2009学而思杯数学解析(4年级)
- 格式:pdf
- 大小:305.98 KB
- 文档页数:3
数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、与数论结合的数字谜 (1)、特殊数字【例 1】 如图,不同的汉字代表不同的数字,其中“变”为1,3,5,7,9,11,13这七个数的平均数,那么“学习改变命运”代表的多位数是 .1999998⨯学习改变命运变 【考点】与数论结合的数字谜之特殊数字 【难度】2星 【题型】填空 【关键词】学而思杯,4年级,第9题 【解析】 “变”就是7,19999987285714÷= 【答案】285714【例 2】 右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。
例题精讲知识点拨教学目标5-1-2-3.乘除法数字谜(二)杯小9望99999×赛赛希学【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空 【关键词】希望杯,4年级,初赛,20题 【解析】 赛×赛的个位是9,赛=3或7,赛=3,小学希望杯赛=333333,不合题意,舍去;故赛=7,小学希望杯赛=999999÷7=142857【答案】142857【例 3】 右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问A 和E 各代表什么数字?E AEDEEEEE×3CB【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空【解析】 由于被乘数的最高位数字与乘数相同,且乘积为EEEEEE ,是重复数字根据重复数字的特点拆分,将其分解质因数后为:=37111337EEEEEE E ⨯⨯⨯⨯⨯,所以3A =或者是7A =①若A =3,因为3×3=9,则E =1,而个位上1×3=3≠1,因此,A≠3。
简单的排列问题1.使学生正确理解排列的意义;2.了解排列、排列数的意义,能根据具体的问题,写出符合要求的排列;3.掌握排列的计算公式;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列的一些计数问题进行归纳总结,并掌握一些排列技巧,如捆绑法等.一、排列问题在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .根据排列的定义,做一个m 元素的排列由m 个步骤完成:步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法; ……步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.二、排列数一般地,对于m n =的情况,排列数公式变为12321n n P n n n =⋅-⋅-⋅⋅⋅⋅()(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =⋅-⋅-⋅⋅⋅⋅()() .模块一、排列之计算【例 1】 计算:⑴ 25P ;⑵ 4377P P -.【考点】简单排列问题 【难度】1星 【题型】解答【解析】 由排列数公式121m n P n n n n m =---+()()()知:⑴ 255420P =⨯=⑵ 477654840P =⨯⨯⨯=,37765210P =⨯⨯=,所以4377840210630P P -=-=.【答案】⑴20 ⑵630【巩固】 计算:⑴ 2P ;⑵ 32P P -.教学目标例题精讲知识要点【考点】简单排列问题 【难度】1星 【题型】解答【解析】 ⑴ 23326P =⨯= ⑵ 326106541091209030P P -=⨯⨯-⨯=-=. 【答案】⑴6 ⑵30【巩固】 计算:⑴321414P P -; ⑵53633P P -.【考点】简单排列问题 【难度】1星 【题型】解答【解析】 ⑴32141414131214132002P P -=⨯⨯-⨯=; ⑵536333(65432)3212154P P -=⨯⨯⨯⨯⨯-⨯⨯=. 【答案】⑴2002 ⑵2154模块二、排列之排队问题【例 2】 有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况? (照相时3人站成一排)【考点】简单排列问题 【难度】2星 【题型】解答 【解析】 由于4人中必须有一个人拍照,所以,每张照片只能有3人,可以看成有3个位置由这3人来站.由于要选一人拍照,也就是要从四个人中选3人照相,所以,问题就转化成从四个人中选3人,排在3个位置中的排列问题.要计算的是有多少种排法.由排列数公式,共可能有:3443224P =⨯⨯=(种)不同的拍照情况. 也可以把照相的人看成一个位置,那么共可能有:44432124P =⨯⨯⨯=(种)不同的拍照情况.【答案】24【巩固】 4名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法? 【考点】简单排列问题 【难度】2星 【题型】解答 【解析】 4个人到照相馆照相,那么4个人要分坐在四个不同的位置上.所以这是一个从4个元素中选4个,排成一列的问题.这时4n =,4m =.由排列数公式知,共有44432124P =⨯⨯⨯=(种)不同的排法.【答案】24【巩固】 9名同学站成两排照相,前排4人,后排5人,共有多少种站法? 【考点】简单排列问题 【难度】3星 【题型】解答 【解析】 如果问题是9名同学站成一排照相,则是9个元素的全排列的问题,有99P 种不同站法.而问题中,9个人要站成两排,这时可以这么想,把9个人排成一排后,左边4个人站在前排,右边5个人站在后排,所以实质上,还是9个人站9个位置的全排列问题.方法一:由全排列公式,共有99987654321362880P =⨯⨯⨯⨯⨯⨯⨯⨯=(种)不同的排法. 方法二:根据乘法原理,先排四前个,再排后五个. 4595987654321362880p p ⋅=⨯⨯⨯⨯⨯⨯⨯⨯=【答案】362880【巩固】 5个人并排站成一排,其中甲必须站在中间有多少种不同的站法? 【考点】简单排列问题 【难度】3星 【题型】解答 【解析】 由于甲必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且4n =.由全排列公式,共有44432124P =⨯⨯⨯=(种)不同的站法.【答案】24【巩固】 丁丁和爸爸、妈妈、奶奶、哥哥一起照“全家福”,5人并排站成一排,奶奶要站在正中间,有多少种不同的站法?【考点】简单排列问题 【难度】3星 【题型】解答 【解析】 由于奶奶必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且n =4.由全排列公式,共有44432124P =⨯⨯⨯=(种)不同的站法.【答案】24【例 3】5个同学排成一行照相,其中甲在乙右侧的排法共有_______种?【考点】简单排列问题【难度】3星【题型】填空【关键词】学而思杯,4年级,第8题【解析】5个人全排列有5!120=种,其中甲在乙右侧应该正好占一半,也就是60种【答案】60种【例 4】一列往返于北京和上海方向的列车全程停靠14个车站(包括北京和上海),这条铁路线共需要多少种不同的车票.【考点】简单排列问题【难度】3星【题型】解答【解析】2141413182P=⨯=(种).【答案】182【例 5】班集体中选出了5名班委,他们要分别担任班长,学习委员、生活委员、宣传委员和体育委员.问:有多少种不同的分工方式?【考点】简单排列问题【难度】3星【题型】解答【解析】55120P=(种).【答案】120【例 6】有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?【考点】简单排列问题【难度】3星【题型】解答【解析】这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置.我们的问题就是要从五个不同的元素中取三个,排在三个位置的问题.由于信号不仅与旗子的颜色有关,而且与不同旗子所在的位置有关,所以是排列问题,且其中5n=,3m=.由排列数公式知,共可组成3554360P=⨯⨯=(种)不同的信号.【答案】60【巩固】有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,问共可以组成多少种不同的信号?【考点】简单排列问题【难度】3星【题型】解答【解析】23326P=⨯=.【答案】6【巩固】在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?【考点】简单排列问题【难度】3星【题型】解答【解析】方法一:这里三面不同颜色的旗子就是三个不同的元素,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,也就是从三个元素中选三个的全排列的问题.由排列数公式,共可以组成333216P=⨯⨯=(种)不同的信号.方法二:首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3216⨯⨯=(种).【补充说明】这个问题也可以用乘法原理来做,一般,乘法原理中与顺序有关的问题常常可以用排列数公式做,用排列数公式解决问题时,可避免一步步地分析考虑,使问题简化.【答案】6模块三、排列之数字问题【例 7】用1、2、3、4、5、6、7、8可以组成多少个没有重复数字的四位数?【考点】简单排列问题 【难度】2星 【题型】解答 【解析】 这是一个从8个元素中取4个元素的排列问题,已知8n =,4m =,根据排列数公式,一共可以组成4887651680P =⨯⨯⨯=(个)不同的四位数.【答案】1680【巩固】 由数字1、2、3、4、5、6可以组成多少没有重复数字的三位数? 【考点】简单排列问题 【难度】2星 【题型】解答【解析】36120P =. 【答案】120【例 8】 用0、1、2、3、4可以组成多少个没重复数字的三位数? 【考点】简单排列问题 【难度】3星 【题型】解答 【解析】 (法1)本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1、2、3、4这四个数字中选择一个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有24P 种方法.由乘法原理得,此种三位数的个数是:24448P ⨯=(个). (法2):从0、1、2、3、4中任选三个数字进行排列,再减去其中不合要求的,即首位是0的.从0、1、2、3、4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:32545434348P P -=⨯⨯-⨯=(个).本题不是简单的全排列,有一些其它的限制,这样要么先全排列再剔除不合题意的情况,要么直接在排列的时候考虑这些限制因素.【答案】48【例 9】 用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数? 【考点】简单排列问题 【难度】3星 【题型】解答 【解析】 个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n =,2m =,根据排列数公式,一共可以组成255420P =⨯=(个)符合题意的三位数.【答案】20【巩固】 用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?【考点】简单排列问题 【难度】3星 【题型】解答 【解析】 由于组成偶数,个位上的数应从2,4,6中选一张,有3种选法;十位和百位上的数可以从剩下的5张中选二张,有255420P =⨯=(种)选法.由乘法原理,一共可以组成32060⨯=(个)不同的偶数.. 【答案】60【例 10】 由0,2,5,6,7,8组成无重复数字的数,四位数有多少个? 【考点】简单排列问题 【难度】3星 【题型】解答 【解析】 方法一:先考虑从六个数字中任取四个数字的排列数为466543360P =⨯⨯⨯=,由于0不能在千位上,而以0为千位数的四位数有3554360P =⨯⨯=,它们的差就是由0,2,5,6,7,8组成无重复数字的四位数的个数,即为:36060300-=个.方法二:完成这件事——组成一个四位数,可分为4个步骤进行,第一步:确定千位数;第二步:确定百位数; 第三步:确定十位数;第四步:确定个位数;这四个步骤依次完成了,“组成一个四位数”这件事也就完成了,从而这个四位数也完全确定了,思维过程如下:根据乘法原理,所求的四位数的个数是:5543300⨯⨯⨯=(个).【答案】300【例 11】用1、2、3、4、5这五个数字,不许重复,位数不限,能写出多少个3的倍数?【考点】简单排列问题【难度】4星【题型】解答【解析】按位数来分类考虑:⑴一位数只有1个3;⑵两位数:由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成22212P=⨯=(个)不同的两位数,共可组成248⨯=(个)不同的两位数;⑶三位数:由1,2与3;1,3与5;2,3与4;3,4与5四组数字组成,每一组可以组成3 33216P=⨯⨯=(个)不同的三位数,共可组成6424⨯=(个)不同的三位数;⑷四位数:可由1,2,4,5这四个数字组成,有44432124P=⨯⨯⨯=(个)不同的四位数;⑸五位数:可由1,2,3,4,5组成,共有5554321120P=⨯⨯⨯⨯=(个)不同的五位数.由加法原理,一共有182424120177++++=(个)能被3整除的数,即3的倍数.【答案】177【例 12】用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数?【考点】简单排列问题【难度】4星【题型】解答【解析】可以分两类来看:⑴把3排在最高位上,其余4个数可以任意放到其余4个数位上,是4个元素全排列的问题,有4 4432124P=⨯⨯⨯=(种)放法,对应24个不同的五位数;⑵把2,4,5放在最高位上,有3种选择,百位上有除已确定的最高位数字和3之外的3个数字可以选择,有3种选择,其余的3个数字可以任意放到其余3个数位上,有336P=种选择.由乘法原理,可以组成33654⨯⨯=(个)不同的五位数.由加法原理,可以组成245478+=(个)不同的五位数.【答案】78【巩固】用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687是第几个数?【考点】简单排列问题【难度】4星【题型】解答【解析】从高位到低位逐层分类:⑴千位上排1,2,3或4时,千位有4种选择,而百、十、个位可以从0~9中除千位已确定的数字之外的9个数字中选择,因为数字不重复,也就是从9个元素中取3个的排列问题,所以百、十、个位可有39987504P=⨯⨯=(种)排列方式.由乘法原理,有45042016⨯=(个).⑵千位上排5,百位上排0~4时,千位有1种选择,百位有5种选择,十、个位可以从剩下的八个数字中选择.也就是从8个元素中取2个的排列问题,即288756P =⨯=,由乘法原理,有1556280⨯⨯=(个).⑶ 千位上排5,百位上排6,十位上排0,1,2,3,4,7时,个位也从剩下的七个数字中选择,有116742⨯⨯⨯=(个). ⑷ 千位上排5,百位上排6,十位上排8时,比5687小的数的个位可以选择0,1,2,3,4共5个. 综上所述,比5687小的四位数有20162804252343+++=(个),故5687是第2344个四位数.【答案】2344【例 13】 用数字l ~8各一个组成8位数,使得任意相邻三个数字组成的三位数都是3的倍数.共有___种组成方法.【考点】简单排列问题 【难度】4星 【题型】填空 【关键词】走美杯,六年级,初赛,第7题 【解析】 l ~8中被三除余1和余2的数各有3个,被3整除的数有两个,根据题目条件可以推导,符合条件的排列,一定符合“被三除所得余数以3位周期”,所以8个数字,第1、4、7位上的数被3除同余,第2、5、8位上的数被3除同余,第3、6位上的数被3除同余,显然第3、6位上的数被3整除,第1、4、7位上的数被3除可以余1也可以余2,第2、5、8位上的数被3除可以余2可以余1,余数的安排上共有2种方法,余数安排定后,还有同余数之间的排列,一共有3!×3!×2!=144种方法.【答案】144种【例 14】 由数字0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列.2008排在 个. 【考点】简单排列问题 【难度】4星 【题型】解答 【解析】 比2008小的4位数有2000和2002,比2008小的3位数有23318⨯⨯=(种),比2008小的2位数有236⨯=(种),比2008小的1位数有2(种),所以2008排在第21862129++++=(个). 【答案】29【例 15】 千位数字与十位数字之差为2(大减小),且不含重复数字的四位数有多少个? 【考点】简单排列问题 【难度】4星 【题型】解答 【解析】 千位数字大于十位数字,千位数字的取值范围为29,对应的十位数字取07,每确定一个千位数字,十位数字就相应确定了,只要从剩下的8个数字中选出2个作百位和个位就行了,因此总共有288P ⨯个这样的四位数.⑵千位数字小于十位数字,千位数字取17,十位数字取39,共有287P ⨯个这样的四位数.所以总共有228887840P P ⨯+⨯=个这样的四位数.【答案】840模块四、排列之策略问题【例 16】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【考点】简单排列问题 【难度】4星 【题型】解答 【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种. 第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312⨯=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次.【答案】56【例 17】 幼儿园里的6名小朋友去坐3把不同的椅子,有多少种坐法? 【考点】简单排列问题 【难度】3星 【题型】解答 【解析】 在这个问题中,只要把3把椅子看成是3个位置,而6名小朋友作为6个不同元素,则问题就可以转化成从6个元素中取3个,排在3个不同位置的排列问题.由排列数公式,共有:36654120P=⨯⨯=(种)不同的坐法.【答案】120【巩固】幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同的坐法?【考点】简单排列问题【难度】3星【题型】解答【解析】与例5不同,这次是椅子多而人少,可以考虑把6把椅子看成是6个元素,而把3名小朋友作为3个位置,则问题转化为从6把椅子中选出3把,排在3名小朋友面前的排列问题.由排列公式,共有:36654120P=⨯⨯=(种)不同的坐法.【答案】120【巩固】10个人走进只有6辆不同颜色碰碰车的游乐场,每辆碰碰车必须且只能坐一个人,那么共有多少种不同的坐法?【考点】简单排列问题【难度】3星【题型】解答【解析】把6辆碰碰车看成是6个位置,而10个人作为10个不同元素,则问题就可以转化成从10个元素中取6个,排在6个不同位置的排列问题.共有6101098765151200P=⨯⨯⨯⨯⨯=(种)不同的坐法.【答案】151200【例 18】一个篮球队有五名队员A,B,C,D,E,由于某种原因,E不能做中锋,而其余4个人可以分配到五个位置的任何一个上,问一共有多少种不同的站位方法?【考点】简单排列问题【难度】3星【题型】解答【解析】方法一:此题先确定做中锋的人选,除E以外的四个人任意一个都可以,则有4种选择,确定下来以后,其余4个人对应4个位置,有44432124P=⨯⨯⨯=(种)排列.由乘法原理,42496⨯=,故一共有96种不同的站位方法.方法二:五个人分配到五个位置一共有5554321120P=⨯⨯⨯⨯=(种)排列方式,E能做中锋一共有4 4432124P=⨯⨯⨯=(种)排列方式,则E不能做中锋一共有54541202496P P-=-=种不同的站位方法.【答案】96【例 19】小明有10块大白兔奶糖,从今天起,每天至少吃一块.那么他一共有多少种不同的吃法?【考点】简单排列问题【难度】3星【题型】解答【解析】我们将10块大白兔奶糖从左至右排成一列,如果在其中9个间隙中的某个位置插入“木棍”,则将lO块糖分成了两部分.我们记从左至右,第1部分是第1天吃的,第2部分是第2天吃的,…,如:○○○|○○○○○○○表示第一天吃了3粒,第二天吃了剩下的7粒:○○○○ | ○○○| ○○○表示第一天吃了4粒,第二天吃了3粒,第三天吃了剩下的3粒.不难知晓,每一种插入方法对应一种吃法,而9个间隙,每个间隙可以插人也可以不插入,且相互独立,故共有29=512种不同的插入方法,即512种不同的吃法.【答案】512。
2009年第二届学而思杯五年级数学试题A 卷解析1.计算:20.0962200.9 3.97 2.87⨯+⨯-⨯= . 分析:原式20.096220.093920.09=⨯+⨯-()20.0962391=⨯+-20.091002009=⨯=2.用数字卡片1,1,2,2,3,3,4,4,5,5,6,7,9,9(不允许把6倒过来当作9,也不许把9倒过来当作6)组成七个不同的两位质数,这七个质数之和等于________. 分析:本题考查学生对被2和5整除的数的特征.当两位数的个位数字为2,4,5,6时,这个两位数能被2或5整除,又大于2或5,此时不是质数,所以2,4,5,6都不能出现在个位,那么数字卡片中的2,4,5,6都只能出现在十位上.它们恰好有7个,其中2,4,5各两个,6只有一个;那么剩下的7张卡片都出现在个位上,其中1,3,9各有两个,7只有一个.现在还不知道所组成的7个不同质数都是哪些数,但是已经知道了哪些数字在十位上,哪些数字在个位上,所以已经可以进行求和了:()()2244556101133799313++++++⨯+++++++=.当然本题也可以进一步求出这七个质数.十位为2的两位数质数有23,29,十位为4的两位数质数有41,43,47,十位为5的两位数质数有53,59,十位为6的两位数质数有61,67.于是可以先确定23,29,53,59这四个数,这时个位上还剩下两个1和一个7,只能是41,47和61.3.把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.分析:设这个两位数为ab ,则其逆序数为ba ,根据题意有:()112ab ba =+,所以12ba ab +=,即101202b a a b ++=+,得8119b a +=.可见a 为奇数,而且1989173a ≤⨯+=,得到4a <.a 可能为1或3.代入8119b a +=可知只有当3a =时7b =是整数,所以所求的两位数为37.4.园里的荔枝获得丰收,第一天摘了全部荔枝的13又10筐,第二天摘了余下的25又3筐,这样还剩下63筐荔枝没有摘,则共有荔枝 筐. 分析:本题可采用倒推法。
鸡兔同笼变例知识结构一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:(1)如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法例题精讲【例 1】某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】做错(52079 ) (52)3⨯-÷+=(道),因此,做对的20317-=(道).【答案】17道【巩固】东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】这道题也类似于“鸡兔同笼”问题.假设刘钢20道题全对,可得分520100⨯=(分),但他实际上只得86分,少了1008614-=(分),因此他没做或做错了一些题.由于做对一道题得5分,没做或做错一道题倒扣2分,所以没做或做错一道题比做对一道题要少527+=(分).14分中含有多少个7,就是刘钢没做或做错多少道题.所以,刘钢没做或做错题为1472÷=(道),做对题为20218-=(道).【答案】18道【例 2】次数学竞赛有10道试题,若小宇得70分,根据图5中两人的对话可知小宇答对_________题。