第四章 扭的强度与刚度计算
- 格式:doc
- 大小:568.00 KB
- 文档页数:9
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
基础丨材料力学中的强度和刚度多人对力学中强度和刚度的概念总是混淆,今天就来谈一下自己的理解。
前言书中说为了保证机械系统或者整个结构的正常工作,其中每个零部件或者构件都必须能够正常的工作。
工程构件安全设计的任务就时保证构件具有足够的强度、刚度及稳定性。
稳定性很好理解,受力作用下保持或者恢复原来平衡形式的能力。
例如承压的细杆突然弯曲,薄壁构件承重发生褶皱或者建筑物的立柱失稳导致坍塌,很好理解。
今天主要来讲一下对于刚度和强度的理解。
一、强度定义:构件或者零部件在外力作用下,抵御破坏(断裂)或者显著变形的能力。
提取关键字,破坏断裂,显著变形。
比如说孙越把ipad当成了体重秤,站上去,ipad屏幕裂了,这就是强度不够。
比如武汉每年的夏天看海时许多大树枝被风吹断,这也是强度不够。
强度是反映材料发生断裂等破坏时的参数,强度一般有抗拉强度,抗压强度等,就是当应力达到多少时材料发生破坏的量,强度单位一般是兆帕。
破坏类型脆性断裂:在没有明显的塑形变形情况下发生的突然断裂。
如铸铁试件在拉伸时沿横截面的断裂和圆截面铸铁试件在扭转时沿斜截面的断裂。
塑形屈服:材料产生显著的塑形变形而使构件丧失工作能力,如低碳钢试样在拉伸或扭转时都会发生显著的塑形变形。
强度理论1. 最大拉应力理论:只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
所以按第一强度理论建立的强度条件为:σ1≤[σ] 。
2. 最大拉应变理论:只要最大拉应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
ε1=σu;由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E,所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3. 最大切应力理论:只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
一、 传动轴如图19-5(a )所示。
主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。
试画出轴的扭矩图。
解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 117030075.3695509550=⨯==n N M A A (N ·m )3513001195509550=⨯===n N M M B C B (N ·m )4683007.1495509550=⨯==n N M D D (N ·m )(2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。
现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。
BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。
根据平衡条件0=∑x m 得:01=+B n M M3511-=-=B n M M (N ·m )结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。
BC 段内各截面上的扭矩不变,均为351N ·m 。
所以这一段内扭矩图为一水平线。
同理,在CA 段内:M n Ⅱ+0=+B C M MⅡn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ468==D n M M Ⅲ(N ·m )根据所得数据,即可画出扭矩图[图19-5(e )]。
由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径(a )(c )Cm(d ) (e )图19-5(b )D =90mm ,壁厚t =2.5mm ,工作时的最大扭矩M n =1.5kN·m ,材料的许用剪应力][τ=60MPa 。
求(1)试校核AB 轴的强度;(2)将AB 轴改为实心轴,试在强度相同的条件下,确定轴的直径,并比较实心轴和空心轴的重量。
解 (1)校核AB 轴的强度:944.0905.22902=⨯-=-==D t D D d α )(29400)944.01(1690)1(1634343mm D W n =-⨯=-=παπ 轴的最大剪应力为 :69max max 105110294001500⨯=⨯==-n n W M τ(N /m 2)=51MPa ﹤[τ] 故AB 轴满足强度要求。
(2)确定实心轴的直径:按题意,要求设计的实心轴应与原空心轴强度相同,因此要求实心轴的最大剪应力也应该是 :)(51max MPa =τ设实心轴的直径为1D ,则631max 1051161500⨯===D W M nn πτ)(1.53)(0531.01051161500361mm m D ==⨯⨯⨯=π 在两轴长度相同,材料相同的情况下,两轴重量之比等于其横截面面积之比,即 31.01.538590222=-=实心空心A A三、 如图19-16所示的阶梯轴。
AB 段的直径1d =4cm ,BC 段的直径2d =7cm ,外图19-15AB(a )图19-16M (kN .m (b )力偶矩1M =0.8kN ·m ,3M =1.5kN ·m ,已知材料的剪切弹性模量G =80GPa ,试计算AC ϕ和最大的单位长度扭转角max θ。
解 (1)画扭矩图:用截面法逐段求得:8.011==M M n kN ·m 5.132-=-=M M n kN ·m 画出扭矩图[图19-16(b )](2)计算极惯性矩:1.25324324411=⨯==ππd I P (cm 4)236327324422=⨯==ππd I P (cm 4)(3)求相对扭转角AC ϕ:由于AB 段和BC 段内扭矩不等,且横截面尺寸也不相同,故只能在两段内分别求出每段的相对扭转角AB ϕ和BC ϕ,然后取AB ϕ和BC ϕ的代数和,即求得轴两端面的相对扭转角AC ϕ。
0318.0101.251080800108.0436111=⨯⨯⨯⨯⨯==p n ABGI l M ϕ(rad ) 0079.01023610801000105.1436222-=⨯⨯⨯⨯⨯-==p n BCGI l M ϕ(rad ) 0239.00079.00318.0=-=+=BC AB AC ϕϕϕ(rad )=1.37°(4)求最大的单位扭转角max θ:考虑在AB 段和BC 段变形的不同,需要分别计算其单位扭转角。
AB 段 m m rad l AB AB /28.2)/(0398.08.00318.01︒====ϕθ BC 段 m m rad l BC BC /453.0)/(0079.00.10079.02︒-=-=-==ϕθ 负号表示转向与AB θ相反。
所以 max θ=AB θ=2.28º/m四、 实心轴如图19-17所示。
已知该轴转速n =300r /min ,主动轮输入功率C N =40kW ,从动轮的输出功率分别为A N =10 kW ,B N =12 kW ,D N =18 kW 。
材料的剪切弹性模量G =80GPa ,若[]τ=50MPa ,[]θ=0.3º/m ,试按强度条件和刚度条件设计此轴的直径。
解 (1)求外力偶矩:3183001095509550=⨯==n N M A A (N ·m )3823001295509550=⨯==n N M B B (N ·m )12733004095509550=⨯==n N M C C ( N ·m )5733001895509550=⨯==n N M D D ( N ·m ) (2) 求扭矩、画扭矩图:3181-=-=A n M M (N ·m )7003823182-=--=--=B A n M M M (N ·m ) 5733==D n M M (N ·m )根据以上三个扭矩方程,画出扭矩图[图19-17(b )]。
由图可知,最大扭矩发生在BC 段内,其值为:700max =n M N ·m因该轴为等截面圆轴,所以危险截面为BC 段内的各横截面。
(3)按强度条件设计轴的直径:由强度条件:nn W Mmax max =τ≤][τ163d W n π=得 [])(5.4150107001616333maxmm M d n =⨯⨯⨯=≥πτπ(4)按刚度条件设计轴的直径:由刚度条件:πθ︒⨯=180max max p n GI M ≤][θm /︒ 324d I p π=得d ≥[])(2.64103.0108018010700321803243334max mm G M n =⨯⨯⨯⨯⨯⨯⨯=⨯-πθπ 为使轴同时满足强度条件和刚度条件,所设计轴的直径应不小于64.2mm 。
五、 油泵分油阀门弹簧工作圈数n =8,轴向压力P =90N ,簧丝直径d =2.25mm ,(a )M (N·m 图19-17( b )簧圈外径1D =18mm ,弹簧材料的剪切弹性模量G =82GPa ,[]τ=400MPa 。
试校核簧丝强度,并计算其变形。
解(1)校核簧丝强度:簧丝平均直径:d D D -=1=18-2.25=15.75(mm ) 弹簧指数:10725.275.15<===d D c由表19-1查得弹簧的曲度系数k =1.21,则][)(38025.275.1590821.1833max τππτ<=⨯⨯⨯==MPa d PD k 该弹簧满足强度要求。
(2)计算弹簧变形: )(7.1025.21082875.15908843343mm Gdn PD =⨯⨯⨯⨯⨯==λ思 考 题19-1 说明扭转应力,变形公式⎰==l o pn n dx GI MI M ϕρτρρ,的应用条件。
应用拉、压应力变形公式时是否也有这些条件限制?19-2 扭转剪应力在圆轴横截面上是怎样分布的?指出下列应力分布图中哪些是正确的?19-3 一空心轴的截面尺寸如图所示。
它的极惯性矩I p 和抗扭截面模量W n 是否可按下式计算?为什么? )(44132απ-=D I p )1(1643απ-=D W n (Dd=α) 19-4 若将实心轴直径增大一倍,而其它条件不变,问最大剪应力,轴的扭转角将如何变化?19-5 直径相同而材料不同的两根等长实心轴,在相同的扭矩作用下,最大剪应力max τ、扭转角ϕ和极惯性矩P I 是否相同?19-6 何谓纯剪切?何谓剪应力互等定理?习 题19-1 绘制图示各杆的扭矩图。
19-2 直径为D =5cm 的圆轴,受到扭矩n M =2.15kN ·m 的作用,试求在距离轴心1cm处的剪应力,并求轴截面上的最大剪应力。
19-3 已知作用在变截面钢轴上的外力偶矩1m =1.8kN ·m ,2m =1.2kN ·m 。
试求最大剪应力和最大相对转角。
材料的G =80GPa 。
19-4 已知圆轴的转速n =300r /min ,传递功率330.75kW ,材料的][τ=60MPa ,G =82GPa 。
要求在2m 长度内的相对扭转角不超过1º,试求该轴的直径。
19-5 图示一圆截面直径为80cm 的传动轴,上面作用的外力偶矩为1m =1000N ·m ,2m =600N ·m ,3m =200N ·m ,4m =200N ·m ,(1)试作出此轴的扭矩图,(2)试计算各段轴内的最大剪应力及此轴的总扭转角(已知材料的剪切弹性模量G =79GPa );(3)若将外力偶矩1m 和2m 的作用位置互换一下,问圆轴的直径是否可以减少?19-6 发电量为15000kW 的水轮机主轴如图所示,D =55cm ,d =30cm ,正常转速n =250r /min 。
材料的许用剪应力][τ=50MPa 。
试校核水轮机主轴的强度。
思考题19-3图(b ) (c )M n(d )(a ) 思考题19-2图题19-1图(c )d )(b )(a)e 2kN·m 1kN·m 4kN·m 1kN·m19-7 图示AB 轴的转速n =120r /min ,从B 轮输入功率N =44.15kW ,此功率的一半通过锥形齿轮传给垂直轴C ,另一半由水平轴H 输出。