材料力学基本概念及计算公式
- 格式:doc
- 大小:174.50 KB
- 文档页数:4
第一章 绪论和基本概念应力(全应力):2P 正应力:σ 切应力:τ 222τσ+=P线应变:l l dx du //x ∆==ε 切应变:角度的改变量α只受单向应力或纯剪的单元体:胡克:εσ⋅=E 剪切胡克:r G ⋅=τ ()E G =+ν12 第二章 杆件的内力分析 轴力N F :拉力为正扭矩T :右手螺旋,矢量方向与截面外法线方向一致为正 剪力S F :顺时针方向转动为正外力偶矩:()m N N P ·/9549m = ()m N N P ·/7024m = (K N /马力) 第三章 截面图形的几何性质 静矩:⎰=Ax ydA S 若C 为形心[质心]:A S XC/y =组合截面图形形心坐标计算:∑∑===ni i ni cii C A y A y 11/惯性矩:⎰=Ax dA y I 2惯性积:⎰=Axy xydA I 包括主轴在内的任意一对正角坐标0=xy I对O 点的极惯性矩:()y x AAP I I dA y x dA I +=+==⎰⎰222ρ 实心圆:32/224d I I I P y x π=== 圆环:()64/-12244απD I I I P y x === D d /=α平行四边/三角形:12/3bh I x =平行移轴公式:A b I I xc x ⋅+= A ab I I xcyc xy ⋅+= 转轴公式(逆转α):()()αα2s i n 2/2c o s2/1xy y x y x x I I I I I I --++=()()αα2sin 2/2cos 2/1xy y x y x y I I I I I I +--+= ()αα2cos 2sin 11xy y x y x I I I I +-= 求主轴:000=y x I ()y x xy I I I --=/22tan 0α()[]2//2a r c t a n 0y x xy I I I --=α主惯性矩:()22min max 00x 4212xy y xy x y I I II I I I I I +-±+==第四章 杆件的应力与强度计算斜面上的正应力:ασσα2cos = 切应力:2/2sin αστα=许用应力:脆性材料[]b b n /σσ= 塑性材料:[]s s n /σσ=或[]s n /5.0σσ= 拉压杆强度条件:[]σσ≤=A F N /max max 校核强度:[]()[]%5%100/max ≤⨯-σσσ 剪切强度条件:[]ττ≤=s A F /s 挤压强度条件:[]bs bs bs A F σσ≤=/bs圆轴扭转切应力:p I T /ρτρ⋅= []ττ≤=⋅=p p W T I R T //m a x 梁的弯曲:中性层曲率:()z EI M //1=ρ 等直梁在弯曲时的正应力:z I M /y =σz z W M I M //y m a x m a x ==σ矩形截面梁的弯曲切应力:()()z s z z s I y h F bI S F 2/4//22*-==τ在中性轴处:()A F bh F s s 2/32/3max ==τ 最大切应力均在中性轴上工字型截面梁:腹板:()d I S F z z s /*=τ 翼缘:()δτz z s I S F /*1=圆形截面:A F s 3/4max =τ 薄壁环形截面:A F s /2max =τ切应力强度条件:[][]ττ≤=d I S F z z s /*max max max 理想设计:[][]c t c t σσσσ//max max = 许用拉应力:[]t σ 许用压应力:[]c σ 两垂直平面内弯曲组合截面梁:z N M N I y M A F //max max +=+=σσσ偏心压缩(拉伸):截面上任意点:22max /-/-/-z F y F M N i y Fy i z Fz A F =+=σσσ2y y Ai I = 0=σ时中性轴截距:F y y y i a /2-=第五章 杆件的变形与刚度计算轴向拉(压)杆的变形:l l /∆=ε b b /'∆=ε νεε-=' ∑===∆ni ii i Ni N A E lF EA l F l 1圆轴扭转变形:()P GI Tl /=ϕ [在弹性范围之内]刚度条件:()[]rad GI l T P '/max 'max ϕϕ≤= ()[]m GI l T P /'/180max 'max ︒≤⋅⋅=ϕπϕ梁的弯曲变形:挠度:w ()x M ''=E I w θEI EIw =' ()⎰⎰++=D Cx dxdy x M EIw支承处:0=w 悬梁臂:0=w ,0=θ 连接处:21w w =,21θθ= 梁的刚度条件:[]l w l w //max ≤ []w w ≤max []θθ≤m a x第六章 应力状态分析 任意斜截面上的应力:()()ατασσσσσα2sin 2/2cos 2/xy y x y x--++=()ατασστα2cos 2/2sin xy y x +-=αασσσσ-+=︒+y x 90 ααττ-=︒+90应力圆:22min max 22xy yx y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+= y x xy σστα--=22tan 0三向应力状态:()2/31max σστ-=应力应变关系:()E /90︒+-=ααανσσε ()E /9090ααανσσε-=︒+︒+ G /αβαβτγ=第七章 强度理论及其应用 强度理论:断裂失效:11r σσ=()3212r σσνσσ+-=屈服失效:313r σσσ-= ()()()[]2/2132322214r σσσσσσσ-+-+-=轴向拉压弯扭组合变形:[]στσσ≤+=223r 4[]στσσ≤+=224r 3仅圆轴弯扭:[]σσ≤+=Z W T M /223r []σσ≤+=Z W T M /5.70224r ,Z P W W 2=薄壁圆筒强度:横截面上的正应力:()24/'σσ==t PD 纵截面上的正应力:()12/''σσ==t PD 03=σ第八章 压杆稳定临界应力:欧拉公式:()()222222cr /λπμπμπσEi l E A l EI A F cr ==== A I i /= 利用欧拉公式前提条件:P P E σπλλ/2=≥不满足时用经验公式:λσb a -=cr211cr λσb a -=压杆的稳定性计算:安全因素法:st cr cr n F F n ≥==σσ//折剪因素法:[][]st cr st n A F //σσσϕσ==≤= 第九章 能量方法杆件应变能:轴向拉伸或压缩:()⎰==∆==l N N dx EAx F EA lF l F w V 22222ε扭转:()⎰====l P P dx GI x T GI l T T w V 22222ϕε弯曲:()⎰====l dx EIx M EI l m m w V 22222θε 组合变形: 2/2/2/θϕεεm T l F dV V l++∆==⎰。
材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。
下面将介绍材料力学的基本概念及计算公式。
1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。
计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。
(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。
计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。
(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。
计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。
2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。
计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。
(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。
计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。
3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。
计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。
(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。
计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。
4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。
1、材料力学的任务:强度、刚度和稳定性;应力单位面积上的内力。
平均应力(1.1)全应力(1.2)正应力垂直于截面的应力分量,用符号表示。
切应力相切于截面的应力分量,用符号表示。
应力的量纲:线应变单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。
外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n与传递的功率P 来计算。
当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力,且为平均分布,其计算公式为 (3-1)式中为该横截面的轴力,A为横截面面积。
正负号规定拉应力为正,压应力为负。
公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角时拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为全应力(3-2)正应力(3-3)切应力(3-4)式中为横截面上的应力。
正负号规定:由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
拉应力为正,压应力为负。
对脱离体内一点产生顺时针力矩的为正,反之为负。
两点结论:(1)当时,即横截面上,达到最大值,即。
当=时,即纵截面上,==0。
(2)当时,即与杆轴成的斜截面上,达到最大值,即1.2 拉(压)杆的应变和胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形轴向线应变横向变形横向线应变正负号规定伸长为正,缩短为负。
(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。
即(3-5)或用轴力及杆件的变形量表示为(3-6)式中EA称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。
材料力学的基本计算公式外力偶矩计算公式(P功率,n转速)1.弯矩、剪力和荷载集度之间的关系式2.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)5.纵向线应变和横向线应变6.泊松比7.胡克定律8.受多个力作用的杆件纵向变形计算公式?9.承受轴向分布力或变截面的杆件,纵向变形计算公式10.轴向拉压杆的强度计算公式11.许用应力,脆性材料,塑性材料12.延伸率13.截面收缩率14.剪切胡克定律(切变模量G,切应变g )15.拉压弹性模量E、泊松比和切变模量G之间关系式16.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆17.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)18.圆截面周边各点处最大切应力计算公式19.扭转截面系数,(a)实心圆(b)空心圆20.薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半径)扭转切应力计算公式21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式22.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或23.等直圆轴强度条件24.塑性材料;脆性材料25.扭转圆轴的刚度条件? 或26.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,27.平面应力状态下斜截面应力的一般公式,28.平面应力状态的三个主应力, ,29.主平面方位的计算公式30.面内最大切应力31.受扭圆轴表面某点的三个主应力,,32.三向应力状态最大与最小正应力 ,33.三向应力状态最大切应力34.广义胡克定律35.四种强度理论的相当应力36.一种常见的应力状态的强度条件,37.组合图形的形心坐标计算公式,38.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式39.截面图形对轴z和轴y的惯性半径? ,40.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)41.纯弯曲梁的正应力计算公式42.横力弯曲最大正应力计算公式43.矩形、圆形、空心圆形的弯曲截面系数?,,44.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)45.矩形截面梁最大弯曲切应力发生在中性轴处46.工字形截面梁腹板上的弯曲切应力近似公式47.轧制工字钢梁最大弯曲切应力计算公式48.圆形截面梁最大弯曲切应力发生在中性轴处49.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处50.弯曲正应力强度条件51.几种常见截面梁的弯曲切应力强度条件52.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,53.梁的挠曲线近似微分方程54.梁的转角方程55.梁的挠曲线方程?56.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式57.偏心拉伸(压缩)58.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,59.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为60.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式61.62.弯拉扭或弯压扭组合作用时强度计算公式63.剪切实用计算的强度条件64.挤压实用计算的强度条件65.等截面细长压杆在四种杆端约束情况下的临界力计算公式66.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.567.压杆的长细比或柔度计算公式,68.细长压杆临界应力的欧拉公式69.欧拉公式的适用范围70.压杆稳定性计算的安全系数法71.压杆稳定性计算的折减系数法72.关系需查表求得文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
材料力学材料力学研究材料在各种外力作用下产生的应变、应力、强度、刚度和导致各种材料破坏的极限。
材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。
学习材料力学一般要求学生先修高等数学和理论力学。
材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。
材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。
学习材料力学一般要求学生先修高等数学和理论力学。
材料力学与理论力学、结构力学并称三大力学。
材料力学(mechanics of materials)主要研究杆件的应力、变形以及材料的宏观力学性能的学科。
材料力学是固体力学的一个基础分支。
它是研究结构构件和机械零件承载能力的基础学科。
其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。
材料力学是工程设计的基础之一,即结构构件或机器零件的强度、刚度和稳定性分析的基础。
在工程设计中,要求构件或零件在给定外力作用下,具有足够的强度、刚度和稳定性。
构件或零件在外力作用下,不发生破坏,也不发生塑性变形,则称其具有足够的强度;若弹性变形不超过一定限度,则称其具有足够的刚度;若在特定外力(如细长杆承受轴向压力)作用下,其平衡和变形形式无突然转变,则称其具有足够的稳定性。
在结构承受载荷或机械传递运动时,为保证各构件或机械零件能正常工作,构件和零件必须符合如下要求:不发生断裂,即具有足够的强度;弹性变形应不超出允许的范围,即具有足够的刚度;在原有形状下的平衡应是稳定平衡,也就是构件不会失去稳定性。
对强度、刚度和稳定性这三方面的要求,有时统称为“强度要求”,而材料力学在这三方面对构件所进行的计算和试验,统称为强度计算和强度试验。
材料力学压杆稳定概念欧拉公式计算临界力材料力学是研究物体受力及变形行为的一门学科。
压杆稳定是材料力学中重要的概念之一、当一个杆件受到作用力时,如果杆件不发生任何形状上的变化,我们称之为杆件处于稳定状态。
然而,当作用力超过一定临界值时,杆件就会发生失稳,产生形状上的变化。
因此,欧拉公式就是用来计算杆件临界力的一种方式。
欧拉公式由瑞士数学家欧拉于18世纪中叶首次提出。
它的基本假设是杆件是理想化的,即杆件是均匀、无缺陷、具有均匀截面的杆件。
根据欧拉公式,杆件临界力可通过以下公式计算:Pcr = (π^2 * E * I) / L^2其中,Pcr表示临界力,E表示杨氏模量,I表示截面惯性矩,L表示杆件的有效长度。
从上述公式中可以看出,临界力与材料的弹性模量有关,即材料越硬,临界力越大;同时临界力与截面的形状也有关,即截面惯性矩越大,临界力越大;临界力还与杆件长度有关,即杆件越短,临界力越大。
例子:假设有一根长为L的无缺陷的圆柱形杆件,其截面半径为r,杨氏模量为E。
根据材料力学的知识,该圆柱形杆件的截面惯性矩可计算为I=(π*r^4)/4Pcr = (π^2 * E * ((π * r^4) / 4) ) / L^2通过上述公式,可以计算出该无缺陷的圆柱形杆件的临界力。
这个临界力表示了该杆件能够承受的最大作用力。
如果作用力超过了临界力,该杆件将发生失稳,产生形状上的变化。
总结起来,材料力学中的压杆稳定概念是指杆件在受力作用下不发生形状上的变化。
欧拉公式是用来计算杆件临界力的一种常用公式,可以帮助工程师们确定杆件的最大承载能力。
1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴扭转 []ττ≤=W tTmaxmax t max t max max σσ≤=y I z t max c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max 5、斜弯曲[]σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n2wr34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EALN EANL L d )(ii2、 扭转 ()⎰=∑==Φpp i i p GI dx x T GI L T GI TLπφ0180⋅=Φ=p GI T L (m / )3、 弯曲(1)积分法:)()(''x M x EIy =C x x M x EI x EIy +==⎰d )()()('θD Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)PAB MAB A BqL LLEI ML B =θ EI PL B 22=θ EIqL B 63=θEI ML f B 22=EI PL f B 33= EIqL f B 84=EIML B3=θ,EI MLA 6=θEIPL A B 162==θθEIqL A B 243==θθEIML f c 162=EIPL f c 483=EIqL f c 3844=(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆ii P U()()⎰∂∂∑dx P x M EI x M i 三、应力状态与强度理论1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 03、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥LL最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ= (2)、表达形式之二(用应变表示应力))(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,, Gxy xy τγ= ()zx yz xy ,,7、强度理论(1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤ []bb n σσ=(2)[]σσσσ≤-=313r ()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []s sn σσ=8、平面应力状态下的应变分析 (1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx y x+-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫ ⎝⎛-xy (2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE= ②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ”=s σ 或 b σ2、关于柔度的几个公式iLμλ=p2p σπλE=ba s s σλ-=五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击)st20d ∆=g v K (水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh123hb 323maxd y I W z z π==()43132απ-D62bh 62hb2、惯性矩平移轴公式A a I I 2zc z +=。
材料力学的基本计算公式外力偶矩计算公式(P功率,n转速)1.弯矩、剪力和荷载集度之间的关系式2.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)5.纵向线应变和横向线应变6.泊松比7.胡克定律8.受多个力作用的杆件纵向变形计算公式?9.承受轴向分布力或变截面的杆件,纵向变形计算公式10.轴向拉压杆的强度计算公式11.许用应力,脆性材料,塑性材料12.延伸率13.截面收缩率14.剪切胡克定律(切变模量G,切应变g )15.拉压弹性模量E、泊松比和切变模量G之间关系式16.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆17.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)18.圆截面周边各点处最大切应力计算公式19.扭转截面系数,(a)实心圆(b)空心圆20.薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半径)扭转切应力计算公式21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式22.同一材料制成的圆轴各段的扭矩不同或各段的直径不同(如阶梯轴)时或23.等直圆轴强度条件24.塑性材料;脆性材料25.扭转圆轴的刚度条件? 或26.受压圆筒形薄壁容器横截面和纵截面上的应力计算公式,27.平面应力状态下斜截面应力的一般公式,28.平面应力状态的三个主应力, ,29.主平面方位的计算公式30.面最大切应力31.受扭圆轴表面某点的三个主应力,,32.三向应力状态最大与最小正应力 ,33.三向应力状态最大切应力34.广义胡克定律35.四种强度理论的相当应力36.一种常见的应力状态的强度条件,37.组合图形的形心坐标计算公式,38.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式39.截面图形对轴z和轴y的惯性半径? ,40.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)41.纯弯曲梁的正应力计算公式42.横力弯曲最大正应力计算公式43.矩形、圆形、空心圆形的弯曲截面系数?,,44.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)45.矩形截面梁最大弯曲切应力发生在中性轴处46.工字形截面梁腹板上的弯曲切应力近似公式47.轧制工字钢梁最大弯曲切应力计算公式48.圆形截面梁最大弯曲切应力发生在中性轴处49.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处50.弯曲正应力强度条件51.几种常见截面梁的弯曲切应力强度条件52.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,53.梁的挠曲线近似微分方程54.梁的转角方程55.梁的挠曲线方程?56.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式57.偏心拉伸(压缩)58.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,59.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为60.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式61.62.弯拉扭或弯压扭组合作用时强度计算公式63.剪切实用计算的强度条件64.挤压实用计算的强度条件65.等截面细长压杆在四种杆端约束情况下的临界力计算公式66.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.567.压杆的长细比或柔度计算公式,68.细长压杆临界应力的欧拉公式69.欧拉公式的适用围70.压杆稳定性计算的安全系数法71.压杆稳定性计算的折减系数法72.关系需查表求得。
材料力学基本概念及计算公式杆件的拉伸与压缩部分1、拉伸与压缩的受力特点:作用于杆件两端的力大小相等,方向相反,作用线与杆件的轴线重合。
2、拉伸与压缩的变形特点:杆件沿轴线方向伸长或缩短。
3、拉伸与压缩变形的内力:称为轴力,用符号N F 表示。
杆件在外力作用下,其内部的一部分对另一部分的作用。
4、求内力的方法:截面法。
截开→代替→平衡(截→代→平)5、横截面上的应力正应力:与横截面垂直,用符号σ表示,计算公式为AF N =σ,正应力的单位为2/m N N F 为该横截面上的内力,单位为N ,A 为横截面的截面积,单位为2m 。
Pa m N 1/12=,MPa m N 1/10126=⨯,GPa m N 1/10129=⨯ 正应力σ符号规定与轴力相同,拉应力为正,压应力为负。
切应力:在横截面内,与正应力垂直,用符号τ表示,单位为2/m N 。
6、拉压变形与胡克定律绝对变形:表示杆沿轴向伸长(或缩短)的量,用L ∆表示。
相对变形:表示单位原长杆件变形的程度,用ε表示,也称线应变。
LL ∆=ε 胡克定律:表明杆件拉伸与压缩时,变形和应力之间的关系。
胡克定律的内容:当杆件内的轴力N F 不超过某一限度时,杆的绝对变形量L ∆与轴力N F及杆长L 成正比,与杆的截面积A 成反比。
AE LF L N ⨯⨯=∆ E ;表示材料的弹性模量,表示材料抵抗拉压变形能力的一个系数。
EA :表示杆件的抗拉压刚度,表示材料抵抗拉压变形能力的大小。
7、许用应力和安全系数许用应力:危险应力0σ除以大于1的系数n 表示,用符号][σ表示,计算公式为n 0][σσ=脆性材料:b bn σσ=][,塑性材料:s s n σσ=][s σ表示塑性材料的屈服点应力值,b σ表示脆性材料的强度极限应力值。
安全系数:大于1的系数,用n 表示。
s n 表示塑性材料的安全系数值,b n 表示脆性材料的安全系数值。
8、拉伸与压缩的强度计算 强度计算公式:][σσ≤=AF N 可以解决三类问题:(1)强度校核:][σσ≤=A F N (2)选择截面尺寸:][σN F A ≥ (3)确定许用载荷:A F N ⨯≤][σ材料力学基本概念及计算公式剪切与挤压部分1、 剪切的受力特点:作用在构件两侧面上的外力的合力大小相等,方向相反,作用线平行且相距很近。
材料力学基本概念和公式第一章绪论第一节材料力学的任务构成机械和结构的各组成部分统称为构件。
保证构件正常或安全工作的基本要求包括强度(即抵抗破坏的能力)、刚度(即抵抗变形的能力)和稳定性(即保持原有平衡状态的能力)。
材料力学的任务是研究构件在外力作用下的变形与破坏规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。
第二节材料力学的基本假设材料力学的基本假设包括连续性假设(即材料无空隙地充满整个构件)、均匀性假设(即构件内每一处的力学性能都相同)和各向同性假设(即构件某一处材料沿各个方向的力学性能相同,但木材是各向异性材料)。
第三节内力内力是指构件内部各部分之间因受力后变形而引起的相互作用力。
截面法是用假想的截面把构件分成两部分,以显示并确定内力的方法。
截面法求内力的步骤包括用假想截面将杆件切开,一分为二,取一部分得到分离体,对分离体建立平衡方程,求得内力。
内力的分类包括轴力FN剪力FS扭矩T和弯矩M。
第四节应力一点的应力是指一点处内力的集中程度。
全应力p=lim(ΔF/ΔA),正应力σ,切应力τ,p=σ^2+τ^2.应力单位包括Pa(1Pa=1N/m^2)、1MPa(1×10^6Pa)和1GPa(1×10^9Pa)。
第五节变形与应变变形是指构件尺寸与形状的变化,除特别声明的以外,材料力学所研究的对象均为变形体。
弹性变形是指外力解除后能消失的变形,而塑性变形是指外力解除后不能消失的变形或残余变形。
材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸,而线应变是无量纲量,在同一点不同方向线应变一般不同。
切应变为无量纲量,切应变单位为rad。
第六节杆件变形的基本形式等截面直杆是材料力学的研究对象,而杆件变形的基本形式包括拉伸(压缩)、扭转和弯曲。
第二章拉伸、压缩与剪切第一节轴向拉伸(压缩)的特点轴向拉伸(压缩)的受力特点是外力合力的作用线与杆件轴线重合,而变形特点是沿杆件的轴线伸长和缩短。
材料力学重点及其公式材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。
变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。
外力分类:表面力、体积力;静载荷、动载荷。
内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。
(3)根据平衡条件,列平衡方程,求解截面上和内力。
应力:dA dFA F p A =∆∆=→∆lim正应力σ、切应力τ。
变形与应变:线应变、切应变。
杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲; 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。
动载荷:载荷和速度随时间急剧变化的载荷为动载荷。
失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。
二者统称为极限应力理想情形。
塑性材料、脆性材料的许用应力分别为:[]s sn σσ=,[]bbn σσ=,强度条件:[]σσ≤⎪⎭⎫ ⎝⎛=maxmax A F N ,等截面杆 []σ≤A F max轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=∆1,沿轴线方向的应变和横截面上的应力分别为:l l ∆=ε,A FN=σ。
横向应变为:b bb b b -=∆=1'ε,横向应变与轴向应变的关系为:μεε-=',μ为横向变形系数或泊松比。
胡克定律:当应力低于材料的比例极限P σ时,应力与应变成正比,即 εσE =,这就是胡克定律。
E为弹性模量(GPa 1=pa MPa 931010=)。
将应力与应变的表达式带入得:EAFll =∆EA 为抗拉或抗压刚度。
静不定(超静定):对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。
外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n 与传递的功率P 来计算。
当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为m).(N 9549en P M=当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为m).(N 7024enP M=2.5.2切应力计算公式横截面上某一点切应力大小为 p pT I ρτ=(3-12)式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离。
圆截面周边上的切应力为 m a x tT W τ=(3-13)式中p t I W R=称为扭转截面系数,R 为圆截面半径。
2.5.3 切应力公式讨论(1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。
(2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3。
在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。
因此,设计空心轴比实心轴更为合理。
2.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。
因此,强度条件为[]m a x m a xt T W ττ⎛⎫=≤⎪⎝⎭ (3-14) 对等圆截面直杆 []m a xm axtT W ττ=≤ (3-15)式中[]τ为材料的许用切应力。
3.1.1中性层的曲率与弯矩的关系1zM EI ρ=(3-16)式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩。
3.1.2横截面上各点弯曲正应力计算公式 ZM yI σ=(3-17)式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处 m a xm a xm a x m a xzzM M yI W σ=∙= (3-18)式中,m axz z I W y =称为抗弯截面系数。
材料力学基本概念和公式材料力学是研究材料在受到外力作用下的变形和破坏行为的一门学科。
下面将简要介绍材料力学的基本概念和公式。
1.伸长量(ε):伸长量是材料在受到拉伸力作用下的长度变化与原始长度之比,可以表示为ε=ΔL/L0,其中ΔL是材料受力后的长度变化,L0是材料的原始长度。
2.弹性模量(E):弹性模量是材料表征其抵抗拉伸或压缩变形能力的物理量,定义为材料受应力作用下的应力与应变之比,可以表示为E=σ/ε,其中σ是材料受到的应力。
3.屈服强度(σy):屈服强度是材料在受力过程中产生塑性变形的应力阈值,物理上可以看作是材料从弹性到塑性变形的过程。
屈服强度可以表示为σy=Fy/A,其中Fy是材料引起塑性变形的应力,A是材料的横截面积。
4.断裂强度(σf):断裂强度是材料在受到应力作用下发生破坏的最大阈值,表示材料的抗拉抗压能力。
断裂强度可以表示为σf=Ff/A,其中Ff是材料破坏时受到的应力。
5. 牛顿第二定律(F = ma):材料力学中的牛顿第二定律与经典物理学中的类似,描述了材料在受到外力作用下的加速度与作用力之间的关系。
6.雪松方程(σ=Eε):雪松方程是描述线性弹性材料受力变形关系的基本公式,其中σ为材料受到的应力,E为弹性模量,ε为材料的应变。
7.线性弹性材料的胡克定律(σ=Eε):对于线弹性材料来说,应力和应变之间的关系可以遵循胡克定律。
即材料的应力是弹性模量和应变的乘积。
8.悬臂梁挠度公式(δ=(Fl^3)/(3EI)):悬臂梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为悬臂梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。
9.铰接梁挠度公式(δ=(Fl^3)/(48EI)):铰接梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为铰接梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。
10.压缩应力(σc):压缩应力是材料在受到压缩力作用下的应力,可以表示为σc=F/A,其中F为材料受到的压缩力。
材料力学基本公式-CAL-FENGHAI.-(YICAI)-Company One1材料力学基本公式(1)外力偶矩计算公式(P功率,n转速)(2)弯矩、剪力和荷载集度之间的关系式(3)轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力,横截面面积A,拉应力为正)(4)轴向拉压杆斜截面上的正应力与切应力计算公式(夹角α从x轴正方向逆时针转至外法线的方位角为正)(5)纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)(6)纵向线应变和横向线应变,(7)泊松比(8)胡克定律(9)受多个力作用的杆件纵向变形计算公式(10)承受轴向分布力或变截面的杆件,纵向变形计算公式(11)轴向拉压杆的强度计算公式(12)延伸率(13)截面收缩率(14)剪切胡克定律(切变模量G,切应变g )(15)拉压弹性模量E、泊松比和切变模量G之间关系式(16)圆截面对圆心的极惯性矩()(17)圆轴扭转时横截面上任一点切应力计算公式(扭矩,所求点到圆心距离)(18)圆截面周边各点处最大切应力计算公式(19)扭转截面系数,(a)实心圆(b)空心圆(20)圆轴扭转角与扭矩、杆长l、扭转刚度的关系式(21)等直圆轴强度条件(22)扭转圆轴的刚度条件:或(23)平面应力状态下斜截面应力的一般公式(24)平面应力状态的三个主应力(25)主平面方位的计算公式(26)平面内剪应力最大值和最小值(27)三向应力状态最大与最小正应力 ,(28)三向应力状态最大切应力(29)广义胡克定律(30)四种强度理论的相当应力(31)一种常见的应力状态的强度条件,(32)组合图形的形心坐标计算公式, ,(33)平面图形对x轴,y轴,z轴的静矩, ,(34)任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式(35)截面图形对z轴和y轴的惯性半径 ,(36)矩形、圆形、空心圆形对中性轴的惯性矩, ,(37)平行移轴公式(形心轴zc与平行轴z1的距离为a,图形面积为A)(38)纯弯曲梁的正应力计算公式(39)矩形、圆形、空心圆形的弯曲截面系数,,(40)几种常见截面的最大弯曲切应力计算公式(为横截面上的剪力;b为截面宽度;为整个横截面对中性轴的惯性矩;为截面上距中性轴为y的横线以外部分截面对中性轴的静矩)(41)矩形截面梁最大弯曲切应力发生在中性轴处(42)弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,(43)梁的转角方程(M(x)为弯矩方程)(44)梁的挠曲线方程(45)斜弯曲:在任意界面上任一点(y,z)处的正应力(,分别为主惯性平面y,z内的弯矩)(46)偏心拉伸(压缩)(47)弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式(M为弯矩,M x为扭矩)(48)圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为(49)弯拉扭或弯压扭组合作用时强度计算公式(50)剪切实用计算的强度条件(51)挤压实用计算的强度条件(52)等截面细长压杆在四种杆端约束情况下的临界力计算公式(欧拉公式)(53)压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=(d)两端固定μ=(54)压杆的长细比或柔度计算公式,(55)细长压杆临界应力的欧拉公式(56)欧拉公式的适用范围(57)直线公式(58)直线公式最小柔度值(59)直线公式适用范围,的压杆称为短粗杆或小柔度杆,短粗杆的临界应力(60)超过比例极限时压杆的临界力(61)压杆稳定性计算的安全系数法。
材料力学的基本计算公式(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--材料力学的基本计算公式外力偶矩计算公式(P功率,n转速)1.弯矩、剪力和荷载集度之间的关系式2.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)5.6.纵向线应变和横向线应变7.8.泊松比9.胡克定律10.受多个力作用的杆件纵向变形计算公式11.承受轴向分布力或变截面的杆件,纵向变形计算公式12.轴向拉压杆的强度计算公式13.许用应力,脆性材料,塑性材料14.延伸率15.截面收缩率16.剪切胡克定律(切变模量G,切应变g )17.拉压弹性模量E、泊松比和切变模量G之间关系式18.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆19.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)20.圆截面周边各点处最大切应力计算公式21.扭转截面系数,(a)实心圆(b)空心圆22.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式23.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式24.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或25.等直圆轴强度条件26.塑性材料;脆性材料27.扭转圆轴的刚度条件或28.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,29.平面应力状态下斜截面应力的一般公式,30.平面应力状态的三个主应力, ,31.主平面方位的计算公式32.面内最大切应力33.受扭圆轴表面某点的三个主应力,,34.三向应力状态最大与最小正应力 ,35.三向应力状态最大切应力36.广义胡克定律37.四种强度理论的相当应力38.一种常见的应力状态的强度条件,39.组合图形的形心坐标计算公式,40.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式41.截面图形对轴z和轴y的惯性半径,42.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)43.纯弯曲梁的正应力计算公式44.横力弯曲最大正应力计算公式45.矩形、圆形、空心圆形的弯曲截面系数,,46.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)47.矩形截面梁最大弯曲切应力发生在中性轴处48.工字形截面梁腹板上的弯曲切应力近似公式49.轧制工字钢梁最大弯曲切应力计算公式50.圆形截面梁最大弯曲切应力发生在中性轴处51.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处52.弯曲正应力强度条件53.几种常见截面梁的弯曲切应力强度条件54.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,55.梁的挠曲线近似微分方程56.梁的转角方程57.梁的挠曲线方程58.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式59.偏心拉伸(压缩)60.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,61.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为62.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式63.64.弯拉扭或弯压扭组合作用时强度计算公式65.剪切实用计算的强度条件66.挤压实用计算的强度条件67.等截面细长压杆在四种杆端约束情况下的临界力计算公式68.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=(d)两端固定μ=69.压杆的长细比或柔度计算公式,70.细长压杆临界应力的欧拉公式71.欧拉公式的适用范围72.压杆稳定性计算的安全系数法73.压杆稳定性计算的折减系数法74.关系需查表求得。
第一章 绪论第一节 材料力学的任务1、组成机械与结构的各组成部分,统称为构件。
2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。
3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。
第二节 材料力学的基本假设1、连续性假设:材料无空隙地充满整个构件。
2、均匀性假设:构件内每一处的力学性能都相同3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。
木材是各向异性材料。
第三节 内力1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。
2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。
3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。
4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M第四节 应力1、一点的应力: 一点处内力的集(中程)度。
全应力0limA Fp A∆→∆=∆;正应力σ;切应力τ;p =2、应力单位:Pa (1Pa=1N/m 2,1MPa=1×106 Pa ,1GPa=1×109 Pa )第五节 变形与应变1、变形:构件尺寸与形状的变化称为变形。
除特别声明的以外,材料力学所研究的对象均为变形体。
2、弹性变形:外力解除后能消失的变形成为弹性变形。
3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。
4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。
对构件进行受力分析时可忽略其变形。
5、线应变:ll ∆=ε。
线应变是无量纲量,在同一点不同方向线应变一般不同。
6、切应变:tan γγ≈。
切应变为无量纲量,切应变单位为rad 。
第六节 杆件变形的基本形式1、材料力学的研究对象:等截面直杆。
材料力学基本概念及计算公式
杆件的拉伸与压缩部分
1、拉伸与压缩的受力特点:
作用于杆件两端的力大小相等,方向相反,作用线与杆件的轴线重合。
2、拉伸与压缩的变形特点: 杆件沿轴线方向伸长或缩短。
3、拉伸与压缩变形的内力:
称为轴力,用符号N F 表示。
杆件在外力作用下,其内部的一部分对另一部分的作用。
4、求内力的方法:
截面法。
截开→代替→平衡(截→代→平) 5、横截面上的应力
正应力:与横截面垂直,用符号σ表示,计算公式为A
F N =
σ,正应力的单位为2
/m N N F 为该横截面上的内力,单位为N ,A 为横截面的截面积,单位为2
m 。
Pa m N 1/12
=,MPa m N 1/1012
6
=⨯,GPa m N 1/1012
9
=⨯ 正应力σ符号规定与轴力相同,拉应力为正,压应力为负。
切应力:在横截面内,与正应力垂直,用符号τ表示,单位为2
/m N 。
6、拉压变形与胡克定律
绝对变形:表示杆沿轴向伸长(或缩短)的量,用L ∆表示。
相对变形:表示单位原长杆件变形的程度,用ε表示,也称线应变。
L
L ∆=
ε 胡克定律:表明杆件拉伸与压缩时,变形和应力之间的关系。
胡克定律的内容:当杆件内的轴力N F 不超过某一限度时,杆的绝对变形量L ∆与轴力N F
及杆长L 成正比,与杆的截面积A 成反比。
A
E L
F L N ⨯⨯=
∆ E ;表示材料的弹性模量,表示材料抵抗拉压变形能力的一个系数。
EA :表示杆件的抗拉压刚度,表示材料抵抗拉压变形能力的大小。
7、许用应力和安全系数
许用应力:危险应力0
σ除以大于1的系数n 表示,用符号][σ表示,计算公式为n
][σσ=
脆性材料:b
b
n σσ=
][,塑性材料:s
s
n σσ=
][
s σ表示塑性材料的屈服点应力值,b σ表示脆性材料的强度极限应力值。
安全系数:大于1的系数,用n 表示。
s n 表示塑性材料的安全系数值,b n 表示脆性材料的安全系数值。
8、拉伸与压缩的强度计算 强度计算公式:][σσ≤=
A
F N
可以解决三类问题:(1)强度校核:][σσ≤=
A
F N
(2)选择截面尺寸:]
[σN
F A ≥
(3)确定许用载荷:A F N ⨯≤][σ
材料力学基本概念及计算公式
剪切与挤压部分
1、 剪切的受力特点:
作用在构件两侧面上的外力的合力大小相等,方向相反,作用线平行且相距很近。
2、 剪切的变形特点:
介于两作用力之间的各截面有沿作用力方向发生相对错动的趋势。
3、剪切的种类:单剪和双剪
单剪切:一个剪切面;双剪切:两个剪切面。
4、剪切变形的内力:
剪力。
用符号Q F 表示,单位为N 。
单剪切时,剪力的大小与外载荷相等,即F F Q =; 双剪切时,剪力的大小为外载荷的一半,即F F Q 2
1
=。
5、剪切面积的计算
圆轴剪切面积的计算:24
1
d A ⨯⨯=
π 方健剪切面积的计算:l b A ⨯= b 为键宽,l 为键长
冲裁时剪切面积的计算:t d A ⨯⨯=π 即为冲裁件的表面积
焊缝的剪切面积的计算:
45cos ⨯⨯=l h A h 为焊缝的高度或宽度,l 为焊缝的长度 6、剪切变形的应力
切应力:构件发生剪切变形时,单位面积上所受到的剪力。
用τ表示,单位为2
/m N 切应力的计算:Q
Q A F =
τ
7、剪切变形的强度条件 ][ττ≤=
Q
Q A F
8、挤压变形的变形特点
挤压面发生塑性变形或压溃。
9、挤压变形的内力:
挤压力。
用符号jy F 表示,单位为N 。
10、挤压面积的计算
圆轴挤压面积的计算:t d A jy ⨯= d 为圆轴的直径,t 为圆轴的高度 方健剪切面积的计算:l h A jy ⨯⨯=
2
1
h 为键高,l 为键长 冲裁时挤压面积的计算:冲裁件的面积板料的面积-=jy A 11、挤压变形的应力
挤压应力:挤压面上单位面积所受的挤压力。
用jy σ表示,单位为2
/m N 挤压应力的计算:jy
jy jy A F =σ
12、挤压变形的强度条件
][jy jy
jy jy A F σσ≤=
一般情况下,发生剪切变形的同时,必然伴随挤压变形的存在。
如若题目中给定材料的][jy σ和][τ两项参数,表示必须同时检验构件的抗剪切和抗挤压变形的强度。
材料力学基本概念及计算公式
圆轴扭转部分
1、圆轴扭转变形的受力特点
在垂直于杆件轴线的平面内,作用着一对大小相等,方向相反的力偶。
2、圆轴扭转变形的变形特点
各横截面绕轴线发生相对转动。
3、圆周扭转外力偶矩计算
n
P M ⨯
=9550 M 表示外力偶矩,单位为m N •,
P 表示传递的功率,单位为kW , n 表示轴的转速,单位为min /r 4、圆周扭转时的内力
扭矩。
圆周扭转变形时的内力为扭矩,用Mn 表示,单位为m N •; 扭矩大小的计算:采用截面法; 扭矩方向的判定:四指握住圆轴中心轴线,方向与截面力偶一致,大拇指方向离开截面,
扭矩为正,否则为负。
5、扭矩图
显示整个轴上各截面扭矩的变化规律,分析最大扭矩max Mn 所在截面。
常用横坐标表示各截面位置,纵坐标表示相应横截面上的扭矩。
扭矩为正时,曲线在横坐标上方,扭矩为负时,曲线在横坐标下方,此即为扭矩图。
6、圆轴扭转时横截面上的应力
圆轴扭转时横街面上的应力:为切应力。
切应力与该点至矩心的距离成正比。
矩心处的
切应力为令,圆周上的切应力最大。
最大切应力的计算公式:
n
n W M m ax
m ax =
τ max Mn 为横街面上最大扭矩,单位为m N •; n W 为抗扭截面系数,单位为3
mm ; (1)实心圆轴:16
3
d W n π=
(2)空心圆轴:)1(32
43
απ-=D W n , D
d =
α 7、圆轴扭转时强度计算
][max
max ττ≤=
n
n W M 可以解决强度校核,选择截面尺寸和确定许用载荷等三类强度问题。