1432第1课时运用平方差公式因式分解
- 格式:ppt
- 大小:1.18 MB
- 文档页数:14
第1课时 利用平方差公式进行因式分解1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解 【类型一】 判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn 两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】 利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4. 解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b ); (2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止. 【类型三】 利用因式分解整体代换求值 已知x 2-y 2=-1,x +y =12,求x -y 的值. 解析:已知第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2. 方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】 利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14. 解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可. 解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000. 方法总结:一些比较复杂的计算,如果通过变形可转化为平方差公式的形式,则可以使运算简便.【类型三】 因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+42-32+22-12=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简;二是分解因式时,每个因式都要分解彻底。
2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计一. 教材分析《2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》》这一节内容是在学生学习了平方差公式的基础上进行的一个实践活动。
平方差公式是初中数学中的一个重要公式,它不仅可以简化计算,还可以用来解决一些因式分解的问题。
本节课通过实例讲解,让学生掌握平方差公式的应用,提高他们的数学解题能力。
二. 学情分析学生在学习本节课之前,已经学习了平方差公式,对公式有一定的理解。
但是,如何将平方差公式应用到实际的因式分解中,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题技巧。
三. 教学目标1.理解平方差公式的含义,掌握平方差公式的结构。
2.能够将实际的因式分解问题转化为平方差公式的形式,并进行解答。
3.培养学生的逻辑思维能力,提高他们的数学解题能力。
四. 教学重难点1.掌握平方差公式的结构。
2.如何将实际的因式分解问题转化为平方差公式的形式。
五. 教学方法采用讲解法、实践法、讨论法等教学方法,引导学生通过自主学习、合作交流,掌握平方差公式的应用。
六. 教学准备1.准备相关平方差公式的课件和教学素材。
2.准备一些实际的因式分解问题,用于课堂练习。
七. 教学过程1.导入(5分钟)通过一个实际的因式分解问题,引导学生回顾平方差公式。
例如:已知多项式x^2 - 4,请将其因式分解。
让学生尝试解答,然后给出解答过程和答案。
2.呈现(10分钟)讲解平方差公式的含义和结构,让学生理解平方差公式的推导过程。
通过示例,讲解如何将实际的因式分解问题转化为平方差公式的形式。
3.操练(10分钟)让学生分组合作,解决一些实际的因式分解问题。
教师巡回指导,解答学生的问题,并给予反馈。
4.巩固(10分钟)让学生自主选择一些练习题进行巩固练习,教师个别辅导,解答学生的问题。
5.拓展(10分钟)引导学生思考如何将平方差公式应用到更复杂的问题中,例如多项式的乘法、求解方程等。
湘教版数学七年级下册3.3《利用平方差公式进行因式分解》说课稿一. 教材分析湘教版数学七年级下册3.3《利用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。
平方差公式的引入,不仅能够帮助学生更好地理解代数式的运算,而且对于后续学习多项式的因式分解有着重要的意义。
教材从实际问题出发,引导学生发现并总结平方差公式,然后通过例题和练习题,让学生学会如何运用平方差公式进行因式分解。
教材的安排由浅入深,由易到难,符合学生的认知规律。
二. 学情分析学生在学习这一节之前,已经掌握了有理数的乘法、完全平方公式,对于代数式的运算有一定的理解。
但是,学生对于平方差公式的理解和运用,还需要通过实例和练习来进行深化。
学生的学习兴趣是学习的关键,为了激发学生的学习兴趣,我在教学中会尽量结合生活实际,让学生感受到数学与生活的联系,从而提高学生的学习积极性。
三. 说教学目标1.知识与技能目标:学生能够理解平方差公式的含义,并能够运用平方差公式进行因式分解。
2.过程与方法目标:通过观察、分析、归纳,学生能够自主发现并总结平方差公式,培养学生的观察能力和归纳能力。
3.情感态度与价值观目标:学生在解决实际问题的过程中,体验到数学的价值,增强学习数学的兴趣。
四. 说教学重难点1.教学重点:平方差公式的理解和运用。
2.教学难点:如何引导学生发现并总结平方差公式,以及如何运用平方差公式进行复杂的因式分解。
五. 说教学方法与手段在教学过程中,我将采用启发式教学法、分组合作学习法、案例分析法等多种教学方法,引导学生自主学习、合作学习、探究学习。
同时,我会利用多媒体教学手段,如PPT、视频等,来辅助教学,提高教学效果。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何对代数式进行因式分解,激发学生的学习兴趣。
2.探究:让学生分组讨论,观察、分析、归纳平方差公式的特点,引导学生自主发现并总结平方差公式。
人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计一. 教材分析1.内容概述:本节课的主要内容是运用平方差公式进行因式分解。
平方差公式是八年级数学中的一个重要知识点,掌握平方差公式对于学生后续学习代数和几何知识具有重要意义。
2.地位与作用:平方差公式是因式分解的一种基本方法,它可以帮助学生简化代数表达式,提高解题效率。
通过学习平方差公式,学生能够巩固和拓展之前学过的知识,为高中阶段的学习打下基础。
二. 学情分析1.学生特点:八年级的学生已经具备了一定的代数基础,对因式分解有一定的了解。
但部分学生在运用平方差公式进行因式分解时,容易出错。
因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。
2.学习需求:学生需要掌握平方差公式的推导过程、记忆方法以及应用技巧。
同时,学生需要通过大量的练习,提高运用平方差公式进行因式分解的能力。
三. 教学目标1.知识与技能:使学生掌握平方差公式的推导过程、记忆方法及应用;提高学生运用平方差公式进行因式分解的能力。
2.过程与方法:通过观察、分析、归纳、推理等方法,引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的趣味性和实用性。
四. 教学重难点平方差公式的推导过程及应用。
平方差公式的灵活运用,特别是遇到复杂表达式时的因式分解。
五. 教学方法1.情境教学法:通过生活实例引入平方差公式,激发学生的学习兴趣。
2.启发式教学法:引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。
3.合作学习法:学生进行小组讨论,共同解决难题,提高学生的团队合作意识。
4.反馈评价法:及时给予学生反馈,鼓励学生积极参与课堂活动,提高教学效果。
六. 教学准备1.教学课件:制作精美的教学课件,突出平方差公式的推导过程和应用实例。
2.练习题:准备一定数量的练习题,包括基础题、提高题和拓展题,以满足不同学生的学习需求。
用平方差公式因式分解公开课教案
一、教材分析一、教材分析
苏霍姆林斯基曾说过:“教师越是能够运用自如的掌握教材,那么,他的讲述就越是情感鲜明,学生听课,需要花在抠教科书上的时间就越少”。
可见,熟悉教材、分析教材、开发教材资源是制定教法、开展学法指导的主要依据,是教学设计、测试、评价的基础。
二、学情分析
《分解因式——运用平方差公式》是人教版义务教育课程标准实验教科书《数学》八年级(上)整式的乘法第四节的内容。
分解因式是整式乘法的逆运用,与整式乘法运算有着密切的联系。
分解因式的变形不仅体现了一种“化归”的思想,也为学习分式,利用因式分解解一元二次方程奠定基础,对整个教科书也起到了承上启下的作用。
探索分解因式的方法,实际上是对整式乘法的再认识,因此要借助学生已有的整式乘法运算的基础,给学生创设一个新的、具有启发性的情境,激励学生通过独立思考与讨论交流发现问题情境中的变形关系,并运用数学符号进行表示,然后再运用所学的知识去解决相关的问题。
同时在这一对比整式的乘法而探索分解因式方法的相关活动过程中,力图渗透类比思想,让学生体会、理解、认识分解因式的意义,感受其间的联系,学生不仅能够理解,归纳分解因式变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性。
三、教学目标:
(一)知识与技能:
1.使学生了解运用公式法分解因式的意义;
2.会用平方差公式进行因式分解;
3.使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式.。