因式分解练习题(平方差公式)
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
八年级数学上册《因式分解》练习题八年级数学上册《因式分解》练题一、本节课的知识要点:1、平方差公式分解因式的公式:$a^2-b^2=(a+b)(a-b)$;1)多项式的项数有两项;平方差结构特点:2)多项式的两项的符号相反;3)多项式的两项能写成的形式。
2、完全平方公式法分解因式的公式:(1)$a^2+2ab+b^2=(a+b)^2$;(2)$a^2-2ab+b^2=(a-b)^2$。
完全平方式的特点:(1)、必须是二项式;2)、有两个的“项”;3)、有这两平方“项”底数积的两倍。
二、本节课的课堂练:一)选择题:1.下列多项式,能用平方差公式分解的是(C)。
A.-$x^2$-$4y^2$。
B.$9x^2+4y^2$。
C.-$x^2+4y^2$。
D.$x^2+(-2y)^2$2、化简$x^3(-x)^3$的结果是(A)。
A、$-x^6$。
B、$x^6$。
C、$x^5$。
D、$-x^5$3、下列运算正确的是(B)。
A、$(a+b)^2=a^2+b^2+2a$。
B、$(a-b)^2=a^2-b^2$C、$(x+3)(x+2)=x^2+6$。
D、$(m+n)(-m+n)=-m^2+n^2$4、$36x+kx+16$是一个完全平方式,则$k$的值为(B)。
A.48.B.24.C.-48.D.±485、已知$a$、$b$是$\triangle ABC$的的两边,且$a^2+b^2=2ab$,则$\triangle ABC$的形状是(B)。
A、等腰三角形。
B、等边三角形。
C、锐角三角形。
D、不确定6、下列四个多项式是完全平方式的是(D)。
1、$x^2+xy+y^2$。
2、$x^2-2xy-y^2$。
3、$4m^2+2mn+4n^2$。
4、$a^2+ab+b^2$7、把$(a+b)+4(a+b)+4$分解因式得(A)。
A、$(a+b+1)$。
B、$(a+b-1)$。
C、$(a+b+2)$。
D、$(a+b-2)$8、下面是某同学的作业题:13a+2b=5ab$○$24m^3n-5mn^3=-m^3n$○$33x^3(-2x^2)=-6x^5$○$44a^3b÷5(a^3)^2=a^5$○$6(-a)^3÷(-a)=-a^2$其中正确的个数是(3)。
【基础知识】公式法分解因式(1)平方差公式: a 2-b 2= .(2)完全平方公式:a 2+2ab +b 2= . a 2-2ab +b 2= .(3)立方和公式:3322()()a b a b a ab b +=+-+.(4)立方差公式:3322()()a b a b a ab b -=-++.【题型1】利用平方差公式分解因式分解因式:(1)4x 2-y 2; (2)-16+a 2b 2; (3)x 2100-25y 2; (4)(x +2y)2-(x -y)2.【变式训练】 1.分解因式(1)4a 2-y 2; (2)x 2y 4-49; (3)4a 2-(3b -c)2; (4)(x +y)2-4x 2; (5)x 4-16;(6)(4x -3y)2-25y 2 (7)25(a +b)2-4(a -b)2; (8)9x 2-(2x -y)2;(9)(a +b)4-(a -b)4;(10)(2x +y)2-(x -2y)2; (11)9(a +b)2-16(a -b)2; (12)9(3a +2b)2-25(a -2b)2.2.分解因式(1)a 3-9a ; (2)3x 2-12; (3)8m 3-2m ; (4)12 m 2n 2-8; (5)31a 2b 2-3.(6)3m(2x -y)2-3mn 2; (7)(a -b)b 2-4(a -b); (8)x ²-y ²-3x-3y ; (9)a 2(a-b )+b 2(b-a ).【题型2】完全平方式已知x 2+kxy +16y 2是一个完全平方式,则k 的值是 .【变式训练】1.下列式子为完全平方式的是( )A.a 2+ab +b 2B.a 2+2a +2C.a 2-2b +b 2D.a 2+2a +12.若9a 2+6(k -3)a +1是完全平方式,则 k 的值是( )A.±4B.±2C.3D.4或23.已知a 2x 2±2x+b 2是完全平方式,且a ,b 都不为零,则a 与b 的关系为( )A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数4.下列各式能组成完全平方式的个数是 .①x 6-31128x ②x 8+4x 4+4 ③3m 2+2m+3 ④m 2-2m+4 5.若x 2+8x +k 是完全平方式,则k = .6.若x 2+mx +9是完全平方式,则m 的值是 .【题型3】利用完全平方公式分解因式分解因式: (1)a 2+4a +4; (2)x 2+4y 2-4xy ; (3)9+12a +4a 2; (4)a 2-2a +1.【变式训练】1.因式分解:(1)4x 2+y 2-4xy ; (2)9-12a +4a 2; (3)(m +n)2-6(m +n)+9.2.分解因式:(1)ab2-4ab+4a;(2)-3x+12x-12;(3)4x2-8x+4;(4)2a3-8a2+8a; (5)-2x2y+12xy-18y; (6)3x2-6x+3; (7)-4a2+24a-36.(8)2a3b-8a2b+8ab; (9)4x3y-24x2y+39xy; (10)-3x2y+6xy-3y; (11)4a2b2+24ab+36.3.分解因式(1)x(x-1)-3x+4; (2)(x-2y)2+8xy;(3)(2a+b)2-4ab;(4)(x-y)2-z2+4xy;(5)ab(ab+2)+2ab+4; (6)(x+2y)2-8xy;(7)(x-y)2+4xy;(8)(2a-b)2-c2+8ab.。
因式分解习题——公式法分解因式专题训练一:利用平方差公式分解因式题型(一):把下列各式分解因式1、24x -2、29y -3、2422a x b y - 解: 解: 解:4、224x y -5、2125b -6、222x y z - 解: 解: 解:7、2240.019m b -8、2219a x -9、2236m n - 解: 解: 解: 10、2249x y - 11、220.8116a b - 12、222549p q - 解: 解: 解: 13、41x - 15、4416a b - 16、44411681a b m - 解: 解: 解: 题型(二):把下列各式分解因式1、22()()x p x q +-+2、 22(32)()m n m n +-- 解: 解:3、2216()9()a b a b --+4、229()4()x y x y --+ 解: 解:5、22()()a b c a b c ++-+-6、224()a b c -+ 解: 解:题型(三):把下列各式分解因式1、53x x -2、224ax ay -3、322ab ab - 解: 解: 解:4、316x x -5、2433ax ay -6、2(25)4(52)x x x -+- 解: 解: 解:7、324x xy - 8、343322x y x - 9、4416ma mb - 解: 解: 解:10、238(1)2a a a -++ 11、416ax a -+ 12、2216()9()mx a b mx a b --+ 解: 解: 解:题训练二:利用完全平方公式分解因式题型(一):把下列各式分解因式1、221x x ++2、2441a a ++3、 2169y y -+ 解: 解: 解:4、214m m ++ 5、 221x x -+ 6、2816a a -+ 解: 解: 解: 7、2144t t -+ 8、21449m m -+ 9、222121b b -+ 解: 解: 解:10、214y y ++ 11、2258064m m -+ 12、243681a a ++ 解: 解: 解:13、2242025p pq q -+ 14、224x xy y ++ 15、2244x y xy +- 解: 解: 解:题型(二):把下列各式分解因式1、2()6()9x y x y ++++2、222()()a a b c b c -+++ 解: 解:3、2412()9()x y x y --+-4、22()4()4m n m m n m ++++ 解: 解:5、()4(1)x y x y +-+-6、22(1)4(1)4a a a a ++++ 解: 解:题型(三):把下列各式分解因式1、222xy x y --2、22344xy x y y --3、232a a a -+- 解: 解: 解:4、221222x xy y ++ 5、42232510x x y x y ++ 解: 解:6、2232ax a x a ++7、2222()4x y x y +- 解: 解:8、2222()(34)a ab ab b +-+ 9、42()18()81x y x y +-++ 解: 解:10、2222(1)4(1)4a a a a +-++ 11、42242()()a a b c b c -+++ 解: 解:12、4224816x x y y -+ 13、2222()8()16()a b a b a b +--+- 解: 解:题型(五):利用因式分解解答下列各题1、已知: 2211128,22x y x xy y ==++,求代数式的值。
平方差公式练习题及答案平方差公式是数学中常见的一个公式,用于求解两个数的平方之差。
它的形式为(a+b)(a-b)=a²-b²。
这个公式在代数中有着广泛的应用,尤其在因式分解、解方程等方面起到了重要的作用。
下面我们来通过一些练习题来熟悉和巩固平方差公式的运用。
练习题1:计算下列各式的值。
1. (5+3)(5-3)2. (12+7)(12-7)3. (9+4)(9-4)4. (20+15)(20-15)5. (8+5)(8-5)解答:1. (5+3)(5-3) = 8*2 = 162. (12+7)(12-7) = 19*5 = 953. (9+4)(9-4) = 13*5 = 654. (20+15)(20-15) = 35*5 = 1755. (8+5)(8-5) = 13*3 = 39练习题2:根据已知条件,求解下列方程。
1. x²-16 = 02. y²-36 = 03. z²-49 = 04. a²-81 = 05. b²-100 = 0解答:1. x²-16 = 0根据平方差公式,可以得到(x+4)(x-4) = 0因此,x+4=0 或者 x-4=0解得 x=-4 或 x=42. y²-36 = 0根据平方差公式,可以得到(y+6)(y-6) = 0因此,y+6=0 或者 y-6=0解得 y=-6 或 y=63. z²-49 = 0根据平方差公式,可以得到(z+7)(z-7) = 0因此,z+7=0 或者 z-7=0解得 z=-7 或 z=74. a²-81 = 0根据平方差公式,可以得到(a+9)(a-9) = 0因此,a+9=0 或者 a-9=0解得 a=-9 或 a=95. b²-100 = 0根据平方差公式,可以得到(b+10)(b-10) = 0 因此,b+10=0 或者 b-10=0解得 b=-10 或 b=10通过以上练习题,我们可以看到平方差公式在解方程中的应用。
《因式分解》复习微专题靶向专题提升练习(平方差公式)易错点警示:平方差公式的特点(1)等号的左边是一个二项式,两项都是平方的形式且符号相反.(2)等号的右边是两个二项式的积,其中一个二项式是这两个数的和,另一个二项式是这两个数的差.靶向专题练习一.选择题。
1.下列各多项式中,能用平方差公式分解因式的是 ( )A.-x2+16B.x2+9C.-x2-4D.x2-2y2. 下列各式中不能用平方差公式分解的是( )A.-a2+b2B.49x2y2-m2C.-x2-y2D.16m4-25n23.把多项式4a2-1分解因式,结果正确的是( )A.(4a+1)(4a-1)B.(2a+1)(2a-1)C.(2a-1)2D.(2a+1)24.将a3b-ab进行因式分解,正确的是( )A.a(a2b-b)B.ab(a-1)2C.ab(a+1)(a-1)D.ab(a2-1)5. 把多项式4m2-25分解因式正确的是( )A.(4m+5)(4m-5)B.(2m+5)(2m-5)C.(m-5)(m+5)D.m(m-5)(m+5)6.某同学粗心大意,分解因式时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A.8,1B.16,2C.24,3D.64,87. 若n 为任意整数,(n+11)2-n 2的值总可以被k 整除,则k 等( )A.11B.22C.11或22D.11的倍数8.若2m+n=25,m-2n=2,则(m+3n)2-(3m-n)2的值为 ( )A.200B.-200C.100D.-1009.一个多项式分解因式的结果是(b 3+2)(2-b 3),那么这个多项式是( )A.b 6-4B.4-b 6C.b 6+4D.4-b 910.113-11不能被下列哪个数整除? ( )A.13B.12C.11D.10二.填空题。
1.因式分解:x 2-1= .2.因式分解:2x 2-2y 2= .3.分解因式3x 2-27y 2= .4.因式分解3a 4-3b 4= .5.已知|x-y+2|+√=0,则x 2-y 2的值为 .6.已知a,b,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 的形状是 .二.解答题。
平方差公式练习题及答案第一题:已知 a² - b² = 9,求 a² + b²的值。
解答:我们知道平方差公式为 a² - b² = (a + b)(a - b)。
根据已知条件 a² - b² = 9,我们可以设立方程 (a + b)(a - b) = 9。
由于我们需要求解 a² + b²的值,我们可以采用如下的方法:将两边平方,得到 (a + b)²(a - b)² = 9²。
化简得 (a + b)²(a - b)² = 81。
再次采用平方差公式展开,得到 (a² + 2ab + b²)(a² - 2ab + b²) = 81。
根据平方差公式展开式的特点,我们可以得到:a⁴ - (2ab)² + b⁴ = 81。
进一步化简,得到 a⁴ - 4a²b² + b⁴ = 81 。
我们需要注意到, a² + b² = (a² + 2ab + b²) - 2ab。
而根据已知条件的平方差公式,我们可以将以上等式中的 (a² + 2ab + b²) 用 9 替换,得到:a² + b² = 9 - 2ab。
将这个等式代入到前面的等式中,我们可以得到:9 - 2ab - 4a²b² + b⁴ = 81。
简化合并同类项,得到:b⁴ - 4a²b² - 2ab + 72 = 0。
这是一个四次方程,我们可以通过求解这个方程来得到 a² + b²的值。
通过因式分解的方法,我们可以得到一个解为 b = 2 。
将 b = 2 代入到原方程中,可以得到 a = ±3。
平方差公式分解因式专项练习题1、分解因式、分解因式(1)x 2-y 2 (2)-x 2+y 2 (3)64-a 2 (4)4x 2-9y 2 (5) 36-25x 2 (6) 16a 2-9b 2 (7)49m 2-0.01n 2 (8)(x +p )2-(x +q )2 (9)16(m -n )2-9(m +n )2 (10)9x 2-(x -2y ) 2(9)4a 2-16 (10)a 5-a 3 (11)x 4-y 4 (12)32a 3-50ab 2 2、判断正误、判断正误(1)-x 2-y 2=(x +y )(x -y )( ) (2)9-25a 2=(9+25a )(9-25a )( ) (3)-4a 2+9b 2=(-2a +3b )(-2a -3b )( )3、分解因式、分解因式(1)4a 2-(b +c )2 (2)(3m +2n )2-(m -n )2(3)(4x -3y )2-16y 2 (4)-4(x +2y )2+9(2x -y )24、判断:下列各式能不能写成平方差的形式(能画“√”,并分解,不能的画“×”) (1)x 2+64 ( ); (2)-x 2-4y 2 ( ) (3)9x 2-16y 4 ( ); (4)-14x 6+9n 2 ( ) (5)-9x 2-(-y )2 ( ); (6)-9x 2+(-y )2 ( ) (7)(-9x )2-y 2 ( ); (8)(-9x )2-(-y )2 ( ) 5、 下列各式中,能用平方差公式分解因式的是下列各式中,能用平方差公式分解因式的是 ( ) A .22b a +- B .22b a -- C .22b a + D .33b a -6、 (x +1)2-y 2分解因式应是 ( ) A . (x +1-y )(x +1+y ) B . (x +1+y )(x -1+y ) C . (x +1-y )(x -1-y ) D . (x +1+y )(x -1-y ) 7.填空(把下列各式因式分解)填空(把下列各式因式分解) (1)21p -=____________ (2)=-36492c ________________ (3)=-256942n m ___________ (4)925.022+-m a =______________ (5)n x 24-=______________ (6)1)(2-+b a =__________________ 8.把下列各式分解因式把下列各式分解因式2294)1(y x - 221681.0)2(b a - 2201.094)3(-m(4) 23)1(28+-a a a (5) ()224a c b +-- (6)44161b a - (7)()()2223n m nm --+ (8)()224y x z +- (9) ()()22254y x y x +-- (10)()()22c b a cb a -+-++ (11)()()b a b a +-+439.运用简便方法计算运用简便方法计算(1)4920072- (2)433.1922.122´-´ (3)已知x =1175,y =2522, 求(x +y )2-(x -y )2的值. 10、(1) 36-25x 2 (2) 16a 2-9b 2 11、填空、填空1、分解因式:(1)29a -= ;(2)3x x -= (3)2249a b -= ;(4)2422516a y b -+= (5)3375a a -= ;(6)39a b ab -= 12、分解因式:(1)44x y -= ;(2)2224m m n -= 13、分解因式:42(53)x x -+= 14、分解因式:225(21)n -+= 15、若1004,2a b a b +=-=,则代数式22a b -的值是 16、分解因式:4481x y -= 17、分解因式:2199a -+= 18、已知x 2-y 2=-1 , x+y=21,则x -y= . 19、把下列各式分解因式:、把下列各式分解因式:(1) 36-x 2 (2) a 2-91b 2 (3) x2-16y 2(4) x 2y 2-z 2 (5) (x+2)2-9 (6)(x+a)2-(y+b)2(7) 25(a+b)2-4(a -b)2 (8) 0.25(x+y)2-0.81(x -y)2(9)22()()a b c a b c ++-+- (10)22(2)16(1)a a -++-20、计算:22200120031001-2222211234910öæöæ-÷ç÷ç÷ç÷ç÷øèøèøèøèø新课 标第 一 网。