BP神经网络详解与实例
- 格式:ppt
- 大小:1.58 MB
- 文档页数:85
1、数据归一化2、数据分类,主要包括打乱数据顺序,抽取正常训练用数据、变量数据、测试数据3、建立神经网络,包括设置多少层网络(一般3层以内既可以,每层的节点数(具体节点数,尚无科学的模型和公式方法确定,可采用试凑法,但输出层的节点数应和需要输出的量个数相等),设置隐含层的传输函数等。
关于网络具体建立使用方法,在后几节的例子中将会说到。
4、指定训练参数进行训练,这步非常重要,在例子中,将详细进行说明5、完成训练后,就可以调用训练结果,输入测试数据,进行测试6、数据进行反归一化7、误差分析、结果预测或分类,作图等数据归一化问题归一化的意义:首先说一下,在工程应用领域中,应用BP网络的好坏最关键的仍然是输入特征选择和训练样本集的准备,若样本集代表性差、矛盾样本多、数据归一化存在问题,那么,使用多复杂的综合算法、多精致的网络结构,建立起来的模型预测效果不会多好。
若想取得实际有价值的应用效果,从最基础的数据整理工作做起吧,会少走弯路的。
归一化是为了加快训练网络的收敛性,具体做法是:1 把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。
2 把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。
另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。
神经网络归一化方法:由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:1、线性函数转换,表达式如下:复制内容到剪贴板代码:y=(x-MinVal ue)/(MaxVal ue-MinVal ue)说明:x、y分别为转换前、后的值,MaxVal ue、MinVal ue分别为样本的最大值和最小值。
BP人工神经网络的基本原理模型与实例BP(Back Propagation)人工神经网络是一种常见的人工神经网络模型,其基本原理是模拟人脑神经元之间的连接和信息传递过程,通过学习和调整权重,来实现输入和输出之间的映射关系。
BP神经网络模型基本上由三层神经元组成:输入层、隐藏层和输出层。
每个神经元都与下一层的所有神经元连接,并通过带有权重的连接传递信息。
BP神经网络的训练基于误差的反向传播,即首先通过前向传播计算输出值,然后通过计算输出误差来更新连接权重,最后通过反向传播调整隐藏层和输入层的权重。
具体来说,BP神经网络的训练过程包括以下步骤:1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。
2.前向传播:将输入向量喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到输出值。
3.计算输出误差:将期望输出值与实际输出值进行比较,计算得到输出误差。
4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。
5.更新权重:根据反向传播得到的误差梯度,使用梯度下降法或其他优化算法更新连接权重。
6.重复步骤2-5直到达到停止条件,如达到最大迭代次数或误差小于一些阈值。
BP神经网络的训练过程是一个迭代的过程,通过不断调整连接权重,逐渐减小输出误差,使网络能够更好地拟合输入与输出之间的映射关系。
下面以一个简单的实例来说明BP神经网络的应用:假设我们要建立一个三层BP神经网络来预测房价,输入为房屋面积和房间数,输出为价格。
我们训练集中包含一些房屋信息和对应的价格。
1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。
2.前向传播:将输入的房屋面积和房间数喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到价格的预测值。
3.计算输出误差:将预测的价格与实际价格进行比较,计算得到输出误差。
4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。
BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。
在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。
多层感知机神经网络的研究始于50年代,但一直进展不大。
直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。
BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。
对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。
节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。
该算法的学习过程由正向传播和反向传播组成。
在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。
每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。
如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。
社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。
bp神经网络算法步骤结合实例
BP神经网络算法步骤包括以下几个步骤:
1.输入层:将输入数据输入到神经网络中。
2.隐层:在输入层和输出层之间,通过一系列权值和偏置将输入数据进行处理,得到输出
数据。
3.输出层:将隐层的输出数据输出到输出层。
4.反向传播:通过反向传播算法来计算误差,并使用梯度下降法对权值和偏置进行调整,
以最小化误差。
5.训练:通过不断地进行输入、隐层处理、输出和反向传播的过程,来训练神经网络,使
其达到最优状态。
实例:
假设我们有一个BP神经网络,它的输入层有两个输入节点,隐层有三个节点,输出层有一个节点。
经过训练,我们得到了权值矩阵和偏置向量。
当我们给它输入一组数据时,它的工作流程如下:
1.输入层:将输入数据输入到神经网络中。
2.隐层:将输入数据与权值矩阵相乘,再加上偏置向量,得到输出数据。
3.输出层:将隐层的输出数据输出到输出层。
4.反向传播:使用反向传播算法计算误差,并使用梯度下降法调整权值和偏置向量,以最
小化误差。
5.训练:通过不断地输入、处理、输出和反向传播的过程,来训练神经网络,使其达到最
优状态。
这就是BP神经网络算法的基本流程。
在实际应用中,还需要考虑许多细节问题,如权值和偏置的初始值、学习率、激活函数等。
但是,上述流程是BP神经网络算法的基本框架。
BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。
在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。
首先,需要准备一个数据集来训练和测试BP神经网络。
数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。
一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。
在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。
假设数据集的前几列是输入特征,最后一列是输出。
可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。
可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。
该函数的输入参数为每个隐藏层的神经元数量。
下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。
可以使用`train`函数来训练模型。
该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。
下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。
可以使用`net`模型的`sim`函数来进行预测。
下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。
BP神经网络的简要介绍及应用BP神经网络(Backpropagation Neural Network,简称BP网络)是一种基于误差反向传播算法进行训练的多层前馈神经网络模型。
它由输入层、隐藏层和输出层组成,每层都由多个神经元(节点)组成,并且每个神经元都与下一层的神经元相连。
BP网络的训练过程可以分为两个阶段:前向传播和反向传播。
前向传播时,输入数据从输入层向隐藏层和输出层依次传递,每个神经元计算其输入信号的加权和,再通过一个激活函数得到输出值。
反向传播时,根据输出结果与期望结果的误差,通过链式法则将误差逐层反向传播至隐藏层和输入层,并通过调整权值和偏置来减小误差,以提高网络的性能。
BP网络的应用非常广泛,以下是一些典型的应用领域:1.模式识别:BP网络可以用于手写字符识别、人脸识别、语音识别等模式识别任务。
通过训练网络,将输入样本与正确的输出进行匹配,从而实现对未知样本的识别。
2.数据挖掘:BP网络可以用于分类、聚类和回归分析等数据挖掘任务。
例如,可以用于对大量的文本数据进行情感分类、对客户数据进行聚类分析等。
3.金融领域:BP网络可以用于预测股票价格、外汇汇率等金融市场的变动趋势。
通过训练网络,提取出对市场变动有影响的因素,从而预测未来的市场走势。
4.医学诊断:BP网络可以用于医学图像分析、疾病预测和诊断等医学领域的任务。
例如,可以通过训练网络,从医学图像中提取特征,帮助医生进行疾病的诊断。
5.机器人控制:BP网络可以用于机器人的自主导航、路径规划等控制任务。
通过训练网络,机器人可以通过感知环境的数据,进行决策和规划,从而实现特定任务的执行。
总之,BP神经网络是一种强大的人工神经网络模型,具有较强的非线性建模能力和适应能力。
它在模式识别、数据挖掘、金融预测、医学诊断和机器人控制等领域有广泛的应用,为解决复杂问题提供了一种有效的方法。
然而,BP网络也存在一些问题,如容易陷入局部最优解、训练时间较长等,因此在实际应用中需要结合具体问题选择适当的神经网络模型和训练算法。
BP神经网络原理及应用BP神经网络,即反向传播神经网络(Backpropagation Neural Network),是一种基于梯度下降算法的多层前馈神经网络,常用于分类与回归等问题的解决。
BP神经网络通过反向传播算法,将误差从输出层往回传播,更新网络权值,直至达到误差最小化的目标,从而实现对输入模式的分类和预测。
BP神经网络的结构包括输入层、隐藏层和输出层。
输入层接收外部输入的特征向量,隐藏层负责将输入特征映射到合适的高维空间,输出层负责输出网络的预测结果。
每个神经元与其前后的神经元相连,每个连接都有一个权值,用于调整输入信号的重要性。
BP神经网络利用激活函数(如sigmoid函数)对神经元的输出进行非线性变换,增加网络的非线性表达能力。
1.前向传播:将输入信号传递给网络,逐层计算每个神经元的输出,直至得到网络的输出结果。
2.计算误差:将网络输出与期望输出比较,计算误差。
常用的误差函数包括平方误差和交叉熵误差等。
3.反向传播:根据误差,逆向计算每个神经元的误差贡献,从输出层往回传播到隐藏层和输入层。
根据误差贡献,调整网络的权值和阈值。
4.更新权值和阈值:根据调整规则(如梯度下降法),根据误差贡献的梯度方向,更新网络的权值和阈值。
1.模式识别与分类:BP神经网络可以通过训练学习不同模式的特征,从而实现模式的自动分类与识别。
例如,人脸识别、文本分类等。
2.预测与回归:BP神经网络可以通过历史数据的训练,学习到输入与输出之间的映射关系,从而实现对未知数据的预测与回归分析。
例如,股票价格预测、天气预测等。
3.控制系统:BP神经网络可以用于建模和控制非线性系统,实现自适应、自学习的控制策略。
例如,机器人控制、工业过程优化等。
4.信号处理与图像处理:BP神经网络可以通过学习复杂的非线性映射关系,实现信号的去噪、压缩和图像的识别、处理等。
例如,语音识别、图像分割等。
5.数据挖掘与决策支持:BP神经网络可以根据历史数据学习到数据之间的相关关系,从而帮助决策者进行数据挖掘和决策支持。
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
BP神经网络的设计实例BP神经网络(Backpropagation Neural Network)是一种常用的人工神经网络方法,其具有在模式识别、分类、预测等领域具有较好的性能和应用广泛度。
本文将通过一个MATLAB编程的实例,详细介绍BP神经网络的设计过程。
首先,我们需要定义神经网络的结构。
一个BP神经网络的结构通常包括输入层、隐藏层和输出层。
输入层的节点数与输入数据的特征个数相对应,而输出层的节点数则根据具体问题的输出类别个数而定。
隐藏层的节点数一般根据经验确定,可以根据具体问题的复杂程度来调整。
接下来,我们需要初始化神经网络的参数。
这包括各个层之间的连接权重和阈值。
权重和阈值可以随机初始化,通常可以取一个较小的随机数范围,例如(-0.5,0.5)。
这里需要注意的是,随机初始化的权重和阈值如果过大或过小可能导致网络无法正常训练,进而影响预测结果。
然后,我们需要定义神经网络的激活函数。
激活函数通常是一个非线性函数,它的作用是为了引入非线性特征,增加神经网络的拟合能力。
常用的激活函数有sigmoid函数、tanh函数等。
在MATLAB中,可以通过内置函数sigmf和tansig来定义这些激活函数。
接着,我们需要定义神经网络的前向传播过程。
前向传播是指将输入数据通过神经网络,计算得到输出结果的过程。
具体操作可以按照以下步骤进行:1.输入数据进入输入层节点;2.将输入层节点的输出值乘以与隐藏层节点连接的权重矩阵,然后求和,此时得到隐藏层节点的输入值;3.将隐藏层节点的输入值通过激活函数进行激活,得到隐藏层节点的输出值;4.重复上述步骤,将隐藏层节点的输出值乘以与输出层节点连接的权重矩阵,然后求和,此时得到输出层节点的输入值;5.将输出层节点的输入值通过激活函数进行激活,得到输出层节点的输出值。
最后,我们需要定义神经网络的反向传播过程。
反向传播是为了根据输出误差来调整各个层之间的权重和阈值,使得预测结果更接近真实值。