联考长沙市一中2011届高三月考试卷(七)数 学(理科) 教师用卷长沙市一中高三理科数学备课组组稿 命题人:李湘斌 审题人:赵意扬 (考试范围:高考理科内容(不含选修系列4))本试题卷包括选择题、填空题和解答题三部分,共6页。
长沙市一中2011届高三第七次月考语文试卷基础试题2011-02-18 20595d56b7b401017dgv长沙市一中2011届高三第七次月考语文试卷一、语言文字运用(15分,每小题3分)1.下列词语中,字形与加点的字读音全都正确的一组是A.僯选繁文缛节rù裙裾jū靡靡之音mǐB.编纂心广体胖páng漩涡xuàn插科打诨hùnC.洗练绠短汲深gěng果脯fǔ犯而不校jiàoD.秸秆犄角之势jǐ症结zhēng以儆效尤jǐng1. C. (僯选——遴选心广体胖pán漩涡xuān犄角之势——掎)2..下列各句中,加点的成语使用恰当的一句是A.12月2日,湖南茶业博览会在省展览馆举行,这次博览会,汇集了君山银针、安化黑茶、古丈毛尖等1万多种名优湘茶,真可谓浩如烟海,应有尽有。
B.日本右翼势力对疆独台独藏独暗送秋波,企图借助分裂分子达到反华和对抗中国的目的,理所当然地遭到了中国政府和民众的强烈抨击。
C.2010年斯坦科维奇杯洲际篮球赛三四名的决赛中,中国队在大比分落后的情况下拼尽全力,反戈一击,以76比58战胜老对手伊朗队,取得第三名。
D.嘎纳电影节参赛片、华人导演李安执导的美国电影《制造伍德斯托克》在首映,赢得影评家和普通观众真诚热情的溢美之词。
2.B.(暗送秋波旧时比喻美女的眼睛象秋天明净的水波一样。
原指暗中眉目传情,泛指献媚取宠,暗中勾搭。
浩如烟海形容文献、资料等非常丰富。
反戈一击掉转武器向自己原来所属的阵营进行攻击。
溢美之词溢水满外溢,引申为过分。
过分吹嘘的话语。
常用于贬义场合)3.下列各句中,没有语病的一句是A.昨天,一种先进的身份识别仪器——救助管理指纹识别系统昨日在贵阳市救助站安装完毕,即将投用。
这使得职业乞讨者到救助站骗住骗吃骗票的现象得到了根本改观;贵阳市救助站也将成为全国首家通过指纹识别仪进行救助管理的重点中转救助站。
B.元月1日至2日,中共中央政治局常委、国务院总理温家宝冒着摄氏零下25度左右的严寒,深入被白雪覆盖的锡林郭勒大草原腹地,走访牧民家庭到内蒙古自治区锡林郭勒盟牧区看望各族干部群众,向他们致以新年的问候和祝福。
湖南省长沙市一中2008届高三第七次月考试题文科数学注意事项:1.本试卷分为选择题和非选择题两部分,共9页。
2.答卷前,考生务必将自己的姓名、座号、准考证号分别填写在答题卡及答题纸上。
3.选择题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试卷上。
4.考试结束后,将答题卡和答题纸一并交回。
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。
) 1、函数y=log 21-x 定义域是A .(0,1]B .(0,+∞)C .(1,+∞)D .[1,+∞)2、下列函数中最小正周期不为π的是 A .x x x f cos sin )(⋅=B . g (x )=tan (2π+x )C . x x x f 22cos sin )(-=D .x x x cos sin )(+=ϕ3、某鱼贩一次贩运草鱼、青鱼、鲢鱼、鲤鱼及鲫鱼各有80条、20条、40条、40条、20条,现从中抽取一个容量为20的样本进行重量检测,若采用分层抽样的方法抽取样本,则抽取的青鱼与鲤鱼共有A .6条B .8条C .10条D .12条4、设半径为R 的地球表面上两点A ,B 间的球面距离为3πR ,则地心到线段AB 的距离等于 A .R 23B .RC .R 33D .R 63 5、若a 、b ∈R ,a >1,b >1的充要条件是A .a 2+b 2>2B .a+b >2 a+b >2a+b >2C . ab >1D . (a-1)(b-1) >06、如果(3x 2-32x )n的展开式中非零常数项为第5项,则正整数n 为 A .10 B .2C .12D .137、已知P 是椭圆92522y x +=1上的点,F 1、F 221||||2121=⋅PF PF PF PF ,则△F 1PF 2的面积为 A .33B . 32C .3D .338、将“2008奥运会”所有数字(注:两个0)与汉字重排,在所有全排列中,汉字“奥,运,会”相邻的全排列个数是A .720B .360C .1440D .3209、已知△ABC 满足|BC |3+|BA |3=|CA |=1,△ABC 则必定为 A .直角三解形 B .钝角三角形C .锐角三角形D .不确定10、设圆x 2+y 2=2过点(1,1)的切线也是抛物线y=ax 2的切线,则a 等于A .81B .81-C .21D . 21-二、填空题(本大题共5小题,每小题5分,共25分,把答案填写在答题卷中对应题号后的横线上)2、若数列{a n }满足:a 2=2,a 4=4, a n+1= 2a n -a n-1,(n=1,2,3…)。
湖南省长沙市第一中学2010-2011学年高三12月考数学(文)命题人:王 辉 审题人:陈 震(考试范围:集合、逻辑用语、函数、导数、三角函数、 平面向量与复数、数列、不等式、概率统计、立体几何)本试题卷包括选择题、填空题和解答题三部分,共6页。
时量120分钟。
满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知命题p :“ x ∈R ,x 2+1>0”;命题q :“ x ∈R ,sin x =2”则下列判断正确的是 ( )A.p 或q 为真,非p 为真B. p 或q 为真,非p 为假C.p 且q 为真, 非p 为真D.p 且q 为真,非p 为假 2.要得到一个奇函数,只需将函数f (x )=sin(x -π3)的图象 ( )A.向右平移π6个单位B.向右平移π3个单位C.向左平移π6个单位D.向左平移π3个单位3.函数f (x )=2x -3x的零点所在区间为 ( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.甲乙两位同学在高三的5次月考中数学成绩统计如茎叶图所示,若甲乙两人的平均成绩分别是x 甲,x 乙,则下列判断正确的是 ( )A. x 甲>x 乙, 且乙比甲成绩稳定B. x 甲>x 乙,且甲比乙成绩稳定C.x 甲<x 乙, 且乙比甲成绩稳定D.x 甲<x 乙, 且甲比乙成绩稳定5.如右图是一个简单空间几何体的三视图,其主视图 与左视图都是边长为2的正三角形,其俯视图轮廓为 正方形,则其体积是 ( ) A.36 B.43 C.433 D.836.设α、β为两个不同的平面,m 、n 为两条不同的直线,则以下判断不正确...的是 ( ) A.若α∥β,m ⊥α,则m ⊥βB.若m ⊥α,n ⊥α,则m ∥nC.若α⊥β,α∩β=n ,m α,m ⊥n ,则m ⊥βD.若m α,n α,m ∥β,n ∥β,则α∥β7.下列图象中有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (-1)=( )A.13B.-13C.53D.-538.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( ) A.32 B.53 C.256D.不存在选择题答题卡二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.9.函数y =2-x +log 3(1+x)的定义域为 .10.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为100的样本,其频率分布直方图如图所示,则据此估计支出在[50,60)元的同学的概率为.11.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知B =π3,a =3,c =2,则△ABC 的面积为______.12.若向量a 、b 满足a +b =(2,-1),a =(1,2),则向量a 与b 的夹角等于 .13.如图,在正方体ABCD -A ′B ′C ′D ′中,异面直线BD 与B ′C 所成角为 ;直线A ′C 与平面ABCD 所成角的正弦值为 .x-y ≥014.满足约束条件 x+y ≤2 的点P (x ,y )所在区域的面积等于 .x+2y ≥215.若函数y =f (x )(x ∈D )同时满足下列条件:(1)f (x )在D 内为单调函数;(2)f (x )的值域为D 的子集,则称此函数为D 内的“保值函数”.已知函数f (x )=a x +b -3ln a,g (x )=ax 2+b .①当a =2时,f (x )=a x +b -3ln a 是[0,+∞)内的“保值函数”,则b 的最小值为 ;②当-1≤a ≤1,且a ≠0,-1≤b ≤1时,g (x )=ax 2+b 是[0,1]内的“保值函数”的概率为 .三、解答题:本大题共6小题,共75分. 解答应写出文字说明,证明过程或演算步骤.16. (本小题满分12分)已知sin(π-α)=45,α∈(0,π2).(1)求sin2α-cos 2α2的值;(2)求函数f (x )=56cos αsin2x -12cos2x 的单调递增区间.17. (本小题满分12分)为了更好的开展社团活动,丰富同学们的课余生活,现用分层抽样的方法从“模拟联合国”, “街舞”, “动漫”,“话剧”四个社团中抽取若干人组成校社团指导小组,有关数据见下表(单位:人)(1)求a ,b ,c 的值;(2)若从“动漫”与“话剧”社团已抽取的人中选2人担任指导小组组长,求这2人分别来自这两个社团的概率.18. (本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,E 、F 分别为PC 、BD 的中点,侧面PAD ⊥底面ABCD ,且PA =PD =22AD. (1)求证:EF ∥平面PAD ; (2)求证:PA ⊥平面PCD.19. (本小题满分13分)某造船公司年造船量最多20艘,已知造船x 艘的产值函数为R (x )=3700x +45x 2-10x 3(单位:万元),成本函数为C (x )=460x +500(单位:万元).(1)求利润函数p (x );(提示:利润=产值-成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大? (3)在经济学中,定义函数f (x )的边际函数Mf (x )=f (x +1)-f (x ).求边际利润函数Mp (x ),并求Mp (x )单调递减时x 的取值范围;试说明Mp (x )单调递减在本题中的实际意义是什么?(参考公式:(a +b )3=a 3+3a 2b +3ab 2+b 3)20.(本小题满分13分)已知点列B 1(1,b 1),B 2(2,b 2),…,B n (n ,b n ),…(n ∈N )顺次为抛物线y =14x 2上的点,过点B n (n ,b n )作抛物线y =14x 2的切线交x 轴于点A n (a n,0),点C n (c n,0)在x 轴上,且点A n ,B n ,C n 构成以点B n 为顶点的等腰三角形.(1)求数列{a n },{c n }的通项公式;(2)是否存在n 使等腰三角形A n B n C n 为直角三角形,若有,请求出n ;若没有,请说明理由.(3)设数列{1a n ·(32+c n )}的前n 项和为S n ,求证:23≤S n <43.21.(本小题满分13分)已知函数f (x )=x (x -a )(x -b ),点A (s ,f (s )),B (t ,f (t )).(1)若a =0,b =3,函数f (x )在(t ,t +3)上既能取到极大值,又能取到极小值,求t 的取值范围; (2)当a =0时,f (x )x +ln x +1≥0对任意的x ∈[12,+∞)恒成立,求b 的取值范围;(3)若0<a <b ,函数f (x )在x =s 和x =t 处取得极值,且a +b <23,O 是坐标原点,证明:直线OA 与直线OB 不可能垂直.数 学(文科)答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知命题p :“ x ∈R ,x 2+1>0”;命题q :“ x ∈R ,sin x =2”则下列判断正确的是 (B)A.p 或q 为真,非p 为真B. p 或q 为真,非p 为假C.p 且q 为真, 非p 为真D.p 且q 为真,非p 为假 2.要得到一个奇函数,只需将函数f (x )=sin(x -π3)的图象(D)A.向右平移π6个单位B.向右平移π3个单位C.向左平移π6个单位D.向左平移π3个单位3.函数f (x )=2x -3x的零点所在区间为 (B)A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.甲乙两位同学在高三的5次月考中数学成绩统计如茎叶图所示,若甲乙两人的平均成绩分别是x 甲,x 乙,则下列判断正确的是 (C)A. x 甲>x 乙, 且乙比甲成绩稳定B. x 甲>x 乙,且甲比乙成绩稳定C.x 甲<x 乙, 且乙比甲成绩稳定D.x 甲<x 乙, 且甲比乙成绩稳定5.如右图是一个简单空间几何体的三视图,其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是(C) A.36B.4 3C.433D.836.设α、β为两个不同的平面,m 、n 为两条不同的直线,则以下判断不正确...的是 (D) A.若α∥β,m ⊥α,则m ⊥β B.若m ⊥α,n ⊥α,则m ∥n C.若α⊥β,α∩β=n ,m α,m ⊥n ,则m ⊥βD.若m α,n α,m ∥β,n ∥β,则α∥β7.下列图象中有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (-1)=(B)A.13B.-13C.53D.-538.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为(A)A.32B.53C.256D.不存在 选择题答题卡二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.9.函数y =2-x +log 3(1+x)的定义域为 (-1,2] .10.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为100的样本,其频率分布直方图如图所示,则据此估计支出在[50,60)元的同学的概率为 0.30.11.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知B =π3,a =3,c =2,则△ABC 的面积为 32.12.若向量a 、b 满足a +b =(2,-1),a =(1,2),则向量a 与b 的夹角等于 135° . 13.如图,在正方体ABCD -A ′B ′C ′D ′中,异面直线BD 与B ′C 所成角为 π3 ;直线A ′C 与平面ABCD 所成角的正弦值为33.x-y ≥014.满足约束条件 x+y ≤2 的点P (x ,y )所在区域的面积等于 13.x+2y ≥215.若函数y =f (x )(x ∈D )同时满足下列条件:(1)f (x )在D 内为单调函数;(2)f (x )的值域为D 的子集,则称此函数为D 内的“保值函数”.已知函数f (x )=a x +b -3ln a,g (x )=ax 2+b .①当a =2时,f (x )=a x +b -3ln a是[0,+∞)内的“保值函数”,则b 的最小值为 2 ;②当-1≤a ≤1,且a ≠0,-1≤b ≤1时,g (x )=ax 2+b 是[0,1]内的“保值函数”的概率为 14 .三、解答题:本大题共6小题,共75分. 解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分12分) 已知sin(π-α)=45,α∈(0,π2).(1)求sin2α-cos 2α2的值;(2)求函数f (x )=56cos αsin2x -12cos2x 的单调递增区间.解:(1)∵sin(π-α)=45,∴sin α=45,又∵α∈(0,π2),∴cos α=35, (2分)∴sin2α-cos 2α2=2sin αcos α-1+cos α2=2×45×35-1+352=425,(6分)(2)f (x )=56×35sin2x -12cos2x =22sin(2x -π4),(9分)令2k π-π2≤2x -π4≤2k π+π2,得k π-π8≤x ≤k π+3π8,k ∈Z .(11分)∴函数f (x )的单调递增区间为[k π-π8,k π+3π8],k ∈Z .(12分)17. (本小题满分12分)为了更好的开展社团活动,丰富同学们的课余生活,现用分层抽样的方法从“模拟联合国”, “街舞”, “动漫”,“话剧”四个社团中抽取若干人组成校社团指导小组,有关数据见下表(单位:人)(1)求a ,b ,c 的值;(2)若从“动漫”与“话剧”社团已抽取的人中选2人担任指导小组组长,求这2人分别来自这两个社团的概率.解:(1)由表可知抽取比例为16,故a =4,b =24,c =2. (4分)(2)设“动漫”4人分别为:A 1,A 2,A 3,A 4;“话剧”2人分别为:B 1,B 2.则从中任选2人的所有基本事件为:(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 2,A 3),(A 2,A 4),(A 3,A 4),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2), (B 1,B 2)共15个, (8分)其中2人分别来自这两个社团的基本事件为:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2)共8个, (10分)所以这2人分别来自这两个社团的概率P =815. (12分)18. (本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,E 、F 分别为PC 、BD 的中点,侧面PAD ⊥底面ABCD ,且PA =PD =22AD.(1)求证:EF ∥平面PAD ; (2)求证:PA ⊥平面PCD.解:(1)证明:连结AC ,则F 是AC 的中点,E 为PC 的中点 故在△CPA 中, EF//PA , (3分) 且PA 平面PAD ,EF 平面PAD ,∴EF ∥平面PAD. (6分)(2)证明:因为平面PAD ⊥平面ABCD , 平面PAD∩平面ABCD =AD , 又CD ⊥AD ,所以,CD ⊥平面PAD ,∴CD ⊥PA , (9分) 又PA =PD =22AD ,所以△PAD 是等腰直角三角形, 且∠APD =π2, 即P A ⊥PD , (11分)又CD ∩PD =D , ∴P A ⊥平面PCD . (12分)19. (本小题满分13分)某造船公司年造船量最多20艘,已知造船x 艘的产值函数为R (x )=3700x +45x 2-10x 3(单位:万元),成本函数为C (x )=460x +500(单位:万元).(1)求利润函数p (x );(提示:利润=产值-成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大? (3)在经济学中,定义函数f (x )的边际函数Mf (x )=f (x +1)-f (x ).求边际利润函数Mp (x ),并求Mp (x )单调递减时x 的取值范围;试说明Mp (x )单调递减在本题中的实际意义是什么?(参考公式:(a +b )3=a 3+3a 2b +3ab 2+b 3)解:(1)p (x )=R (x )-C (x )=3700x +45x 2-10x 3-460x -500 =-10x 3+45x 2+3240x -500,(x ∈N ,1≤x ≤20) (3分)(2)p ′(x )=-30x 2+90x +3240=-30(x -12)(x +9), (6分)∴当0<x <12时,p ′(x )>0,当x <12时,p ′(x )<0.∴x =12时,p (x )有最大值. 即年造船量安排12 艘时,可使公司造船的年利润最大. (8分) (3)∵Mp (x )=p (x +1)-p (x )=-10(x +1)3+45(x +1)2+3240(x +1)-500-(-10x 3+45x 2+3240x -500) =-30x 2+60x +3275=-30(x -1)2+3305,(x ∈N *,1≤x ≤19)所以,当x ≥1时,Mp (x )单调递减,x 的取值范围为[1,19],且x ∈N . (11分) Mp (x )是减函数的实际意义:随着产量的增加,每艘船的利润在减少.(13分)20.(本小题满分13分)已知点列B 1(1,b 1),B 2(2,b 2),…,B n (n ,b n ),…(n ∈N )顺次为抛物线y =14x 2上的点,过点B n (n ,b n )作抛物线y =14x 2的切线交x 轴于点A n (a n,0),点C n (c n,0)在x 轴上,且点A n ,B n ,C n 构成以点B n 为顶点的等腰三角形.(1)求数列{a n },{c n }的通项公式;(2)是否存在n 使等腰三角形A n B n C n 为直角三角形,若有,请求出n ;若没有,请说明理由.(3)设数列{1a n ·(32+c n )}的前n 项和为S n ,求证:23≤S n <43.解:(1)∵y =14x 2,∴y ′=x 2, y ′|x =n =n 2, 则点B n (n ,b n )作抛物线y =14x 2的切线方程为:y -n 24=n 2(x -n ),令y =0,则x =n 2,即a n =n2;(3分)∵点A n ,B n ,C n 构成以点B n 为顶点的等腰三角形,则:a n +c n =2n ,∴c n =2n -a n =3n2 (5分)(2)若等腰三角形A n B n C n 为直角三角形,则|A n C n |=2b n n =n 22 n =2,∴存在n = 2,使等腰三角形A 2B 2C 2为直角三角形 (9分)(3)∵1a n ·(32+c n )=1n 2(32+3n 2)=134n (n +1)=43(1n -1n +1)(11分) ∴S n =43(1-12+12-13+…+1n -1n +1)=43(1-1n +1)<43又1-1n +1随n 的增大而增大,∴当n =1时S n 的最小值为:43(1-11+1)=23,∴23≤S n <43(13分)21.(本小题满分13分)已知函数f (x )=x (x -a )(x -b ),点A (s ,f (s )),B (t ,f (t )).(1)若a =0,b =3,函数f (x )在(t ,t +3)上既能取到极大值,又能取到极小值,求t 的取值范围;(2)当a =0时,f (x )x +ln x +1≥0对任意的x ∈[12,+∞)恒成立,求b 的取值范围;(3)若0<a <b ,函数f (x )在x =s 和x =t 处取得极值,且a +b <23,O 是坐标原点,证明:直线OA 与直线OB 不可能垂直.解:(1)当a =0,b =3时f (x )=x 3-3x 2,∴f ′(x )=3x 2-6x ,∴f (x )在(-∞,0)和(2,+∞)上递增,在(0,2)上递减, (2分) 所以f (x )在0和2处分别达到极大和极小,由已知有t <0且t +3>2,因而t 的取值范围是(-1,0). (4分)(2)当a =0时,f (x )x +ln x +1≥0即x 2-bx +ln x +1≥0可化为x +ln x x +1x ≥b ,记g (x )=x +ln x x +1x (x ≥12),则g ′(x )=1+1-ln x x 2-1x 2=x 2-ln xx 2.(6分)记m (x )=x 2-ln x ,则m ′(x )=2x -1x ,∴m (x )在(12,22)上递减,在(22,+∞)上递增.∴m (x )≥m (22)=12-ln 22>0 从而g ′(x )>0,∴g (x )在[12,+∞)上递增因此g (x )min =g (12)=52-2ln2≥b ,故b ≤52-2ln2. (9分)(3)假设OA ⊥OB ,即OA ·OB =(s ,f (s ))·(t ,f (t ))=st +f (s )f (t )=0 故(s -a )(s -b )(t -a )(t -b )=-1,[st -(s +t )a +a 2][st -(s +t )b +b 2]=-1 由s ,t 为f ′(x )=0的两根可得,s +t =23(a +b ),st =ab3,(0<a <b )从而有ab (a -b )2=9 (11分) (a +b )2=(a -b )2+4ab =9ab+4ab ≥236=12即a +b ≥23,这与a +b <23矛盾.故直线OA 与直线OB 不可能垂直. (13分)。
湖南省长沙市一中2011届高三月考(七)2011 届 高 三 月 考(七)数 学 试 题(文)(考试范围:高考文科内容(不含优选法应用))本试题卷包括选择题、填空题和解答题三部分,共6页。
时量120分钟。
满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z =11+2i (i 为虚数单位)所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤12,m =sin20°,则下列关系中正确的是( )A .m ⊆AB .m ∉AC .{}m ∈AD . {}A m ⊂≠3.设命题p :∀x ∈R ,|x |≥x ;q :∃x ∈R ,1x=0.则下列判断正确的是( )A .p 假q 真B .p 真q 假C .p 真q 真D .p 假q 假4.下列函数中,既是周期为π的周期函数又是偶函数的是 ( ) A .y =10x B .y =tan x C .y =sin2x D .y =|cosx|5.某公司2005~2010年的年利润x (单位:百万元)与年广告支出y (单位:百万元)的统计资料如下表所示:( )A .利润中位数是16,x 与y 有正线性相关关系B .利润中位数是18,x 与y 有负线性相关关系C .利润中位数是17,x 与y 有正线性相关关系D .利润中位数是17,x 与y 有负线性相关关系6.双曲线x 2a 2-y 2b 2=1(a ,b>0)的渐近线与圆(x -3)2+y 2=3相切,则双曲线的离心率为( )A .62B . 3C .2 3D .67.设函数()221log ()x f x a x+=-在区间()0,+∞内有零点,则实数a 的取值范围是( )A .(0,+∞)B .(-∞,1]C .[1,+∞)D .[2,+∞)8.定义{},,min ,,.b a b a b a a b ≥⎧=⎨<⎩设实数x ,y 满足约束条件2211x y ⎧≤⎪⎨≤⎪⎩,则{}min 2,-z x y x y =+的取值范围为( )A .[-2,12]B .[-52,-12]C .[-2,3]D .[-3,32]二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上. 9.在极坐标系中,A (1,π6)、B (2,π2)两点的距离为 .10.设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则||3a +b 等于 .11.一空间几何体的三视图(单位:cm )如图所示,则此几何体的体积是cm 3.12.若{a n }为等差数列,S n 是其前n 项和.且S 11=22π3,则tan a 6的值为 .13.直线l :x -y =0与椭圆x 22+y 2=1相交A 、B 两点,点C 是椭圆上的动点,则△ABC 面积最大值为 .14.直线l :x -3y =0与曲线⎪⎩⎪⎨⎧ϕ=ϕ+=sin 2cos 2:y a x C (φ为参数,a >0)有两个公共点A ,B ,且||AB =2,则实数a 的值为 ;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立极坐标系,则曲线C 的极坐标方程为 .15.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),定义:设f ″(x )是函数y =f (x )的导数y =f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点()x 0,f (x 0)为函数y =f (x )的“拐点”.有同学发现“任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心;且“拐点”就是对称中心.”请你根据这一发现,求: (1)函数f (x )=x 3-3x 2+3x 对称中心为 ;(2)若函数g (x )=13x 3-12x 2+3x -512+1x -12,则g (12011)+g (22011)+g (32011)+g (42011)+…+g (20102011)= .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数f (x )=a sin x +b cos (x -π3)的图象经过点(π3,12),(7π6,0).(1)求实数a ,b 的值;(2)求函数f (x )在[0,π]上的单调递增区间.17.(本小题满分12分)如图:在矩形ABCD 中,AB =5,BC =3,沿对角线BD 把△ABD 折起,使A 移到A1点,过点A 1作A 1O ⊥平面BCD ,垂足O 恰好落在CD 上. (1)求证:BC ⊥A 1D ;(2)求直线A 1B 与平面BCD 所成角的正弦值. 18.(本小题满分12分)某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高; (3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率. 19.(本小题满分13分)工厂生产某种产品,次品率p 与日产量x (万件)间的关系为⎪⎪⎩⎪⎪⎨⎧>≤<-=c x c x x p ,320,61,(c 为常数,且0<c <6).已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.(1)将日盈利额y (万元)表示为日产量(万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=次品数产品总数×100%)20.(本小题满分13分)已知f (x )=m x (m 为常数,m >0且m ≠1). 设f (a 1),f (a 2),…,f (a n )…(n ∈N )是首项为m 2,公比为m 的等比数列. (1)求证:数列{a n }是等差数列; (2)若b n =a n ·f (a n ),且数列{b n }的前n 项和为S n ,当m =2时,求S n ; (3)若c n =f (a n )lg f (a n ),问是否存在m ,使得数列{c n }中每一项恒小于它后面的项?若存在,求出m 的范围;若不存在,请说明理由.21.(本小题满分13分)已知动圆G 过点F (32,0),且与直线l :x =-32相切,动圆圆心G 的轨迹为曲线E .曲线E 上的两个动点A (x 1,y 1)和B (x 2,y 2).(1)求曲线E 的方程;(2)已知OA ·OB =-9(O 为坐标原点),探究直线AB 是否恒过定点,若过定点,求出定点坐标;若不过,请说明理由.(3)已知线段AB 的垂直平分线交x 轴于点C ,其中x 1≠x 2且x 1+x 2=4.求△ABC 面积的最大值.参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1—5 DDBDC 6—8 ACD二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上. 9.在极坐标系中,A (1,π6)、B (2,π2)两点的距离为.10.设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则||3a +b 等于5. 11.一空间几何体的三视图(单位:cm )如图所示,则此几何体的体积是4πcm 3. 12.若{a n }为等差数列,S n 是其前n 项和.且S 11=22π3,则tan a 6的值为13.直线l :x -y =0与椭圆x 22+y 2=1相交A 、B 两点,点C 是椭圆上的动点,则△ABC 面14.直线l :x -3y =0与曲线⎪⎩⎪⎨⎧ϕ=ϕ+=sin 2cos 2:y a x C (φ为参数,a >0)有两个公共点A ,B ,且||AB =2,则实数a 的值为 2 ;在此条件下,以直角坐标系的原点为极点,x 轴正方向为极轴建立极坐标系,则曲线C 的极坐标方程为 ρ2-4ρcos θ+2=0 . 15.(1)函数f (x )=x 3-3x 2+3x 对称中心为 (1,1) ;(2)若函数g (x )=13x 3-12x 2+3x -512+1x -12,则g (12011)+g (22011)+g (32011)+g (42011)+…+g (20102011)= 2010 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.解:(1)∵函数f (x )=a sin x +b cos (x -π3)的图象经过点(π3,12),(7π6,0).∴12102b a +=⎨⎪-=⎪⎩,(4分) 解得:a =3,b =-1.(5分)(2)由(1)知:f (x )=3sin x -cos (x -π3)=32sin x -12cos x =sin (x -π6).(9分)由2k π-π2≤x -π6≤2k π+π2,解得2k π-π3≤x ≤2k π+2π3k ∈Z .∵x ∈[0,π],∴x ∈[0,2π3],∴函数f (x )在[0,π]上的单调递增区间为[0,2π3].(12分)17.解:(1)因为A 1O ⊥平面BCD ,BC ⊂平面BCD ,∴BC ⊥A 1O ,因为BC ⊥CD ,A 1O ∩CD =O ,∴BC ⊥面A 1C D . 因为A 1D ⊂面A 1CD ,∴BC ⊥A 1 D .(6分)(2)连结BO ,则∠A 1BO 是直线A 1B 与平面BCD 所成的角. 因为A 1D ⊥BC ,A 1D ⊥A 1B ,A 1B ∩BC =B ,∴A 1D ⊥面A 1B C .A 1C ⊂面A 1BC ,∴A 1D ⊥A 1 C .在Rt △DA 1C 中,A 1D =3,CD =5,∴A 1C =4.根据S △A 1CD =12A 1D ·A 1C =12A 1O ·CD ,得到A 1O =125,在Rt △A 1OB 中,sin ∠A 1BO =A 1O A 1B =1255=1225.所以直线A 1B 与平面BCD 所成角的正弦值为1225.(12分)18.解:(1)分数在[50,60)的频率为0.008×10=0.08,(2分)由茎叶图知:分数在[50,60)之间的频数为2,所以全班人数为20.08=25,(4分) (2)分数在[80,90)之间的频数为25-2-7-10-2=4;(6分) 频率分布直方图中[80,90)间的矩形的高为425÷10=0.016.(8分)(3)将[80,90)之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6, 在[80,100]之间的试卷中任取两份的基本事件为: (1,2),(1,3),(1,4),(1,5),(1,6), (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6), (4,5),(4,6), (5,6)共15个,(10分)其中,至少有一个在[90,100]之间的基本事件有9个, 故至少有一份分数在[90,100]之间的概率是915=0.6.(12分)19.解:(1)当x >c 时,p =23,y =13·x ·3-23·x ·32=0;(2分)当0<x ≤c 时,p =16-x,∴y =(1-16-x )·x ·3-16-x ·x ·32=32·9x -2x26-x .(4分)∴日盈利额y (万元)与日产量x (万件)的函数关系为23(92)02(6)0 x x x c y x x c ⎧-<≤⎪=-⎨⎪>⎩.(5分)(2)由(1)知,当x >c 时,日盈利额为0. 当0<x ≤c 时,∵y =3(9x -2x 2)2(6-x ),∴y ′=32·(9-4x )(6-x )+(9x -2x 2)(6-x )2=3(x -3)(x -9)(6-x )2,令y ′=0,得x =3或x =9(舍去).∴①当0<c <3时,∵y ′>0,∴y 在区间(0,c ]上单调递增, ∴y 最大值=f (c )=3(9c -2c 2)2(6-c ),此时x =c ;②当3≤c <6时,在(0,3)上,y ′>0,在(3,c )上y ′<0, ∴y 在(0,3)上单调递增,在(3,c )上单调递减. ∴y 最大值=f (3)=92.综上,若0<c <3,则当日产量为c 万件时,日盈利额最大; 若3≤c <6,则当日产量为3万件时,日盈利额最大.(13分)20.解:(1)由题意f (a n )=m 2·m n +1,即ma n ,=m n +1.∴a n =n +1,(2分) ∴a n +1-a n =1,∴数列{a n }是以2为首项,1为公差的等差数列.(4分)(2)由题意b n =a n f (a n )=(n +1)·m n +1,当m =2时,b n =(n +1)·2n +1∴S n =2·22+3·23+4·24+…+(n +1)·2n +1 ①(6分) ①式两端同乘以2,得2S n =2·23+3·24+4·25+…+n ·2n +1+(n +1)·2n +2 ② ②-①并整理,得S n =-2·22-23-24-25-…-2n +1+(n +1)·2n +2=-22-(22+23+24+…+2n +1)+(n +1)·2n +2=-22-22(1-2n )1-2+(n +1)·2n +2=-22+22(1-2n )+(n +1)·2n +2=2n +2·n .(9分)(3)由题意c n =f (a n )·lg f (a n )=m n +1·lg m n +1=(n +1)·m n +1·lg m ,要使c n <c n +1对一切n ∈N *成立,即(n +1)·m n +1·lg m <(n +2)·m n +2·lg m ,对一切n ∈N *成立, ①当m >1时,lg m >0,所以n +1<m (n +2)对一切n ∈N *恒成立;(11分) ②当0<m <1时,lg m <0,所以等价使得n +1n +2>m 对一切n ∈N *成立,因为n +1n +2=1-1n +2的最小值为23,所以0<m <23.综上,当0<m <23或m >1时,数列{c n }中每一项恒小于它后面的项.(13分)21.解:(1)依题意,圆心G 到定点F (32,0)的距离与到直线l :x =-32的距离相等,∴曲线E 是以F (32,0)为焦点,直线l :x =-32为准线的抛物线.∴曲线E 的方程为y 2=6x .(3分)(2)当直线AB 不垂直x 轴时,设直线AB 方程为y =kx +b (k ≠0). 由26y kx b y x=+⎧⎨=⎩消去x 得ky 2-6y +6b =0,Δ=36-24kb >0. y 1y 2=6b k ,x 1x 2=y 216·y 226=(y 1y 2)236=b 2k2.OA ·OB =x 1x 2+y 1y 2=b 2k 2+6bk=-9,∴b 2+6kb +9k 2=0,(b +3k )2=0,b =-3k ,满足Δ>0.∴直线AB 方程为y =kx -3k ,即y =k (x -3), ∴直线AB 恒过定点(3,0).(7分)当直线AB 垂直x 轴时,可推得直线AB 方程为x =3,也过点(3,0). 综上,直线AB 恒过定点(3,0).(8分) (3)设线段AB 的中点为M (x 0,y 0),则 x 0=x 1+x 22=2,y 0=y 1+y 22,k AB =y 1-y 2x 1-x 2=y 1-y 2y 216-y 226=6y 1+y 2=3y 0. ∴线段AB 的垂直平分线的方程为y -y 0=-y 03(x -2).令y =0,得x =5,故C (5,0)为定点.又直线AB 的方程为y -y 0=3y 0(x -2),与y 2=6x 联立,消去x 得y 2-2y 0y +2y 20-12=0. 由韦达定理得y 1+y 2=2y 0,y 1y 2=2y 20-12. ∴|AB |=1+1k 2AB ·|y 1-y 2|=(1+y 209)[(y 1+y 2)2-4y 1y 2]=(1+y 209)[4y 20-4(2y 20-12)]=23(9+y 20)(12-y 20). 又点C 到直线AB 的距离为h =|CM |=9+y 20,∴S △ABC =12|AB |·h =13(9+y 20)2(12-y 20) 令t =9+y 20(t >9),则12-y 20=21-t .设f (t )=(9+y 20)2(12-y 20)=t 2(21-t )=-t 3+21t 2, 则f ′(t )=-3t 2+42t =-3t (t -14).当9<t <14时,f ′(t )>0;当t >14时,f ′(t )<0.∴f (t )在(9,14)上单调递增,在(14,+∞)上单调递减.∴当t =14时,[f (t )]max =142×7.故△ABC 面积的最大值为1437.(13分)注:第(3)问也可由AB 直线方程y =kx +b 及x 1+x 2=4,推出b =3k -2k ,然后转化为求关于k 的函数的最值问题.。
湖南省长沙市第一中学2011届高三上学期第四次月考(数学理)考试范围:集合、逻辑、算法、函数、导数、三角函数、平面向量、数列、不等式、 推理与证明时间:120分钟 满分:150分一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算复数=z 211ZT ZT ZT+-+的值为( )A .0B .2-C .ZT +-1D . 1i --2.已知命题:p x ∃∈R ,210x +≤,则命题p 的否定是( ) A .,210x x ∃∈+<R B .,210x R x ∀∈+≤ C .,210x x ∃∈+≥RD .,210x R x ∀∈+>3.已知:等差数列{}n a 满足244a a +=,3510a a +=,则数列{n a }的公差d =()A .138B .135C .95D .234.集合{}21A x x =-<,{}240B x x x =-<,那么"a A ∈"是"a B ∈"的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.如下图所示的程序框图运行后输出的结果为( ) A .36 B .45 C .55 D .66第5题图第6题图6.如上图,平面内的两个单位向量OA ,OB ,它们的夹角是60︒,OC 与OA 、OB 向量的夹角都为30︒,且||OC=OC OA OB λμ=+,则λμ+值为( ) A .2B .4C .32D .347.已知:0a >且1a ≠,若函数2()log ()a f x ax x =-在[3,4]是增函数,则a 的取值范围是( ) A .(1,)+∞B .)131(,C .11[,)(1,)83+∞D .)1()4181[∞+,,解:当1a >时,2y ax x =-的对称轴,112x a =< 2u ax x ∴=-在[3,4]上递增,且2330a ->即13a >,log a y u =是增函数,1a ∴>当01a <<时,log a y u =是减函数,2u ax x ∴=-在[3,4]上是减函数11428116404a a a a a ⎧≥⇒≤⎪⎪∴⇒∈∅⎨⎪->⇒>⎪⎩ 综上:(1,)a ∈+∞,∴选A8.若定义在[2010,2010]-上的函数()f x 满足:对于任意1x ,2[2010,2010]x ∈-,有12()f x x +12()()2009f x f x =+-.设()f x 的最大值、最小值分别为M ,N ,则M N +的值为( ) A .2009 B .2010 C .4018 D .4020二、填空题(本大题共7小题,每小题5分,共35分.把答案填在题中的横线上)CBOA9.已知函数()|sin()|f x x ωϕ=+(其中0ω>)的最小正周期为2π,则ω的值为 .10.已知4b =,a 与b 的夹角为120︒,则b 在a 上的投影为解: 1cos1204()22b ︒=-=-11.已知0a >,0b >,且412ab a b ++=,则ab 的最大值为.12.观察下列不等式474131211353121123211222222<+++<++<+一般地,当2≥n 时<++++n 13121122 (用含n 的式子表示) 13.已知函数()f x 的定义域为{|,1}x x x ∈≠R 且,(1)f x +为偶函数,当1x <时,2()21f x x x =-+,当1x >时,()f x 的递增区间是 .14.定义*(1)(2)(1)(,)nx M x x x x n x n =+++-∈∈R N ,如44(4)(3)(2)(1)24M -=-⨯-⨯-⨯-=.对于函数31()x f x M -=,则函数()f x 的解析式是:()f x =x x -3,且()f x 的 单调递减区间是 (写成开区间或闭区间都给全分).15.若函数()y f x =,x D ∈同时满足下列条件,(1)在D 内为单调函数;(2)存在实数m ,n .当[,]x m n ∈时,[,]y m n ∈,则称此函数为D内等射函数,设3()ln x a a f x a +-=(0,1)a a >≠且则(1)()f x 在(,)-∞+∞的单调性为 ;(2)当()f x 为R 内的等射函数时,a 的取值范围是 .三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)在四边形ABCD 中,8AD =,6CD =,13AB =,90ADC ∠=︒,且50AB AC =.(1)求三角形ABC 的面积和边BC 的长度;(2)求sin BAD ∠的值.17.(本小题满分12分)设△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,且1cos 2a C c b+=(1)求角A 的大小;(2)若1a =,求△ABC 的周长l 的取值范围.18.(本小题满分12分)已知数列{}n a 是等差数列,{}n b 是等比数列,且112a b ==,454b =,12323a a a b b ++=+.(1)求数列{}n a 和{}n b 的通项公式(2)数列{}n c 满足n n n c a b =,求数列{}n c 的前n 项和n S .19.(本题满分13分)设函数31()(0)3f x ax bx cx a =++≠,已知a b c <<,且01b a ≤<,曲线()y f x =在x=1处取极值.(Ⅰ)如果函数()f x 的递增区间为[,]s t ,求||s t -的取值范围;(Ⅱ)如果当(x k k ≥是与,,a b c 无关的常数)时,恒有()0f x a +<,求实数k 的最小值 20.(本小题满分13分)某企业的产品以往专销欧美市场,在全球金融风暴的影响下,欧美市场的销量受到严重影响,该企业在政府的大力扶助下积极开拓国内市场,并基本形成了市场规模;自2009年9月以来的第n 个月(2009年9月为第一个月)产品的内销量、出口量和销售总量(销售总量=内销量与出口量的和)分别为bn 、cn 和an(单位:万件),依据销售统计数据发现形成如下营销趋势:bn + 1 = a an ,cn + 1 = an + b an2 (其中a 、b 为常数),已知a1 = 1万件,a2 = 1.5万件,a3 = 1.875万件.(1)求a ,b 的值,并写出an + 1与an 满足的关系式;(2)试用你所学的数学知识论证销售总量n a 逐月递增且控制在2万件内;DBC ′(3)试求从2009年9月份以来的第n 个月的销售总量an 关于n 的表达式.21.(本小题满分13分)已知函数f (x) = 2ln ,(1)0.bax x f x --= (1)若函数f (x)在其定义域内为单调函数,求实数a 的取值范围; (2)若函数f (x)的图象在x = 1处的切线垂直于y 轴,数列{na }满足11()11n n n a f na a +'=-++.①若a1≥3,求证:an ≥n + 2)(*N n ∈; ②若a1 = 4,试比较1231111211115n a a a a ++++++++与的大小,并说明你的理由.参考答案一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算复数=z 211ZT ZT ZT+-+的值为( C )A .0B .2-C .ZT +-1D .1i --2.已知命题:p x ∃∈R ,210x +≤,则命题p 的否定是( D ) A .,210x x ∃∈+<R B .,210x R x ∀∈+≤ C .,210x x ∃∈+≥RD .,210x R x ∀∈+>3.已知:等差数列{}n a 满足244a a +=,3510a a +=,则数列{n a }的公差d =(C )A .138B .135C .95D .234.集合{}21A x x =-<,{}240B x x x =-<,那么"a A ∈"是"a B ∈"的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.如下图所示的程序框图运行后输出的结果为( B ) A .36 B .45 C .55 D .66第5题图 第6题图6.如上图,平面内的两个单位向量OA ,OB ,它们的夹角是60︒,OC 与OA 、OB 向量的夹角都为30︒,且||OC=OC OA OB λμ=+,则λμ+值为( B ) A .2B .4C .32D .347.已知:0a >且1a ≠,若函数2()log ()a f x ax x =-在[3,4]是增函数,则a 的取值范围是( A ) A .(1,)+∞B .)131(,C .11[,)(1,)83+∞D .)1()4181[∞+,,CBOA解:当1a >时,2y ax x =-的对称轴,112x a =< 2u ax x ∴=-在[3,4]上递增,且2330a ->即13a >,log a y u =是增函数,1a ∴>当01a <<时,log a y u =是减函数,2u ax x ∴=-在[3,4]上是减函数11428116404a a a a a ⎧≥⇒≤⎪⎪∴⇒∈∅⎨⎪->⇒>⎪⎩ 综上:(1,)a ∈+∞,∴选A8.若定义在[2010,2010]-上的函数()f x 满足:对于任意1x ,2[2010,2010]x ∈-,有12()f x x +12()()2009f x f x =+-.设()f x 的最大值、最小值分别为M ,N ,则M N +的值为( C ) A .2009 B .2010 C .4018 D .4020二、填空题(本大题共7小题,每小题5分,共35分.把答案填在题中的横线上)9.已知函数()|sin()|f x x ωϕ=+(其中0ω>)的最小正周期为2π,则ω的值为 2 .10.已知4b =,a 与b 的夹角为120︒,则b 在a 上的投影为2-解: 1cos1204()22b ︒=-=-11.已知0a >,0b >,且412ab a b ++=,则ab 的最大值为 4.12.观察下列不等式474131211353121123211222222<+++<++<+一般地,当2≥n 时<++++n 13121122 n n 12-(用含n 的式子表示) 13.已知函数()f x 的定义域为{|,1}x x x ∈≠R 且,(1)f x +为偶函数,当1x <时,2()21f x x x =-+,当1x >时,()f x 的递增区间是7[,)4+∞.解:∵(1)y f x =+关于y 轴对称,∴()y f x =关于x=1成轴对称.).,47[)(1)(),47[]41(12)(12+∞>+∞∈-∞+-=<的递增区间为时调递增,即单时单调递减,从而可知,在时,当x f x x f x x x x f x14.定义*(1)(2)(1)(,)nx M x x x x n x n =+++-∈∈R N ,如44(4)(3)(2)(1)24M -=-⨯-⨯-⨯-=.对于函数31()x f x M -=,则函数()f x 的解析式是:()f x =x x -3,且()f x 的 单调递减区间是([或(写成开区间或闭区间都给全分).解:∵3()(1)(1)f x x x x x x =-+=-,又由2()310f x x '=-<,得x <<即()f x的单调减区间为(.15.若函数()y f x =,x D ∈同时满足下列条件,(1)在D 内为单调函数;(2)存在实数m ,n .当[,]x m n ∈时,[,]y m n ∈,则称此函数为D内等射函数,设3()ln x a a f x a +-=(0,1)a a >≠且则(1)()f x 在(,)-∞+∞的单调性为 增函数;(2)当()f x 为R 内的等射函数时,a 的取值范围是(0,1)(1,2).解:(1)1'()ln 0ln x x f x a a a a ==>, ()f x ∴在R 上是增函数.(2)()f x 为等射函数3()ln x a a f x xa +-⇒==有两个不等实根.即ln 30xa x a a -+-=有两个不等实根.令()ln 3xg x a x a a =-+- '()ln ln ln (1)x x g x a a a a a ∴=-=-,令'()00g x x =⇒=1︒ 当1a >时,0x >时,'()0g x >;0x <时,'()0g x <min ()(0)1302g x g a a ∴==+-<⇒<12a ⇒<<2︒当01a <<时,0x >时,'()0g x >;0x <时,'()0g x <min ()(0)001g x g a ∴=<⇒<<,综上:(0,1)(1,2)a ∈三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)在四边形ABCD 中,8AD =,6CD =,13AB =,90ADC ∠=︒,且50AB AC =.(1)求三角形ABC 的面积和边BC 的长度; (2)求sin BAD ∠的值.解:(1)由已知||13AB =,||10AC AD ==50AB AC =||||cos 50AB AC BAC ⇒∠=∴5cos 13BAC ∠=,……………………………………………3分∴12sin 13BAC ∠=,则1112sin 1310602213ABCS AB AC BAC ∆=∠=⨯⨯⨯= …………5分由余弦定理得13BC ==…………………………7分(2)在Rt △CAD 中,63sin 105CD CAD AC ∠===,4cos 5AD CAD AC ∠==.…………9分∴sin sin()BAD BAC CAD ∠=∠+∠63sin cos cos sin 65BAC CAD BAC CAD =∠∠+∠∠=.………………………………12分17.(本小题满分12分)设△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,且1cos 2a C c b+=(1)求角A 的大小;(2)若1a =,求△ABC 的周长l 的取值范围.解:(1)由11cos sin cos sin sin 22a c c b A C C B+=⇒+= ……………………2分 1sin cos sin sin()sin cos cos sin 2A C C A C A C A C∴+=+=+1sin cos sin 2C A C ∴= …………………4分 (0,)C π∈,sin 0C ∴≠,1cos 2A ∴=,又0A π<<3A π∴=……………………………………………6分(2)由正弦定理得:sin sin a B b B A ==,C c sin 32=DABC1sin )l a b c B C ∴=++=+ ……………………………8分1sin()]B A B =++1B =+1cos )2B +12sin()6B π=++ …………10分3A π=,)320(π,∈∴B ,5(,)666B πππ∴+∈1sin()(,1]62B π∴+∈ …………………………………………11分(2,3]l ∴∈……………………………………………12分18.(本小题满分12分)已知数列{}n a 是等差数列,{}n b 是等比数列,且112a b ==,454b =,12323a a a b b ++=+.(1)求数列{}n a 和{}n b 的通项公式(2)数列{}n c 满足n n n c a b =,求数列{}n c 的前n 项和n S .解:(1)设{}n a 的公差为d ,{}n b 的公比为q由341b b q =,得354272q ==,从而3q =因此11123n n n b b q --== ………………………………………3分又123223361824a a a a b b ++==+=+=,28a ∴=从而216d a a =-=,故1(1)664n a a n n =+-=- ……………………………6分(2)14(32)3n n n n c a b n -==- 令01221134373(35)3(32)3n n n T n n --=⨯+⨯+⨯++-+-12313134373(35)3(32)3n n n T n n -=⨯+⨯+⨯++-+-……………………………9分两式相减得12312133333333(32)3n n n T n --=+⨯+⨯+⨯++⨯-- 13(31)1331n --=+-(32)3n n --19(31)1(32)32n n n --=+--73(67)44n n n T -∴=+,又47(67)3nn n S T n ==+- ……………………………12分219.(本题满分13分)设函数31()(0)3f x ax bx cx a =++≠,已知a b c <<,且01b a ≤<,曲线()y f x =在x=1处取极值.(Ⅰ)如果函数()f x 的递增区间为[,]s t ,求||s t -的取值范围; (Ⅱ)如果当(x k k ≥是与,,a b c 无关的常数)时,恒有()0f x a +<,求实数k 的最小值解:(Ⅰ)∵2()2f x ax bx c '=++,∴(1)20f a b c '=++=又a b c <<,可得424a a b c c <++<,即404a c <<,故0a <,0c >.则判别式2440b ac ∆=-≥知方程2()20f x ax bx c '=++=(*)有两个不等实根,设为12x x ,又由(1)20f a b c '=++=知,11x =为方程(*)的一个实根, 又由根与系数的关系得122b x x a +=-,21210b x x a =--<<.………………………3分当2x x <或1x x >时,()0f x '<,当21x x x <<时,()0f x '>,故函数()f x 的递增函数区间为21[,]x x ,由题设知21[,][,]x x s t =, 因此122||||2b s t x x a -=-=+, …………………………………………………6分 由(1)知01b a ≤<,得||s t -的取值范围为[2,4). …………………………………8分(Ⅱ)由()0f x a '+<,即220ax bx a c +++<,即2220ax bx b +-<.因0a <,得2220b b x x a a +->,整理得2(22)0b x x a -+>. ………………………9分设2()(22)b b g x x a a =-+,它可以看作是关于b a 的一次函数. 由题意,函数y =()b g a 对于01b a ≤<恒成立.故(1)0(0)0g g ≥⎧⎨>⎩即222200x x x ⎧+-≥⎪⎨>⎪⎩得1x ≤或1x ≥.…………………………11分 由题意[,)(,1)[31,)k +∞⊆-∞-+∞,故1k ≥.因此k 1. …………………………………………………13分20.(本小题满分13分)某企业的产品以往专销欧美市场,在全球金融风暴的影响下,欧美市场的销量受到严重影响,该企业在政府的大力扶助下积极开拓国内市场,并基本形成了市场规模;自2009年9月以来的第n 个月(2009年9月为第一个月)产品的内销量、出口量′和销售总量(销售总量=内销量与出口量的和)分别为bn 、cn 和an(单位:万件),依据销售统计数据发现形成如下营销趋势:bn + 1 = a an ,cn + 1 = an + b an2 (其中a 、b 为常数),已知a1 = 1万件,a2 = 1.5万件,a3 = 1.875万件.(1)求a ,b 的值,并写出an + 1与an 满足的关系式;(2)试用你所学的数学知识论证销售总量n a 逐月递增且控制在2万件内;(3)试求从2009年9月份以来的第n 个月的销售总量an 关于n 的表达式.【解析】(1)依题意:an + 1 = bn + 1 + cn + 1 = a an + an + b an2,则a2 = a a1 + a1 + b a12 ∴a + 1 + b = 32 ①则a3 = a a2 + a2 + b a22 ∴233315()2228a b ++= ② 解①②得a = 1,b = –12 从而an + 1 = 2an –12an2 (n ∈N*) ………………………5分(2)证法(Ⅰ)由于an + 1 = 2an –12an2 = –12 (an – 2)2 + 2≤2.但an + 1≠2,否则可推得a 1= a 2= 2与a 1= 1,a2 = 1.5矛盾.故an + 1<2 于是an <2又an + 1– an= –12an2 + 2an – an = –12an (an – 2) >0, 所以an + 1>an 从而an <an + 1<2 …………………………………9分 证法(Ⅱ)由数学归纳法(i )当n = 1时,a1 = 1,a2 = 1.5,显然a1<a2<2成立(ii )假设n = k 时, ak <ak + 1<2成立.由于函数f (x) = –12x2 + 2x = –12(x – 2)2 + 2在[0,2]上为增函数,则f (ak) <f (ak + 1) <f (2)即12ak (4 – ak) <12ak + 1(4 –ak + 1) <12×2×(4 – 2)即 ak + 1<ak + 2<2成立. 综上可得n ∈N*有an <an + 1<2 …………………………9分(3)由an + 1 = 2an –12an2得2 (an + 1– 2) = – (an – 2)2 即(2 – an + 1) = 12(2 – an)2 又由(2)an <an + 1<2可知2 – an + 1>0,2 – an >0则lg (2 – an + 1) = 2 lg (2 – an) – lg 2 ∴lg (2 – an +1) – lg2 = 2[lg (2 – an) – lg2] 即{lg (2 – an + 1) – lg2}为等比数列,公比为2,首项为lg (2 – a1) – lg 2 = –lg 2故lg (2 – an) – lg 2 = (–lg 2)·2n – 1 ∴an = 2 – 2121()2n - (n ∈N*)为所求 ……………13分21.(本小题满分13分)已知函数f (x) = 2ln ,(1)0.b ax x f x --=(1)若函数f (x)在其定义域内为单调函数,求实数a 的取值范围;(2)若函数f (x)的图象在x = 1处的切线垂直于y 轴,数列{n a }满足 11()11n n n a f na a +'=-++.①若a1≥3,求证:an ≥n + 2)(*N n ∈;②若a1 = 4,试比较1231111211115n a a a a ++++++++与的大小,并说明你的理由.【解析】(1)∵f (1) = a – b = 0,∴a = b ,∴f ′(x) =22a a x x +-.要使函数f (x)在其定义域内为单调函数,则∈∀x (0,+∞)内f '(x) = 22a a x x +-恒大于等于零,或恒小于等于零. 222()ax a x f x x +-'= 由()0f x '≥得221x a x ≥+而222112x x x x ≤=+ 1a ∴≥ 由()0f x '≤得221x a x ≤+ 而2201x x >+ 0a ∴≤ 经验证a=0及a=1均合题意,故01a a ≤≥或∴所求实数a 的取值范围为a ≥1或a ≤0. ………………………5分(2)∵函数f (x)的图象在x = 1处的切线的斜率为0,∴f ′(1) = 0,即a + a – 2 = 0,解得a = 1,∴f ′(x) = 211x ⎛⎫- ⎪⎝⎭,∴an + 1 = f ′211 1.1n n n n na a na a ⎛⎫-+=-+ ⎪+⎝⎭ ………7分①用数学归纳法证明:(i )当n = 1时,a1≥3 = 1 + 2,不等式成立;(ii )假设当n = k 时不等式成立,即2,k a k ≥+那么ak – k ≥2>0,∴ak + 1 = ak (ak – k) + 1≥2 (k + 2) + 1 = (k + 3) + k + 2>k + 3,也就是说,当n = k + 1时,ak + 1≥(k + 1) + 2.根据(i )和(ii ),对于所有n ≥1,有an ≥n + 2. ……………………………………10分②由an + 1 = an (an – n) + 1及①,对k ≥2,有ak = ak – 1 (ak –1 – k + 1) + 1≥ak –1 (k – 1 + 2 – k + 1) + 1 = 2ak –1 + 1,∴ak + 1≥2 (ak –1 + 1)≥22 (ak – 2 + 1)≥23 (ak –3 + 1)≥…≥2k –1 (a1 + 1)而11115a =+,于是当k ≥2时,111231111111,1111112k k n a a a a a a -≤⨯∴+++++++++111a ≤+211111112122(1)(1).1255522212n n n --++++=⨯=-<- …………………………13分。
长沙市一中2024 届高三月考试卷(七)数学试卷一、单项选择题: 本题共8 小题, 每小题5 分, 共40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.1. 样本数据15 、13 、12 、31 、29 、23 、43 、19 、17 、38 的中位数为( )(A) 19 (B) 23 (C) 21 (D) 182. 已知集合A = {x''' e x2 −2x ≤ 1}, B = {−1, 0, 1}, 则集合A ∩ B 的非空子集个数为( )(A) 4 (B) 3 (C) 8 (D) 73. 已知实部为3 的复数z 满足z · (1 −2i) 为纯虚数, 则|z| = ( )(D) √54. 已知数列{a n } 满足a n = 3n −b (n ∈ N* , b ∈ R), 则“b < 3”是“{|a n |} 是递增数列”的( )(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件5. 已知tan θ= 2, 则 sin 2θ= ( )(A) (B) 2 (C) 1 (D)6. 过抛物线E: y2 = 2px (p > 0) 的焦点F 的直线交E 于点A, B , 交E 的准线l 于点C , AD ⊥ l , 点D 为垂足.若F 是AC 的中点, 且|AF | = 3, 则|AB| = ( )(A) 4 (B) 2√3 (C) 3√2 (D) 37. 已知双曲线C: kx2 −y2 = 1 的左焦点为F , P (3m, −4m) (m > 0) 为C 上一点, 且P 与F 关于C 的一条渐近线对称, 则C 的离心率为( )(A) (B) √3 (C) 2 (D)√58. 已知函数f(x) 的定义域为R, 且满足f(x) + f(3 −x) = 4, f(x) 的导函数为g(x), 函数y = g(x −1) 的图象关于点(2, 1) 中心对称, 则f + g(2024) = ( )(A) 3 (B) −3 (C) 1 (D) −1二、多项选择题: 本题共3 小题, 每小题6 分, 共18 分. 在每小题给出的选项中, 有多项符合题目要求, 全部选对的得6 分, 部分选对的得部分分, 有选错的得0 分.9. 已知函数cos 2x + sin 2x, 则( )(A) 函数f (x −关于原点对称(B) 曲线y = f(x) 的对称轴为x = + , k ∈ Z2 cos2 θ + 4 sin2 θ(C) f (x) 在区间单调递减(D) 曲线y = f (x) 在点(0, f (0)) 处的切线方程为2x −2y + 1 = 010. 已知二面角A −CD −B 的大小为, AC ⊥ CD , BD ⊥ CD , 且CD = 1, AC + BD = 2, 则( )(A) △ABD 是钝角三角形(B) 异面直线AD 与BC 可能垂直(C) 线段AB 长度的取值范围是[2, √5) (D) 四面体A −BCD 体积的最大值为11. 甲、乙两同学参加普法知识对抗赛, 规则是每人每次从题库中随机抽取一题回答. 若回答正确, 得 1 分, 答题继续; 若回答错误, 得0 分, 同时换成对方进行下一轮答题. 据经验统计, 甲、乙每次答题正确的概率分别是和 , 且第1 题的顺序由抛掷硬币决定. 设第i 次答题者是甲的概率为P i , 第i 次回答问题结束后中甲的得分是K i , 则( )(A) P2 =(C) P i+1= P i+ P i+ K i−1三、填空题: 本题共3 小题, 每小题5 分, 共15 分.12. (x + 3y)(x −y)8 的展开式中x3 y6 的系数为.13. 已知动点P 在圆M : (x −m + 1)2 + (y −m)2 = 1 上, 动点Q 在曲线y = ln x 上. 若对任意的m ∈ R, |PQ| ≥ n恒成立, 则n 的最大值是.14. 已知正六棱锥的高是底面边长的2√3 倍, 侧棱长为√13, 正六棱柱内接于正六棱锥, 即正六棱柱的所有顶点均在正六棱锥的侧棱或底面上, 则该正六棱柱的外接球表面积的最小值为.四、解答题: 本题共5 小题, 共77 分. 解答应写出文字说明、证明过程或演算步骤.15. 盒中有形状、大小均相同的卡片6 张, 卡片依次标记数字1, 2, 2, 3, 3, 3.(1) 若随机一次取出两张卡片, 求这两张卡片标记数字之差为1 的概率;(2) 若每次随机取出两张卡片后不放回, 直到将所有标记数字为2 的卡片全部取出, 记此时盒中剩余的卡片数量X , 求X 的分布列和E(X).16. 如图三棱锥P −ABC 中, PA = BC , AB = PC , AC ⊥ PB.(1) 证明: AB = BC;(2) 若平面PAC ⊥ 平面ABC , AC = √2AB , 求二面角A −PB −C 的余弦值.PA CB17. 已知定义在 (0, π) 上的函数 f (x) = cos 2 x + sin x.(1) 求 f (x) 的极大值点;(2) 证明: 对任意x 4 − x 2 + 1. 18. 已知椭圆的上、下顶点分别为 A(0, 1), B(0, −1), 其右焦点为 F , 且 F #---A -→ · B #---A -→ = F #---A -→ · F #---B -→ .(1) 求椭圆 C 的方程;(2) 若点 P (2, −1), 在直线 BP 上存在两个不同的点 P 1 , P 2 满足 P #---P ---1→ · P #---P ---2→ = P #---B -→2 . 若直线 AP 1 与直线 AP 2 分别交 C 于点 M , N (异于点 A), 证明: P , M , N 三点共线.19. 定义 △ABC 三边长分别为 a, b, c, 则称三元无序数组 (a,b, c) 为三角形数. 记 D 为三角形数的全集, 即 (a,b, c) ∈D.(1) 证明:“ (a,b, c) ∈ D ”是“(√a, √b, √c) ∈ D ”的充分不必要条件;(2) 若锐角 △ABC 内接于圆 O , 且 x O #---A -→ + y O #---B -→ + z O #---C -→ = 0, 设 I = (x,y, z) (x, y, z > 0).① 若 I = (3, 4, 5), 求 S △AOB : S △AOC ;② 证明: I ∈ D.。
湖南省长沙市一中 2011 届 高 三 月 考(七)数 学 试 题(文)(考试范围:高考文科内容(不含优选法应用))本试题卷包括选择题、填空题和解答题三部分,共6页。
时量120分钟。
满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z =11+2i(i 为虚数单位)所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤12,m =sin20°,则下列关系中正确的是( )A .m ⊆AB .m ∉AC .{}m ∈AD . {}A m ⊂≠3.设命题p :∀x ∈R ,|x |≥x ;q :∃x ∈R ,1x=0.则下列判断正确的是( )A .p 假q 真B .p 真q 假C .p 真q 真D .p 假q 假4.下列函数中,既是周期为π的周期函数又是偶函数的是 ( ) A .y =10x B .y =tan x C .y =sin2x D .y =|cosx|5.某公司2005~2010年的年利润x (单位:百万元)与年广告支出y (单位:百万元)的根据统计资料,则( )A .利润中位数是16,x 与y 有正线性相关关系B .利润中位数是18,x 与y 有负线性相关关系C .利润中位数是17,x 与y 有正线性相关关系D .利润中位数是17,x 与y 有负线性相关关系6.双曲线x 2a 2-y 2b 2=1(a ,b>0)的渐近线与圆(x -3)2+y 2=3相切,则双曲线的离心率为( )A .62B . 3C .2 3D .67.设函数()221log ()x f x a x+=-在区间()0,+∞内有零点,则实数a 的取值范围是( )A .(0,+∞)B .(-∞,1]C .[1,+∞)D .[2,+∞)8.定义{},,min ,,.b a b a b a a b ≥⎧=⎨<⎩设实数x ,y 满足约束条件2211x y ⎧≤⎪⎨≤⎪⎩,则{}m in 2,-z x y x y =+的取值范围为( )A .[-2,12]B .[-52,-12]C .[-2,3]D .[-3,32]二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上. 9.在极坐标系中,A (1,π6)、B (2,π2)两点的距离为 .10.设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则||3a +b 等于 .11.一空间几何体的三视图(单位:cm )如图所示,则此几何体的体积是 cm 3.12.若{a n }为等差数列,S n 是其前n 项和.且S 11=22π3,则tan a 6的值为 .13.直线l :x -y =0与椭圆x 22+y 2=1相交A 、B 两点,点C 是椭圆上的动点,则△ABC 面积最大值为 .14.直线l :x -3y =0与曲线⎪⎩⎪⎨⎧ϕ=ϕ+=sin 2cos 2:y a x C (φ为参数,a >0)有两个公共点A ,B ,且||AB =2,则实数a 的值为 ;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立极坐标系,则曲线C 的极坐标方程为 .15.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),定义:设f ″(x )是函数y =f (x )的导数y =f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点()x 0,f (x 0)为函数y =f (x )的“拐点”.有同学发现“任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心;且“拐点”就是对称中心.”请你根据这一发现,求: (1)函数f (x )=x 3-3x 2+3x 对称中心为 ;(2)若函数g (x )=13x 3-12x 2+3x -512+1x -12,则g (12011)+g (22011)+g (32011)+g (42011)+…+g (20102011)= .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数f (x )=a sin x +b cos (x -π3)的图象经过点(π3,12),(7π6,0).(1)求实数a ,b 的值;(2)求函数f (x )在[0,π]上的单调递增区间.17.(本小题满分12分)如图:在矩形ABCD 中,AB =5,BC =3,沿对角线BD 把△ABD 折起,使A 移到A 1点,过点A 1作A 1O ⊥平面BCD ,垂足O 恰好落在CD 上. (1)求证:BC ⊥A 1D ;(2)求直线A 1B 与平面BCD 所成角的正弦值. 18.(本小题满分12分)某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高; (3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率. 19.(本小题满分13分)工厂生产某种产品,次品率p 与日产量x (万件)间的关系为⎪⎪⎩⎪⎪⎨⎧>≤<-=c x c x x p ,320,61,(c 为常数,且0<c <6).已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.(1)将日盈利额y (万元)表示为日产量(万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=次品数产品总数×100%)20.(本小题满分13分)已知f (x )=m x (m 为常数,m >0且m ≠1). 设f (a 1),f (a 2),…,f (a n )…(n ∈N )是首项为m 2,公比为m 的等比数列. (1)求证:数列{a n }是等差数列;(2)若b n =a n ·f (a n ),且数列{b n }的前n 项和为S n ,当m =2时,求S n ; (3)若c n =f (a n )lg f (a n ),问是否存在m ,使得数列{c n }中每一项恒小于它后面的项?若存在,求出m 的范围;若不存在,请说明理由. 21.(本小题满分13分)已知动圆G 过点F (32,0),且与直线l :x =-32相切,动圆圆心G 的轨迹为曲线E .曲线E 上的两个动点A (x 1,y 1)和B (x 2,y 2).(1)求曲线E 的方程;(2)已知OA ·OB =-9(O 为坐标原点),探究直线AB 是否恒过定点,若过定点,求出定点坐标;若不过,请说明理由.(3)已知线段AB 的垂直平分线交x 轴于点C ,其中x 1≠x 2且x 1+x 2=4.求△ABC 面积的最大值.参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1—5 DDBDC 6—8 ACD二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.9.在极坐标系中,A (1,π6)、B (2,π2)两点的距离为.10.设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则||3a +b 等于5. 11.一空间几何体的三视图(单位:cm )如图所示,则此几何体的体积是4πcm 3.12.若{a n }为等差数列,S n 是其前n 项和.且S 11=22π3,则tan a 6的值为13.直线l :x -y =0与椭圆x 22+y 2=1相交A 、B 两点,点C 是椭圆上的动点,则△ABC 面14.直线l :x -3y =0与曲线⎪⎩⎪⎨⎧ϕ=ϕ+=sin 2cos 2:y a x C (φ为参数,a >0)有两个公共点A ,B ,且||AB =2,则实数a 的值为 2 ;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立极坐标系,则曲线C 的极坐标方程为 ρ2-4ρcos θ+2=0 . 15.(1)函数f (x )=x 3-3x 2+3x 对称中心为 (1,1) ;(2)若函数g (x )=13x 3-12x 2+3x -512+1x -12,则g (12011)+g (22011)+g (32011)+g (42011)+…+g (20102011)= 2010 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.解:(1)∵函数f (x )=a sin x +b cos (x -π3)的图象经过点(π3,12),(7π6,0).∴12102b a +=⎨⎪-=⎪⎩,(4分) 解得:a =3,b =-1.(5分)(2)由(1)知:f (x )=3sin x -cos (x -π3)=32sin x -12cos x =sin (x -π6).(9分)由2k π-π2≤x -π6≤2k π+π2,解得2k π-π3≤x ≤2k π+2π3 k ∈Z .∵x ∈[0,π],∴x ∈[0,2π3],∴函数f (x )在[0,π]上的单调递增区间为[0,2π3].(12分)17.解:(1)因为A 1O ⊥平面BCD ,BC ⊂平面BCD ,∴BC ⊥A 1O ,因为BC ⊥CD ,A 1O ∩CD =O ,∴BC ⊥面A 1C D . 因为A 1D ⊂面A 1CD ,∴BC ⊥A 1 D .(6分)(2)连结BO ,则∠A 1BO 是直线A 1B 与平面BCD 所成的角. 因为A 1D ⊥BC ,A 1D ⊥A 1B ,A 1B ∩BC =B ,∴A 1D ⊥面A 1B C .A 1C ⊂面A 1BC ,∴A 1D ⊥A 1 C .在Rt △DA 1C 中,A 1D =3,CD =5,∴A 1C =4.根据S △A 1CD =12A 1D ·A 1C =12A 1O ·CD ,得到A 1O =125,在Rt △A 1OB 中,sin ∠A 1BO =A 1O A 1B =1255=1225.所以直线A 1B 与平面BCD 所成角的正弦值为1225.(12分)18.解:(1)分数在[50,60)的频率为0.008×10=0.08,(2分)由茎叶图知:分数在[50,60)之间的频数为2,所以全班人数为20.08=25,(4分)(2)分数在[80,90)之间的频数为25-2-7-10-2=4;(6分) 频率分布直方图中[80,90)间的矩形的高为425÷10=0.016.(8分)(3)将[80,90)之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6, 在[80,100]之间的试卷中任取两份的基本事件为: (1,2),(1,3),(1,4),(1,5),(1,6), (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6), (4,5),(4,6), (5,6)共15个,(10分)其中,至少有一个在[90,100]之间的基本事件有9个, 故至少有一份分数在[90,100]之间的概率是915=0.6.(12分)19.解:(1)当x >c 时,p =23,y =13·x ·3-23·x ·32=0;(2分)当0<x ≤c 时,p =16-x,∴y =(1-16-x )·x ·3-16-x ·x ·32=32·9x -2x26-x .(4分)∴日盈利额y (万元)与日产量x (万件)的函数关系为23(92)02(6)0 x x x c y x x c ⎧-<≤⎪=-⎨⎪>⎩.(5分)(2)由(1)知,当x >c 时,日盈利额为0. 当0<x ≤c 时,∵y =3(9x -2x 2)2(6-x ),∴y ′=32·(9-4x )(6-x )+(9x -2x 2)(6-x )2=3(x -3)(x -9)(6-x )2,令y ′=0,得x =3或x =9(舍去).∴①当0<c <3时,∵y ′>0,∴y 在区间(0,c ]上单调递增, ∴y 最大值=f (c )=3(9c -2c 2)2(6-c ),此时x =c ;②当3≤c <6时,在(0,3)上,y ′>0,在(3,c )上y ′<0, ∴y 在(0,3)上单调递增,在(3,c )上单调递减. ∴y 最大值=f (3)=92.综上,若0<c <3,则当日产量为c 万件时,日盈利额最大; 若3≤c <6,则当日产量为3万件时,日盈利额最大.(13分)20.解:(1)由题意f (a n )=m 2·m n +1,即ma n ,=m n +1.∴a n =n +1,(2分) ∴a n +1-a n =1,∴数列{a n }是以2为首项,1为公差的等差数列.(4分)(2)由题意b n =a n f (a n )=(n +1)·m n +1,当m =2时,b n =(n +1)·2n +1∴S n =2·22+3·23+4·24+…+(n +1)·2n +1 ①(6分) ①式两端同乘以2,得2S n =2·23+3·24+4·25+…+n ·2n +1+(n +1)·2n +2 ② ②-①并整理,得S n =-2·22-23-24-25-…-2n +1+(n +1)·2n +2=-22-(22+23+24+…+2n +1)+(n +1)·2n +2=-22-22(1-2n )1-2+(n +1)·2n +2=-22+22(1-2n )+(n +1)·2n +2=2n +2·n .(9分)(3)由题意c n =f (a n )·lg f (a n )=m n +1·lg m n +1=(n +1)·m n +1·lg m ,要使c n <c n +1对一切n ∈N *成立,即(n +1)·m n +1·lg m <(n +2)·m n +2·lg m ,对一切n ∈N *成立, ①当m >1时,lg m >0,所以n +1<m (n +2)对一切n ∈N *恒成立;(11分)②当0<m <1时,lg m <0,所以等价使得n +1n +2>m 对一切n ∈N *成立,因为n +1n +2=1-1n +2的最小值为23,所以0<m <23.综上,当0<m <23或m >1时,数列{c n }中每一项恒小于它后面的项.(13分)21.解:(1)依题意,圆心G 到定点F (32,0)的距离与到直线l :x =-32的距离相等,∴曲线E 是以F (32,0)为焦点,直线l :x =-32为准线的抛物线.∴曲线E 的方程为y 2=6x .(3分)(2)当直线AB 不垂直x 轴时,设直线AB 方程为y =kx +b (k ≠0).由26y kx b y x=+⎧⎨=⎩消去x 得ky 2-6y +6b =0,Δ=36-24kb >0. y 1y 2=6b k ,x 1x 2=y 216·y 226=(y 1y 2)236=b 2k2.OA ·OB =x 1x 2+y 1y 2=b 2k 2+6bk=-9,∴b 2+6kb +9k 2=0,(b +3k )2=0,b =-3k ,满足Δ>0.∴直线AB 方程为y =kx -3k ,即y =k (x -3), ∴直线AB 恒过定点(3,0).(7分)当直线AB 垂直x 轴时,可推得直线AB 方程为x =3,也过点(3,0). 综上,直线AB 恒过定点(3,0).(8分) (3)设线段AB 的中点为M (x 0,y 0),则 x 0=x 1+x 22=2,y 0=y 1+y 22,k AB =y 1-y 2x 1-x 2=y 1-y 2y 216-y 226=6y 1+y 2=3y 0. ∴线段AB 的垂直平分线的方程为y -y 0=-y 03(x -2).令y =0,得x =5,故C (5,0)为定点.又直线AB 的方程为y -y 0=3y 0(x -2),与y 2=6x 联立,消去x 得y 2-2y 0y +2y 20-12=0.由韦达定理得y 1+y 2=2y 0,y 1y 2=2y 20-12. ∴|AB |=1+1k 2AB ·|y 1-y 2|=(1+y 209)[(y 1+y 2)2-4y 1y 2]=(1+y 209)[4y 20-4(2y 20-12)]=23(9+y 20)(12-y 20). 又点C 到直线AB 的距离为h =|CM |=9+y 20,∴S △ABC =12|AB |·h =13(9+y 20)2(12-y 20) 令t =9+y 20(t >9),则12-y 20=21-t .设f (t )=(9+y 20)2(12-y 20)=t 2(21-t )=-t 3+21t 2, 则f ′(t )=-3t 2+42t =-3t (t -14).当9<t <14时,f ′(t )>0;当t >14时,f ′(t )<0.∴f (t )在(9,14)上单调递增,在(14,+∞)上单调递减.∴当t =14时,[f (t )]max =142×7.故△ABC 面积的最大值为1437.(13分)注:第(3)问也可由AB 直线方程y =kx +b 及x 1+x 2=4,推出b =3k -2k ,然后转化为求关于k 的函数的最值问题.。