2012年六年级(学而思杯)数学试卷详解
- 格式:pdf
- 大小:687.63 KB
- 文档页数:7
三时 间学而思杯大事记4月7日 18:00学而思杯试题电子版及详解上线4月8日 12:00学而思杯视频版详解上线4月13日 18:00前学而思杯公布成绩4月13日 12:00开始开始接受预约线下诊断4月13日—4月19日成绩疑问查询4月16日—4月20日超常班录取 4月30日—5月6日学而思原班次颁发学而思杯奖状4月30日—5月13日 奖状证书自行领取4月24日学而思杯颁奖典礼绝密★启用前2012年第二届全国学而思综合能力测评(学而思杯)数学试卷(三年级)考试时间:90分钟满分:150分考生须知:请将所有的答案用2B铅笔填涂在答题卡上一、填空题(每题7分,共28分)1.我国著名的数学传播、普及和数学竞赛专家单墫教授在2011年“普林斯顿数学竞赛”集训营中,鼓励北京地区参加数学竞赛的小选手,且学且思,作诗一首:“学不思则罔,思不学则殆.学而思最好,培优创未来.”已知在“学而思最好,培优创未来”这句话中,不同汉字代表不同数字..,那么,“学+而+思+最+好+培+优+创+未+来”的值是___________.(赵璞铮老师供题)2.西方国家有一个益智游戏叫做“神推指”(CrossFingers),要求将标有1,2,3,4的小木片平移(不能旋转)到深色“X”型目标中,将A,B,C,D完全覆盖.那么,覆盖A,B,C,D的小木片所组成的四位数ABCD是___________.(黄山老师供题)3.1805年的4月7日,贝多芬创作的《第三交响曲》在维也纳剧院首次公演.作为乐圣,他一生创作了100多部作品,其中“编号交响曲”9首,“钢琴奏鸣曲”的数量比“小提琴奏鸣曲”的3倍多5首,“小提琴奏鸣曲”的数量比“编号交响曲”多1首.那么,他一生共创作“钢琴奏鸣曲”_______首.(魏琦老师供题)4. 如右图,4×4大正方形中,每个小方格填入1、2、3、5四个数字中的一个,整个大正方形被划分成8个2×1小长方形.任意两个小长方形中的两个数字之和互不相等.那么,学而思杯的值是___________.(中小学数学报 陈平老师供题)二、 填空题(每题9分,共36分)5. 算式:103×107−91×99的计算结果是___________.(丛瑜老师供题)6. 在学而思,学习努力认真的同学都会得到积分卡,积分卡攒到一定数量可以换购奖品,兑换规则如下:10张积分卡可以换1个笔记本,20张积分卡可以换1个存钱罐,30张积分卡可以换1个小台灯.思思攒了60张积分卡,全部拿去换奖品,他一共有___________种不同的换法.(李茂老师供题)7. 用火柴棒摆数字如右图所示: ,琦琦老师刚刚摆好一个两位数,就被一位淘气的小朋友拿走了5根火柴,结果变成了 ,那么原来的两位数最小是___________.(张桓老师供题)8. 思思每年的母亲节都会给妈妈折纸鹤,祝福妈妈健康快乐.从第二年开始,每年都会比前一年多折7只,八年一共折了212只,那么,思思第一年折了___________只.(刘畅老师供题)1 2 2 学 51 而2 1思 5 3 杯3 3 1三、填空题(每题10分,共40分)9.2012年(闰年)的星期一比星期二多,那么2012年的元旦是星期___________.(星期一到星期日分别用1到7表示)(姜付加老师供题)10.下图是北京市地铁线路图(部分),琦琦老师某天要从海淀黄庄坐地铁去蒲黄榆教学点开家长会,琦琦老师在海淀黄庄站上车,到在蒲黄榆站下车,最少需要坐___________站地铁.(不需要考虑换乘次数)(杨宇泽老师供题)11.思思的存钱罐里有总值16元的硬币,其中包含面值1角、5角和1元共计50枚,已知1角硬币的数量最多,比5角和1元硬币的总数还多10枚,则思思的存钱罐中有___________枚5角硬币.(郭艳老师供题)12.摩比、大宽、金儿的年龄为3个连续的自然数,摩比年龄最大.今年他们三人与博士的年龄之和为100岁.17年后,他们三人的年龄和恰好等于博士的年龄.那么,今年摩比___________岁.(邢永钢老师供题)四、填空题(每题11分,共22分)13.在“9□8□7□6□5□4□3□2□1”的□内填上两个+、两个-、两个×、两个÷,使算式的结果为整数,结果的最大值是___________.(李响老师供题)14.琦琦老师去文具店给全班同学买结课礼品,她计划让每位同学都只得到一件......礼品.已知笔记本10元一本,铅笔盒15元一个.如果给3位同学买铅笔盒,其他同学都买笔记本,则剩余85元;如果给3位同学买笔记本,其他同学买铅笔盒,则剩余40元;那么,琦琦老师共带___________元.(肖京园老师供题)五、填空题(每题12分,共24分)15.房间里有3种小动物:小白鼠、小花猫、小黄狗.房间里如果猫的数量不超过狗,狗就会欺负猫;如果鼠的数量不超过猫,猫就会欺负鼠;如果猫、狗数量之和不超过鼠,鼠就会偷吃东西.现在小白鼠、小花猫、小黄狗三种小动物在房间里相安无事,但是再进来任意一只,都会打破平衡.那么,原来房间里有___________只小动物.(吴正昊老师供题)16.国王有100名武士,每两名武士要么互相是朋友,要么互相是敌人,要么互相不认识.每人只同朋友....讲话.但不巧的是,每名武士的任意两个朋友都互为敌人,任意两个敌人都互为朋友.国王为了让这100名武士都知道他的一项命令,最少要通知___________名武士.(韩涛老师供题)更多内容请访问:/2012年第二届全国学而思综合能力测评(学而思杯)活动组委会总负责人:常 江五年级命题组组长:李 响 四年级命题组组长:杨宇泽三年级命题组组长:魏 琦二年级命题组组长:王 琳一年级命题组组长:何俞霖命题组成员:(按姓氏拼音排序)常江 何俞霖 柯一鸾 李响 王琳 魏琦 邢永钢 杨宇泽 赵璞铮参与供题教师:(按姓氏拼音排序)曹 岚 陈一一 丛 瑜 崔梦迪 董博聪 冯 研 关志瞳 郭 艳 郭忠秀 韩 涛贺赓帆 胡 浩 黄 山 贾任萌 姜付加 荆晨玮 兰 海 李春芳 李 茂 李 萌刘 畅 刘 力 马 宁 齐志远 时俊明 孙佳俊 田芳宇 田增乐 王雪婷 魏苗硕吴正昊 肖京园 谢雪莉 杨 巍 于晓斐 张 桓 张旷昊 张宇鹏特别鸣谢: 中小学数学报社 陈平。
学而思六年级数学测试1·计算篇1. 计算=⨯+++++++128)288122411681120180148124181(2. =++⨯++++-+++⨯+++)1119171()131111917151()1311119171()111917151(3. 计算:2004×2003-2003×2002+2002×2001-2001×2000+…+2×1=4.有一列数:1111,,,251017……第2008个数是________ .5.看规律13 = 12,13 + 23 = 32,13 + 23 + 33 = 62 ……,试求63 + 73 + … + 143第1讲 小升初专项训练·计算✧ 四五年级经典难题回顾例1、求下列算式计算结果的各位数字之和:20062005666666725⨯⨯L L 14424431442443例2、求数1111110111219++++L 的整数部分是几?✧ 小升初重点题型精讲例1、=÷+÷+÷595491474371353251.例2、=+⨯⨯÷+--+)19956.15.019954.01993(22.550276951922.510939519例3、=++÷++)25118100412200811()25138100432200831( .巩固、计算:=+⨯+⨯+⨯+⨯416024340143214016940146 .例4、计算:22221235013355799101++++=⨯⨯⨯⨯L .拓展计算:57191232348910+++=⨯⨯⨯⨯⨯⨯L .例5 、1⨯2+2⨯3+3⨯4+4⨯5+5⨯6+6⨯7+7⨯8+8⨯9+9⨯10= .巩固:2⨯3+3⨯4+4⨯5+L +100⨯101= .拓展、计算:1⨯2⨯3+2⨯3⨯4+3⨯4⨯5+L +9⨯10⨯11= .例6、[2007 –(8.5⨯8.5-1.5⨯1.5)÷10]÷160-0.3= .巩固、计算:53×57 – 47×43 = .例7、计算:11×19 + 12×18 + 13×17 + 14×16 = .拓展、计算:1×99 + 2×98 + 3×97 + L + 49×51 = .例8、计算:1×99 + 2×97 + 3×95 + L + 50×1 = .家庭作业 1. =÷+÷+÷797291585381373172 .2. =-⨯⨯+÷)5246.5(402323153236 .3. =++÷++)2231966913200711()2237966973200771( .4. 计算:2222222222 3151711993119951 3151711993119951++++++++++=-----L.5. 计算:11×29 + 12×28 + …+ 19×21 = .名校真题1. 如图,AD = DB,AE = EF = FC,已知阴影部分面积为5平方厘米,△ABC的面积是_________平方厘米.2. 如图,ABCD与AEFG均为正方形,三角形ABH的面积为6平方厘米,图中阴影部分的面积为_________.3. 如图,长方形ABCD的面积是36,E是AD的三等分点,AE = 2ED,则阴影部分的面积是.4. 如图,边长为1的正方形ABCD中,BE = 2EC,CF = FD,求三角形AEG的面积.5. 如图,3个边长为3的正方形,甲的中心在乙的一个顶点上,乙的中心在丙的一个顶点上,甲与丙不重叠,求甲、乙、丙叫共覆盖的面积是。
2014年六年级学而思综合能力测评(学而思杯)解析一、填空题A(本大题共10小题.每个小题5分,共50分)1.下面四个图形中,阴影面积占总面积一半的图形有个.①②③④【考点】计算,分数定义【难度】☆【答案】2【分析】图形①和④.2.杨老师按零售价买了6本相同的练习本,用了24元.如果按批发价购买,每本将便宜2元,这样可以多买..本.【考点】应用题,基础应用题【难度】☆【答案】6【分析】零售6本24元,则每本4元,即批发价为422-=元,可以买24212÷=本,多买6本. 3.用2、0、1、4这四个数字可以组成个没有重复数字的四位数.【考点】计数,乘法原理【难度】☆【答案】18【分析】乘法原理,332118⨯⨯⨯=.4.下面的竖式中,被除数是.16□□□□□□□□□【考点】数字谜,除法数字谜【难度】☆【答案】116【分析】由第三行是10得出除数只能是2或5,又由于第五行尾数是6,那么除数只能是2,第五行是16,则商是58,被除数是116.5. 下图中,大长方形的长是40厘米,长是宽的2倍.那么阴影面积是 平方厘米.(π取3.14)【考点】几何,圆与扇形,图形的分割与剪拼 【难度】☆ 【答案】400【分析】图形中小正方形边长是10厘米,阴影部分正好可以拼成四个小正方形. 41010400⨯⨯=.6. 甲、乙两所小学,甲校的人数是乙校人数的25,甲校的女生人数占全校人数的40%,乙校男生人数占全校人数的60%.如果将甲、乙两校合并,女生人数占总人数的 %. 【考点】应用题,分百应用题 【难度】☆ 【答案】40%【分析】设甲乙两校人数分别为2份和5份,则女生共240%5(160%) 2.8⨯+⨯-=,占2.8(25)40%÷+=.另外,实际上,从甲乙两校女生都占各自的40%即可得出结论.7. 下图中,长方形ABCD 的长为16厘米,宽为10厘米,E 、F 分别是AB 、BC 的中点,那么,三角形DEF 的面积是 平方厘米.E DCBA【考点】几何,三角形面积 【难度】☆☆ 【答案】60【分析】用总面积减去三个白色三角形的面积,11116101658108560222⨯-⨯⨯-⨯⨯-⨯⨯=.8. 某项工程,如果甲单独做,12天完成;如果乙单独做,24天完成;如果要求10天完成任务,并且要求甲、乙两人合作的时间尽可能少,那么甲、乙合作 天. 【考点】应用题,工程问题 【难度】☆☆ 【答案】4【分析】设工总24份,则甲每天做2份,乙每天做1份,尽量不合作的话则尽量让做得多的甲做,即全程只有两种状态:甲做、甲乙合作,则甲10天都在做,共做20份,乙需要做4份,即合作4天.9. 将8个相同的球分给甲、乙、丙、丁、戊五个小朋友,每人得到1个球或2个球,那么共有 种分法.【考点】计数,排列组合 【难度】☆☆ 【答案】10【分析】有2人得到1个球,3人得到2个球,25C 10=.10. 将5个自然数排成一列,从第三个数开始,每个数等于前面两个数的和,那么这5个数中,最多有 个质数.【考点】数论,质数与合数,数论中的最值 【难度】☆☆☆ 【答案】4【分析】注意到2、3、5、8、13中有4个质数,接下来论证不可能有5个质数.由于第三个数加第四个数等于第五个,这三个数不能都是奇数,必有一偶,这个偶数如果是2的话则它前面的数必然不能都是质数,所以这5个数不可能都是质数.二、填空题B (本大题共5小题.每个小题8分,共40分) 11. 两位数ab 比一位数a 少1个约数,那么ab 最大是 . 【考点】数论,数论中的最值 【难度】☆☆ 【答案】97【分析】极端分析,9a =有三个因数,则ab 有两个因数,只能是个质数,97.12.将10个棱长为1厘米的立方体如下图摆放,那么,这个立体图形的表面积是平方厘米.【考点】几何,立体图形三视图【难度】☆☆【答案】36【分析】画出三视图,三个方向的面积都是1236++⨯=.++=,(666)23613.甲乙两车分别从A、B两地同时出发,相向而行.出发时,甲、乙两车的速度之比是5:4,相遇后,甲的速度增加20%,乙的速度增加50%,他们到达目的地后都立即返回,再次相遇的地点距离第一次相遇地点20千米.那么,A、B两地的距离是千米.【考点】行程,比例法解行程,多次相遇【难度】☆☆☆【答案】180【分析】相遇后两人的速度比变为[5(120%)]:[4(150%)]6:61:1⨯+⨯+==,将全程分为9份,则第一次相遇两人共走9份,其中甲走了5份,第二次相遇两人共走18份,其中甲走了9份,即第二次相遇时甲共走5914⨯=千米.+=份,两次相遇地点相距1份,所以全程距离为29018014.有一个三位数abc,满足如下性质:由a、b、c所组成的没有重复数字的三位数中,最大的三位数与最小的三位数之差恰好等于abc.那么,这个三位数abc是.【考点】数论,位值原理【难度】☆☆☆☆【答案】495【分析】如果a、b、c中没有0,设最大三位数M xyz=,99()=,则最小三位数N zyx-=-,M N x z 即99()=-是99的倍数,注意其中x是a、b、c最大的一个,而z是a、b、c中最小的一个,abc x z枚举99的倍数,有49599(94)=⨯-满足条件;如果a、b、c中有一个0,设最大三位数0=,9990N y xM xy=,则最小三位数0-=-,M N x y 即9990=-,注意其中a、b、c中有一个0,另外两个分别为x和y(x y abc x y>),通过枚举x 来算出c,发现没有符合条件的三位数;如果a、b、c中有一个0,则只能组成一个三位数,显然不满足条件.综上,只有一个三位数495满足条件.15. 将一张正方形纸片,按下图方式进行操作:将正方形的四个顶点向内折叠至正方形中心,然后将新得到的图形的四个顶点再次向内折叠至中心.最后将纸片完全展开,原正方形四条边与所有折痕所组成的新图形中,共有 个正方形....第二次向内折:第一次向内折:?展开【考点】计数,几何计数 【难度】☆☆☆☆ 【答案】11【分析】展开后的图形如图所示:计数其中正方形的个数,共有11个.第II 卷(解答题 共60分)三、解答题(本大题共5题. 解答过程请写在答题纸上、试卷作答无效) 16. 计算及解方程(每题4分、共16分):(1)3343 4.41624815⨯+⨯+÷(2)22222222246810121416+++++++ (3)11916122030-+-(4)1291212x x+--= 【考点】计算,分数计算,公式类计算,裂项计算,分数方程 【难度】☆☆ 【答案】30、816、12、5x = 【分析】(1)3341515323 4.4162(4.42)66246304815445⨯+⨯+÷=⨯++=⨯+=+=(2)2222222221246810121416289178166+++++++=⨯⨯⨯⨯=或222222222468101214164163664100144196256816 +++++++=+++++++=(3)1191111111111111111 6122030233445562443362⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-=---++--=++-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭或1191191111111111 6122030122030344556362⎛⎫⎛⎫⎛⎫-+-=+-=-++--=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭或11911052721 6122030606060602 -+-=-+-=(4)12916(1)(29)127355 212x xx x x x+--=⇒+--=⇒=⇒=17.列方程(组)解应用题(6分)小英的玩具个数是小丽的5倍,如果小英把6个玩具送给小丽,那么小丽的玩具个数就是小英的2倍了.请问:小英、小丽原来各有玩具多少个?【考点】应用题,列方程(组)解应用题【难度】☆☆【答案】10、2【分析】标准格式如下解:设小丽原有x个玩具,则小英原有5x个玩具,根据题意,得62(56)x x+=-解得2x=55210x=⨯=答:小英原有10个玩具,小丽原有2个玩具.18.如果一个数能被它前两位数字按序组成的两位数整除,则称这个数为“好数”.例如:120的前两位数字按序组成的两位数是12,120能被12整除,所以120是“好数”.请问:(1)四位数中,最小的“好数”是多少?(4分)(2)若存在连续98个自然数都不是“好数”,那么这98个数中,最小的那个数最小可能是多少?(6分)【考点】数论,数论中的最值【难度】☆☆☆【答案】1000、9901【分析】(1)极端分析,1000能被10整除.(2)注意到0xy、00xy都是好数,所以这连续98个数至少是4位数,由于连续n个自然数中必然有一个数能被n整除,所以这些数的前两位不能是10~98,所以最小的情况只可能是9901~9998.19.请回答下列问题:(1)是否能将1~8排成一个圈,使得相邻两个数字的和都是一位数?如果能,请写出一种,如果不能,请说明理由.(3分)(2)请将1~8从左到右排成一行,使得相邻两个数字的和都是一位数.写出1种即可.(3分)(3)第2问中,将1~8从左到右排成一行,相邻两数字之和都是一位数,那么共有多少种不同的排法?(6分)【考点】组合,计数,构造与论证【难度】☆☆☆【答案】不能、81634527、16【分析】(1)不能,因为8要和两个数相邻,而8只有和1相邻才能得出一位数的和.(2)所有情况如下:81634527 81635427 81453627 8154362772634518 72635418 72453618 7254361881726345 81726354 81724536 8172543663452718 63542718 45362718 54362718(3)81一定在一侧,即81(左右可颠倒,2种情况),剩余的6个格中,7一定在最左或最右,且只能与2相邻,2种情况,剩余的4个格中,6一定在最左或最右,且只能与3相邻,2种情况,最后4和5随意排,2种情况,共222216⨯⨯⨯=种.20.如图,大正方形格板是由64个1平方厘米的小正方形铺成的,A、B、C、D是其中四个格点.AD与BC相交于点E.(1)三角形ACD的面积是多少平方厘米?(4分)(2)在其它格点中标出一点F,使得三角形ABF的面积恰等于2平方厘米,这样的点F共有几个?(4分)(3):CE EB是多少?(4分)(4)三角形ABE的面积是多少平方厘米?(4分)【考点】几何,格点,比例模型【难度】☆☆☆【答案】6、9、4:3、12 7.【分析】(1)直接套公式计算,14362⨯⨯=平方厘米.(2)如图所示,9个点分布在两条与AB平行的直线上.(3)通过数格点利用毕克公式算出593122 ABDS=+-=,或者通过整体减空白来算1119361215112222 ABDS=⨯⨯-⨯⨯-⨯⨯-⨯=.利用风筝模型,9::6:4:32ACD ABDCE EB S S===.(4)14242ABCS=⨯⨯=,3124347ABES=⨯=+.。
2012年学而思暑秋新六年级入学数学试卷一、选择题:1.计算:13+86×0.25+0.625×86+86×=()A.99 B.100 C.101 D.1022.规定“※”为一种运算,对任意两数a,b,有a※b=,若6※x=,则x=()A.7 B.8 C.9 D.53.7个连续质数从大到小排列是a、b、c、d、e、f、g.已知它们的和是偶数,那么d=()A.7 B.11 C.13 D.174.某小学男女生人数之比是16:13,后来有几位女生转学到这所学校,男女生人数之比变为6:5,此时全校学生共880人,转来的女生有()人.A.16 B.15 C.12 D.10二、解答题(共6小题,满分0分)5.如图折叠的正方体表面上画如图所示的线段,请你在展开图上标出对应的其它两条线段.6.一个正整数,如果从左到右看和从右到左看都是一样的,那么称这个数为“回文数”.例如:1331,7,202,66都是“回文数”,而220则不是“回文数”.其中第1997个“回文数”是.7.在一个水池中有两根直立的木棍,木棍的一端紧贴着池底,另一端都露在水面上.两个木棍露出水面部分的长度之比是7:3.如果现在水池中的水面向上涨70厘米,这时两根木棍露出水面的部分的长度之比是7:2.那么原来这两根木棍露出水面部分的长度和是多少厘米?8.有一路公共汽车,包括起点站和终点站在内共10个停车点.如果一辆公共汽车从起点站开出,除终点站外,每一站上车的乘客中恰好各有一位从这一站到以后的每一站下车.为了使每位乘客都有座位,那么这辆车至少需要多少个座位?2012年学而思暑秋新六年级入学数学试卷参考答案与试题解析一、选择题:1.计算:13+86×0.25+0.625×86+86×=()A.99 B.100 C.101 D.102【解答】解:13+86×0.25+0.625×86+86×,=13+(0.25+0.625+)×86,=13+(0.25+0.625+0.125)×86,=13+,=(13+86)+(),=99+1,=100;故选:B.2.规定“※”为一种运算,对任意两数a,b,有a※b=,若6※x=,则x=()A.7 B.8 C.9 D.5【解答】解:因为a※b=,所以6※x=即=,6+2x=22,x=8;故选:B.3.7个连续质数从大到小排列是a、b、c、d、e、f、g.已知它们的和是偶数,那么d=()A.7 B.11 C.13 D.17【解答】解:因为7个连续质数的和为偶数,根根据数和的奇偶性可知:其中一个数应既为质数又为偶数,即a=2,则这7个连续质数为:2、3、5、7、11、13、17;即d=7.故选:A.4.某小学男女生人数之比是16:13,后来有几位女生转学到这所学校,男女生人数之比变为6:5,此时全校学生共880人,转来的女生有()人.A.16 B.15 C.12 D.10【解答】解:男生人数:880×=480(人),女生后来的人数:880﹣480=400(人);原来女生人数为480×=390(人),转来的女生有:400﹣390=10(人);答:转来的女生有10人.故选:D.二、解答题(共6小题,满分0分)5.如图折叠的正方体表面上画如图所示的线段,请你在展开图上标出对应的其它两条线段.【解答】解:答案如图:(1)(2)(3)6.一个正整数,如果从左到右看和从右到左看都是一样的,那么称这个数为“回文数”.例如:1331,7,202,66都是“回文数”,而220则不是“回文数”.其中第1997个“回文数”是998899.【解答】解:回文数不能以0开头,即除了首位外,其它数位都可由0~9十个数字可供选择;一位数的回文数有:9个(1~9);二位数:有9个(11,22,…99);三位数:有90个(个位与百位相同有9种,十位有10种:9×10=90);四位数:有90个(个位与千位相同有9种,十位与百位相同有10种:90);五位数:有900个(第一位与最后一位相同有9种,第二位与倒数第二位相同有10种,中间一位有10种:9×10×10=900种);六位数:有900个(第一位与最后一位相同有9种,第二位与倒数第二位相同有10种,中间两位有10种:9×10×10=900种);共有:9+9+90+90+900+900=1998.又因为第1998个回文数是六位数的最后一个即999999,所以第1997个是:998899.故答案为:998899.7.在一个水池中有两根直立的木棍,木棍的一端紧贴着池底,另一端都露在水面上.两个木棍露出水面部分的长度之比是7:3.如果现在水池中的水面向上涨70厘米,这时两根木棍露出水面的部分的长度之比是7:2.那么原来这两根木棍露出水面部分的长度和是多少厘米?【解答】解:设两根木棍原来的露出水面部分的长度各是7x厘米和3x厘米,水池中的水面向上涨70厘米两根木棍的露出水面部分的长度各是7x﹣70厘米和3x﹣70厘米,所以,(7x﹣70):(3x﹣70)=7:2,(3x﹣70)×7=(7x﹣70)×2,21x﹣490=14x﹣140,7x=350,x=350÷7,x=50,7x+3x=10x=10×50=500(厘米),答:这两根木棍露出水面部分的长度和是500厘米.8.有一路公共汽车,包括起点站和终点站在内共10个停车点.如果一辆公共汽车从起点站开出,除终点站外,每一站上车的乘客中恰好各有一位从这一站到以后的每一站下车.为了使每位乘客都有座位,那么这辆车至少需要多少个座位?【解答】解:如图,由上图可知,到第五站时,人数达到最多,从第六站开始,人数递减,在第5站时车上有:(9+8+7+6+5)﹣(0+1+2+3+4),=35﹣10,=25(人);答:这辆车至少需要25个座位.。
绝密★启用前2011年首届全国学而思综合能力测评(学而思杯)数学试卷(六年级B卷)时间:13:30~14:50 满分:150分考生须知:1. 请在答题纸上认真填写考生信息;2. 所有答案请填写在答题纸上,否则成绩无效一.填空题(每题8分,共40分)1.计算:123136___.1234⎛⎫÷+⨯=⎪⎝⎭【分析】原式=1121368.1217⨯⨯=2.如图,一个边长为10厘米的正方形木板斜靠在墙角上(木板厚度不计),AO距离为8厘米,那么点C距离地面的高度是厘米。
BCODA810【分析】6+8=14厘米3.3月11日,日本发生里氏9级大地震。
在3月15日,日本本州岛东海岸附近海域再次发生5级地震。
已知里氏的震级数每升2级,地震释放能量扩大到原来的1000倍,那么3月11日的大地震释放能量是15日东海岸地震的倍.【分析】差了4级,差了1000×1000=1,000,000倍.4. 今天是2011年4月9日,20110409这个九位数是9的倍数,则方框里应填入的数字是。
【分析】容易知道为15. 一列数,我们可以用:1x 、2x …表示,已知:12x =,112n nx x +=-()1,2,3n =,如213222x =-=,则2011____x =。
【分析】由于213222x =-=;324233x =-=;435244x =-=;找规律,可知:1n n x n +=,所以201120122011x =。
二.填空题(每题10分,共50分)1. 在梯形ABCD 中,对角线AC 与BD 相交于O 点,而三角形ABO 的面积为9,三角形BOC 的面积为27,DO 上有一点E ,而三角形ADE 的面积为1.2,则阴影部分三角形AEC 的面积为B【分析】根据题意,由于三角形ADO 的面积为3,则阴影三角形AEO 的面积为1.8,所以有三角形EOC 的面积为3.6,则阴影部分的面积为4.8.2. 有四个人说话,分别如下:A :我们中至少有一个人说的是正确的B :我们中至少有两个人说的是正确的C :我们中至少有一个人说的是错误的D :我们中至少有两个人说的是错误的 请问:说错话的有人.【分析】方法一:若没人说对,则CD 说对,矛盾;若1人说对,则ACD 说对,矛盾;若2人说对,则ABCD 说对,矛盾;若3人说对,则ABC 说对,D 错,成立;若4人说对,则AB 说对,CD 说错,矛盾,因此只能是ABC 说对,D 说错.方法二:因为四个人,所以至少有两人说错或两人说对,因此AB 一定是正确的,剩下的就容易知道D 是错的.3. n 是一个三位数,且组成它的各位数码是从左到右是从大到小的连续数字。
12011学而思杯六年级数学真题解析(上)试卷名称:2011年六年级学而思杯数学考试年级:六年级科目:数学试卷满分:150分答题时间:90分钟试题形式:全部为填空题能力分值:全部为0开放时间:2011年10月6日9:30-11:00一、填空题(每题4分,共40分)1.2011-201.1+20.11-2.011+0.001=________(4分)2.(..)÷+⨯÷254138512311854=________(4分)3.已知N *等于N 的因数个数,比如4*=3,则(2011*10*6*)*++=_______(4分)4.一个非等腰三角形,一边长为6,一边长为7,还有一边长为6k ,已知k 是自然数,则三角形的周长为________(4分)5.红光大队用拖拉机耕地,2台3小时耕地75亩,照这样计算,4台5小时耕地________亩。
(4分)6.一个骗子到商店买了5元的东西,他付给店员50元钱,然后店员把剩下的钱找给了他;这时他又说自己有零钱,于是给店员5元的零钱,并且要回了开始给出的50元。
那么这个骗子一共骗了______元钱?(4分)7.已知A 、B 两数的最小公倍数是120,B 、C 两数的最小公倍数是180,A 、C 两数的最小公倍数是72,则A 、B 、C 三数的最小公倍数是_______(4分)8.2011年8月14日,伦敦羽毛球世锦赛进入最后一个比赛日。
在女单决赛中,中国选手王仪涵2比0完胜中华台北选手郑韶婕,首次夺得世锦赛冠军,中国队也实现了女单项目的八连冠。
已知二人共得到67分,其中第二局,王仪涵竟然赢了整整11分,请问,第一局郑韶婕得了_______分。
(羽毛球为21分制)(4分)9.下图为面积100的平行四边形,则阴影部分的面积和是_______(4分)10.AB 间的路被平均分成三段,王先生驾车从A 地开往B 地,已知他这三段路上的平均速度分别为30 km /h ,40 km /h 和60km /h ,则王先生在AB 间的平均速度为_______km /h 。
学而思六年级数学测试1·计算篇1. 计算=⨯+++++++128)288122411681120180148124181( 2. =++⨯++++-+++⨯+++)1119171()131111917151()1311119171()111917151( 3. 计算:2004×2003-2003×2002+2002×2001-2001×2000+…+2×1=4.有一列数:……第2008个数是________ .5.看规律13 = 12,13 + 23 = 32,13 + 23 + 33 = 62 ……,试求63 + 73 + … + 143第1讲 小升初专项训练·计算四五年级经典难题回顾例1 求下列算式计算结果的各位数字之和:2576666666200562006⨯⨯个个 例2 求数1911211111011++++ 的整数部分是几? 小升初重点题型精讲例1 =÷+÷+÷595491474371353251 .例2 =+⨯⨯÷+--+)19956.15.019954.01993(22.550276951922.510939519 例3 =++÷++)25118100412200811()25138100432200831( . 巩固 计算:=+⨯+⨯+⨯+⨯416024340143214016940146 . 例4 计算:=⨯++⨯+⨯+⨯10199507535323112222 . 拓展 计算:=⨯⨯++⨯⨯+⨯⨯10981943273215 .例5 1⨯2+2⨯3+3⨯4+4⨯5+5⨯6+6⨯7+7⨯8+8⨯9+9⨯10= . 巩固:2⨯3+3⨯4+4⨯5+…+100⨯101= .拓展 计算:1⨯2⨯3+2⨯3⨯4+3⨯4⨯5+…+9⨯10⨯11= .例6 [2007 –(8.5⨯8.5-1.5⨯1.5)÷10]÷160-0.3= .巩固 计算:53×57 – 47×43 = .例7 计算:11×19 + 12×18 + 13×17 + 14×16 = .拓展 计算:1×99 + 2×98 + 3×97 + … + 49×51 = .例8 计算:1×99 + 2×97 + 3×95 + … + 50×1 = .家庭作业 1. =÷+÷+÷797291585381373172 . 2. =-⨯⨯+÷)5246.5(402323153236 . 3. =++÷++)2231966913200711()2237966973200771( . 4. 计算:=-++-+++-++-++-+119951199511993119931717151513132222222222 . 5. 计算:11×29 + 12×28 + … + 19×21 = .名校真题1. 如图,AD = DB , AE = EF = FC ,已知阴影部分面积为5平方厘米,△ABC 的面积是_________平方厘米.2. 如图,ABCD 与AEFG 均为正方形,三角形ABH 的面积为6平方厘米,图中阴影部分的面积为_________.3. 如图,长方形ABCD 的面积是36,E 是AD 的三等分点,AE = 2ED,则阴影部分的面积是 .4. 如图,边长为1的正方形ABCD中,BE = 2EC,CF = FD,求三角形AEG的面积.5. 如图,3个边长为3的正方形,甲的中心在乙的一个顶点上,乙的中心在丙的一个顶点上,甲与丙不重叠,求甲、乙、丙叫共覆盖的面积是。
一、选择题(每题5分,共25分)1. 下列数中,哪个数不是正数?A. 0.1B. -0.1C. 0.01D. 1.5答案:B解析:正数是指大于0的数,而-0.1是一个负数,因此选项B不是正数。
2. 一个长方形的长是8厘米,宽是5厘米,它的周长是多少厘米?A. 20B. 25C. 30D. 40答案:C解析:长方形的周长计算公式是(长+宽)×2,所以(8+5)×2=26厘米,因此选项C正确。
3. 一个分数的分子是3,分母是8,这个分数的值是多少?A. 0.3B. 0.4C. 0.375D. 0.5答案:C解析:分数的值等于分子除以分母,所以3÷8=0.375,因此选项C正确。
4. 一个正方形的边长是4厘米,它的面积是多少平方厘米?B. 12C. 16D. 24答案:C解析:正方形的面积计算公式是边长的平方,所以4×4=16平方厘米,因此选项C 正确。
5. 小明有10个苹果,他吃掉了3个,还剩下多少个苹果?A. 7B. 8C. 9D. 10答案:A解析:小明原有10个苹果,吃掉3个后,剩下的苹果数量是10-3=7个,因此选项A正确。
二、填空题(每题5分,共25分)6. 一个数的5倍是120,这个数是______。
答案:24解析:设这个数为x,则有5x=120,解得x=24。
7. 一个长方体的长是6厘米,宽是4厘米,高是3厘米,它的体积是______立方厘米。
答案:72解析:长方体的体积计算公式是长×宽×高,所以6×4×3=72立方厘米。
8. 下列数中,哪个数不是整数?B. 1C. 2D. -3答案:A解析:整数包括正整数、负整数和0,而0.5是一个小数,不是整数。
9. 一个圆的半径是7厘米,它的周长是______厘米。
答案:44解析:圆的周长计算公式是2πr,其中π约等于3.14,所以2×3.14×7=44厘米。
2012年春季学而思教育入学测试六年级数学试卷一、填空题(每空10分)1.(10分)++++=.2.(10分)一种商品,先提价20%,后来又提价20%,现在的售价是原定价的.3.(10分)甲、乙两个班共有84人,甲班人数的与乙班人数的共58人,则甲班人.二、选择题(每题10分)4.(10分)下面展开图中,能折成完整的正方体的图是A.B.C.D.5.(10分)小刚与小勇进行50米赛跑,结果,当小刚到达终点时,小勇还落后小刚10米;第二次赛跑,小刚的起跑线退后10米,两人仍按第一次的速度跑,比赛结果将是()A.小刚到达终点时,小勇落后2.5米B.小刚到达终点时,小勇落后2米C.小勇到达终点时,小刚落后2米D.小刚小勇同时到达终点三、解决问题(每题10分)6.(10分)两桶油重量相等,从甲桶中倒出全桶油的,从乙桶中倒出全桶油的,两桶共倒出110千克油.两桶油原来各有多少千克?7.(10分)图中,AC是正方形ABCD的一条对角线,且AC=8厘米,求阴影部分的面积.8.(10分)快、中、慢三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分、10分、12分钟追上骑车人.现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?2012年春季学而思教育入学测试六年级数学试卷参考答案与试题解析一、填空题(每空10分)1.(10分)++++=.【解答】解:++++,=1﹣++﹣+﹣+﹣,=1﹣,=.故答案为:.2.(10分)一种商品,先提价20%,后来又提价20%,现在的售价是原定价的144%.【解答】解:这种商品原定价:1,先提价20%,后来又提价20%的价钱:(1+20%)×(1+20%),=1.2×1.2,=1.44,1.44÷1,=1.44,=144%.答:现在的售价是原定价的144%.故答案为:144%.3.(10分)甲、乙两个班共有84人,甲班人数的与乙班人数的共58人,则甲班40人.【解答】解:设甲班有x人,则乙班有85﹣x人,可得方程:x+×(84﹣x)=58.x+63﹣x=58,x=5,x=40.答:甲班有40人.故答案为:40.二、选择题(每题10分)4.(10分)下面展开图中,能折成完整的正方体的图是A、B、C、DA.B.C.D.【解答】解:由正方体展开图的特点可知,A、B、C、D可以做成完整的正方体;故选:A、B、C、D.5.(10分)小刚与小勇进行50米赛跑,结果,当小刚到达终点时,小勇还落后小刚10米;第二次赛跑,小刚的起跑线退后10米,两人仍按第一次的速度跑,比赛结果将是()A.小刚到达终点时,小勇落后2.5米B.小刚到达终点时,小勇落后2米C.小勇到达终点时,小刚落后2米D.小刚小勇同时到达终点【解答】解:(50+10)×(40÷50)=60×,=48(米).50﹣48=2(米).即小刚到达终点时,小勇落后2米.故选:B.三、解决问题(每题10分)6.(10分)两桶油重量相等,从甲桶中倒出全桶油的,从乙桶中倒出全桶油的,两桶共倒出110千克油.两桶油原来各有多少千克?【解答】接:110÷(+),=110÷,=150(千克).答:甲桶的重量150千克,乙桶的重量150千克.7.(10分)图中,AC是正方形ABCD的一条对角线,且AC=8厘米,求阴影部分的面积.【解答】解:S ABCD=8×(8÷2)÷2×2,=8×4,=32(平方厘米);×π×82﹣32,=×3.14×64﹣32,=3.14×16﹣32,=50.24﹣32,=18.24(平方厘米).答:阴影部分的面积是18.24平方厘米.8.(10分)快、中、慢三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分、10分、12分钟追上骑车人.现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?【解答】解:6分=时,10分=时,12分=时.中车比骑车人速度快:(24﹣20)×÷(﹣)=4×÷,=6(千米);原来与骑车人之间的距离为:[24﹣(20﹣6)]×=[24﹣14]×,=1(千米).则慢车速度为:14+5=19(千米/时).答:慢车每小时行19千米.。