因式分解公式法(平方差公式)
- 格式:ppt
- 大小:629.00 KB
- 文档页数:18
因式分解的十二种方法及多项式因式分解的一般步骤因式分解是代数学中的重要概念,它在数学中有广泛的应用。
根据不同的多项式,我们可以采用不同的因式分解方法,下面将介绍因式分解的十二种常用方法,并概述多项式因式分解的一般步骤。
1.公因式提取法(提取公因式):如果一个多项式中的每一项都可以被一个公因式整除,那么可以将这个公因式提取出来。
2.提取平方差公式法:利用平方差公式将多项式转化成两个平方差的形式,然后再进行因式分解。
3.提取完全平方公式法:利用完全平方公式将多项式转化成两个完全平方的形式,然后再进行因式分解。
4.因式分解公式法:在代数中,有很多已知的因式分解公式,如两个数的和的平方,两个数之差的平方等等。
5.分组法:将多项式根据其中一种规律进行分组,然后再进行因式分解。
6.十字相乘法:将多项式用十字形进行展示,然后利用观察十字上的乘积与和的关系进行因式分解。
7.平方差型多项式的配方:将平方差型多项式转化成配方的形式,然后再进行因式分解。
8.其他初等代数的性质:如差平方、和立方等等,利用这些性质进行因式分解。
9.部分分式法:对于分式形式的多项式,可以通过部分分式法将其分解成简单的分式,然后再进行因式分解。
10.变换法:将多项式进行恰当的变换,使之能够被其他的因式分解方法处理,然后再进行因式分解。
11.其他特殊的因式分解方法:如柯西公式、勾股定理等等。
12.已知因数的整除法:对于已知因数的情况,可以通过整除法进行因式分解。
综合上述的因式分解方法,我们可以得到一般的多项式因式分解的步骤:1.首先,检查多项式是否有公因式。
如果有,则提取公因式。
2.如果多项式是一个平方差型,则使用提取平方差公式法进行因式分解。
3.如果多项式是一个完全平方型,则使用提取完全平方公式法进行因式分解。
4.如果多项式是其他已知的因式分解公式形式,则使用相应的公式进行因式分解。
5.如果以上方法都不适用,则可以尝试使用分组法、十字相乘法、平方差型多项式的配方等方法进行因式分解。
因式分解——公式法学习指导1.代数中常用的乘法公式有:平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a±b)2=a2±2ab+b22.因式分解的公式:将上述乘法公式反过来得到的关于因式公解的公式来分解因式的方法,主要有以下三个公式:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2±2ab+b2=(a±b)23.①应用公式来分解因式的关键是要弄清各个公式的形式和特点,也就是要从它们的项数系数,符号等方面掌握它们的特征。
②明确公式中字母可以表示任何数,单项式或多项式。
③同时对相似的公式要避免发生混淆,只有牢记公式,才能灵活运用公式。
④运用公式法进行因式分解有一定的局限性,只有符合其公式特点的多项式才能用公式法来分解。
因式分解公式的结构特征。
1.平方差公式:a2-b2=(a+b)(a-b)的结构特征1)公式的左边是一个两项式的多项式,且为两个数的平方差。
2)公式的右边是两个二项式的积,在这两个二项式中有一项a是完全相同的,即为左边式子中被减数a2的底数,另一项b和-b是互为相反数,即b 是左边式子中减数b2的底数。
3)要熟记1——20的数的平方。
2、完全平方公式:a2±2ab+b2=(a±b)2的结构特征.1)公式的左边是一个三项式,首末两项总是平方和的形式,中间项的符号有正有负,当为正号(负号)时右边的两项式中间符号为正(为负),2ab中的“2”是一个固定的常数。
2)公式的右边是两数和或差的平方形式。
3)要确定能不能应用完全平方公式来分解,先要看两个平方项,确定公式中的a和b在这里是什么,然后看中间一项是不是相当于+2ab或-2ab,如果是的,才可以分解为两数和或差的平方形式。
初学时中间的过渡性步骤不要省掉。
考点讲解利用因式分解与整式乘法之间的关系,把乘法公式反过来,就是因式分解的公式。
运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式,难点是灵活运用公式进行因式分解。
因式分解讲义一、概念因式分解:把一个多项式化成几个整式乘积的形式,叫做把这个多项式因式分解。
二、因式分解方法1、提公因式法ma+mb+mc=m(a+b+c)公因式:一个多项式每项都含有的相同因式,叫做这个多项式各项的公因式。
公因式确定方法:(1)系数是整数时取各项最大公约数。
(2)相同字母(或多项式因式)取最低次幂。
(3)系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
2、公式法(1)平方差公式:即两个数的平方差,等于这两个数的和与这两个数的差的积。
(2)完全平方公式:即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和 (或差)的平方。
口诀:首平方,尾平方,积的二倍放中央。
同号加、异号减,符号添在异号前。
公式法小结:(1)公式中的字母可代表一个数、一个单项式或一个多项式。
(2)选择公式的方法:主要看项数,若多项式是二项式可考虑平方差公式;若多项式是三项式,可考虑完全平方公式。
(3)完全平方公式要注意正负号。
【典型例题】1、下列从左到右是因式分解的是( )A. x(a-b)=ax-bxB. x 2-1+y 2=(x-1)(x+1)+y 2C. x 2-1=(x+1)(x-1)D. ax+bx+c=x(a+b)+c2、若2249a kab b ++可以因式分解为2(23)a b -,则k 的值为______3、已知a 为正整数,试判断2a a +是奇数还是偶数?4、已知关于x 的二次三项式2x mx n ++有一个因式(5)x +,且m+n=17,试求m ,n 的值5、将多项式3222012a b a bc -分解因式,应提取的公因式是( )A 、abB 、24a bC 、4abD 、24a bc6、已知(1931)(1317)(1317)(1123)x x x x -----可因式分解为()(8)ax b x c ++,其中a ,b ,c 均为整数,则a+b+c 等于( ) A 、-12 B 、-32 C 、38 D 、727、分解因式(1)6()4()a a b b a b +-+ (2)3()6()a x y b y x --- (3)12n n n x x x ---+(4)20112010(3)(3)-+- (5)ad bd d -+; (6)4325286x y z x y -(10)(a -3)2-(2a -6) (11)-20a -15ax; (12)(m +n )(p -q )-(m +n )(q +p )8、先分解因式,再计算求值(1)22(21)(32)(21)(32)(12)(32)x x x x x x x -+--+--+ 其中x=1.5(2)22(2)(1)(1)(2)a a a a a -++--- 其中a=189、已知多项式42201220112012x x x +++有一个因式为21x ax ++,另一个因式为22012x bx ++,求a+b 的值10、若210ab +=,用因式分解法求253()ab a b ab b ---的值11、下列各式中,能用平方差公式分解因式的是( )A 、22x 4y +B 、22x 2y 1-+C 、224x y -+D 、224x y --12、分解下列因式(1)2312x - (2)2(2)(4)4x x x +++- (3)22()()x y x y +--(4)32x xy - (5)2()1a b -- (6)22229()30()25()a b a b a b ---++(7)2522-b a ; (8)229161b a +-; (9)22)()(4b a b a +--(10)22009201120101⨯- (11)22222100999897...21-+-++-13、若n 为正整数,则22(21)(21)n n +--一定能被8整除14、)10011)(9911()411)(311)(211(22222--⋅⋅⋅---15、在多项式①22x 2xy y +- ②22x 2xy y -+- ③22x xy+y + ④24x 1+4x +,(5)2161a +中,能用完全平方公式分解因式的有( )16、A 、①② B 、②③ C 、①④ D 、②④16、222)2(4)________(y x y x -=++ 222)(88)_______(8y x y x +=++。