第四章 扭转的强度与刚度计算
- 格式:doc
- 大小:587.50 KB
- 文档页数:9
基础篇之四第4章 圆轴扭转时的强度与刚度计算杆的两端承受大小相等、方向相反、作用平面垂直于杆件轴线的两个力偶,杆的任意两横截面将绕轴线相对转动,这种受力与变形形式称为扭转(torsion )。
本章主要分析圆轴扭转时横截面上的剪应力以及两相邻横截面的相对扭转角,同时介绍圆轴扭转时的强度与刚度设计方法。
4-1 外加扭力矩、扭矩与扭矩图作用于构件的外扭矩与机器的转速、功率有关。
在传动轴计算中,通常给出传动功率P 和转递n ,则传动轴所受的外加扭力矩M e 可用下式计算:[][]e kw 9549[N m]r /min P M n =⋅其中P 为功率,单位为千瓦(kW );n 为轴的转速,单位为转/分(r/min )。
如功率P 单位用马力(1马力=735.5 N •m/s ),则e []7024[N m][r /min]P M n =⋅马力 外加扭力矩M e 确定后,应用截面法可以确定横截面上的内力—扭矩,圆轴两端受外加扭力矩M e 作用时,横截面上将产生分布剪应力,这些剪应力将组成对横截面中心的合力矩,称为扭矩(twist moment ),用M x 表示。
图4-1 受扭转的圆轴用假想截面m -m 将圆轴截成Ⅰ、Ⅱ两部分,考虑其中任意部分的平衡,有M x -M e = 0由此得到图4-3 剪应力互等M x = M e与轴力正负号约定相似,圆轴上同一处两侧横截面上的扭矩必须具有相同的正负号。
因此约定为:按右手定则确定扭矩矢量,如果横截面上的扭矩矢量方向与截面的外法线方向一致,则扭矩为正;相反为负。
据此,图4-1b 和c 中的同一横截面上的扭矩均为正。
当圆轴上作用有多个外加集中力矩或分布力矩时,进行强度计算时需要知道何处扭矩最大,因而有必要用图形描述横截面上扭矩沿轴线的变化,这种图形称为扭矩图。
绘制扭矩图的方法与过程与轴力图类似,故不赘述。
【例题4-1】 变截面传动轴承受外加扭力矩作用,如图4-2a 所示。
41一、 传动轴如图19-5(a )所示。
主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。
试画出轴的扭矩图。
解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 117030075.3695509550=⨯==n N M A A (N ·m )3513001195509550=⨯===n N M M B C B (N ·m )4683007.1495509550=⨯==n N M D D (N ·m )(2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。
现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。
BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。
根据平衡条件0=∑x m 得:01=+B n M M3511-=-=B n M M (N ·m )结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。
BC 段内各截面上的扭矩不变,均为351N ·m 。
所以这一段内扭矩图为一水平线。
同理,在CA 段内:M n Ⅱ+0=+B C M MⅡn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ468==D n M M Ⅲ(N ·m )根据所得数据,即可画出扭矩图[图19-5(e )]。
由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径(a )(c )Cm(d ) (e )图19-5(b )42 D =90mm ,壁厚t =2.5mm ,工作时的最大扭矩M n =1.5kN·m ,材料的许用剪应力][τ=60MPa 。
求(1)试校核AB 轴的强度;(2)将AB 轴改为实心轴,试在强度相同的条件下,确定轴的直径,并比较实心轴和空心轴的重量。
解 (1)校核AB 轴的强度:944.0905.22902=⨯-=-==D t D D d α )(29400)944.01(1690)1(1634343mm D W n =-⨯=-=παπ 轴的最大剪应力为 :69max max 105110294001500⨯=⨯==-n n W M τ(N /m 2)=51MPa ﹤[τ] 故AB 轴满足强度要求。
(2)确定实心轴的直径:按题意,要求设计的实心轴应与原空心轴强度相同,因此要求实心轴的最大剪应力也应该是 :)(51max MPa =τ设实心轴的直径为1D ,则631max 1051161500⨯===D W M nn πτ)(1.53)(0531.01051161500361mm m D ==⨯⨯⨯=π 在两轴长度相同,材料相同的情况下,两轴重量之比等于其横截面面积之比,即 31.01.538590222=-=实心空心A A三、 如图19-16所示的阶梯轴。
AB 段的直径1d =4cm ,BC 段的直径2d =7cm ,外图19-15AB(a )图19-16M (kN .m (b )43力偶矩1M =0.8kN ·m ,3M =1.5kN ·m ,已知材料的剪切弹性模量G =80GPa ,试计算AC ϕ和最大的单位长度扭转角max θ。
解 (1)画扭矩图:用截面法逐段求得:8.011==M M n kN ·m 5.132-=-=M M n kN ·m 画出扭矩图[图19-16(b )](2)计算极惯性矩:1.25324324411=⨯==ππd I P (cm 4)236327324422=⨯==ππd I P (cm 4)(3)求相对扭转角AC ϕ:由于AB 段和BC 段内扭矩不等,且横截面尺寸也不相同,故只能在两段内分别求出每段的相对扭转角AB ϕ和BC ϕ,然后取AB ϕ和BC ϕ的代数和,即求得轴两端面的相对扭转角AC ϕ。
0318.0101.251080800108.0436111=⨯⨯⨯⨯⨯==p n AB GI l M ϕ(rad ) 0079.01023610801000105.1436222-=⨯⨯⨯⨯⨯-==p n BCGI l M ϕ(rad ) 0239.00079.00318.0=-=+=BC AB AC ϕϕϕ(rad )=1.37°(4)求最大的单位扭转角max θ:考虑在AB 段和BC 段变形的不同,需要分别计算其单位扭转角。
AB 段 m m rad l AB AB /28.2)/(0398.08.00318.01︒====ϕθ BC 段 m m rad l BC BC /453.0)/(0079.00.10079.02︒-=-=-==ϕθ 负号表示转向与AB θ相反。
所以 max θ=AB θ=2.28º/m四、 实心轴如图19-17所示。
已知该轴转速n =300r /min ,主动轮输入功率C N =40kW ,从动轮的输出功率分别为A N =10 kW ,B N =12 kW ,D N =18 kW 。
材料的剪切弹性模量G =80GPa ,若[]τ=50MPa ,[]θ=0.3º/m ,试按强度条件和刚度条件设计此轴的直径。
解 (1)求外力偶矩:3183001095509550=⨯==n N M A A (N ·m )3823001295509550=⨯==n N M B B (N ·m )12733004095509550=⨯==n N M C C ( N ·m )44 5733001895509550=⨯==n N M D D ( N ·m ) (2) 求扭矩、画扭矩图:3181-=-=A n M M (N ·m )7003823182-=--=--=B A n M M M (N ·m ) 5733==D n M M (N ·m )根据以上三个扭矩方程,画出扭矩图[图19-17(b )]。
由图可知,最大扭矩发生在BC 段内,其值为:700max =n M N ·m因该轴为等截面圆轴,所以危险截面为BC 段内的各横截面。
(3)按强度条件设计轴的直径:由强度条件:nn W Mmax max =τ≤][τ163d W n π=得 [])(5.4150107001616333maxmm M d n =⨯⨯⨯=≥πτπ(4)按刚度条件设计轴的直径:由刚度条件:πθ︒⨯=180max max p n GI M ≤][θm /︒ 324d I p π=得d ≥[])(2.64103.0108018010700321803243334max mm G M n =⨯⨯⨯⨯⨯⨯⨯=⨯-πθπ 为使轴同时满足强度条件和刚度条件,所设计轴的直径应不小于64.2mm 。
五、 油泵分油阀门弹簧工作圈数n =8,轴向压力P =90N ,簧丝直径d =2.25mm ,(a )M (N·m 图19-17( b )45簧圈外径1D =18mm ,弹簧材料的剪切弹性模量G =82GPa ,[]τ=400MPa 。
试校核簧丝强度,并计算其变形。
解(1)校核簧丝强度:簧丝平均直径:d D D -=1=18-2.25=15.75(mm ) 弹簧指数:10725.275.15<===d D c由表19-1查得弹簧的曲度系数k =1.21,则][)(38025.275.1590821.1833max τππτ<=⨯⨯⨯==MPa d PD k 该弹簧满足强度要求。
(2)计算弹簧变形: )(7.1025.21082875.15908843343mm Gdn PD =⨯⨯⨯⨯⨯==λ思 考 题19-1 说明扭转应力,变形公式⎰==l o pn n dx GI MI M ϕρτρρ,的应用条件。
应用拉、压应力变形公式时是否也有这些条件限制?19-2 扭转剪应力在圆轴横截面上是怎样分布的?指出下列应力分布图中哪些是正确的?19-3 一空心轴的截面尺寸如图所示。
它的极惯性矩I p 和抗扭截面模量W n 是否可按下式计算?为什么? )(44132απ-=D I p )1(1643απ-=D W n (Dd=α) 19-4 若将实心轴直径增大一倍,而其它条件不变,问最大剪应力,轴的扭转角将如何变化?19-5 直径相同而材料不同的两根等长实心轴,在相同的扭矩作用下,最大剪应力max τ、扭转角ϕ和极惯性矩P I 是否相同?19-6 何谓纯剪切?何谓剪应力互等定理?46习 题19-1 绘制图示各杆的扭矩图。
19-2 直径为D =5cm 的圆轴,受到扭矩n M =2.15kN ·m 的作用,试求在距离轴心1cm处的剪应力,并求轴截面上的最大剪应力。
19-3 已知作用在变截面钢轴上的外力偶矩1m =1.8kN ·m ,2m =1.2kN ·m 。
试求最大剪应力和最大相对转角。
材料的G =80GPa 。
19-4 已知圆轴的转速n =300r /min ,传递功率330.75kW ,材料的][τ=60MPa ,G =82GPa 。
要求在2m 长度内的相对扭转角不超过1º,试求该轴的直径。
19-5 图示一圆截面直径为80cm 的传动轴,上面作用的外力偶矩为1m =1000N ·m ,2m =600N ·m ,3m =200N ·m ,4m =200N ·m ,(1)试作出此轴的扭矩图,(2)试计算各段轴内的最大剪应力及此轴的总扭转角(已知材料的剪切弹性模量G =79GPa );(3)若将外力偶矩1m 和2m 的作用位置互换一下,问圆轴的直径是否可以减少?19-6 发电量为15000kW 的水轮机主轴如图所示,D =55cm ,d =30cm ,正常转速n =250r /min 。
材料的许用剪应力][τ=50MPa 。
试校核水轮机主轴的强度。
思考题19-3图(b ) (c )M n(d )(a ) 思考题19-2图题19-1图(c )d )(b )(a)e 2kN·m 1kN·m 4kN·m 1kN·m4719-7 图示AB 轴的转速n =120r /min ,从B 轮输入功率N =44.15kW ,此功率的一半通过锥形齿轮传给垂直轴C ,另一半由水平轴H 输出。