BP神经网络详解与实例
- 格式:ppt
- 大小:934.00 KB
- 文档页数:62
LabVIEW中BP神经网络的实现及应用
0 引言LabVIEW 是美国NI 公司开发的高效图形化虚拟仪器开发平台,它的图形化编程具有直观、简便、快速、易于开发和维护等优点,在虚拟仪器设计和测控系统开发等相关领域得到了日益广泛的应用,它无需任何文本程序代码,而是把复杂、繁琐的语言编程简化成图形,用线条把各种图形连接起来。
BP 神经网络属于前馈神经网络,它广泛应用函数逼近、模式识别、分类和数
据压缩等领域,若将神经网络与虚拟仪器有机结合,则可以为提高虚拟仪器测控系统的性能提供重要的依据。
1 BP 神经网络学习算法BP 模型是一种应用最广泛的多层前向拓扑结构,以三层BP 神经网络作为理论依据进行编程,它由输入层、隐层和输出层构成。
设输入层神经元个数为I,隐层神经元个数为J,输出层神经元个数为K,学习样本有N 个(x,Y,)向量,表示为:输入向量
X{x1,x2,…,xI},输出向量l,{Y1,Y2,…,Yx),理想输出向量为
T{tl,t2,…,tK}。
(1)输入层节点i,其输出等于xi(i=1,2,…,I,将控制变量值传输到隐含层,则隐层第j 个神经元的输入:
其中:Wji 是隐层第J 个神经元到输入层第i 个神经元的连接权值。
(2)隐层第J 个神经元的输出:
(3)神经网络输出层,第k 个神经元的输入为:
其中:Vkj 是输出层第k 个神经元到隐层第j 个神经元的连接权值。
(4)神经网络输出层,第志个神经元的输出为:
(5)设定网络误差函数E:
(6)输出层到隐层的连接权值调整量△Vkj:
(7)隐层到输入层的连接权值调整量wji:。
BP神经网络介绍
一、什么是BP神经网络
BP神经网络(Back Propagation Neural Network),简称BP网络,是一种多层前馈神经网络。
它对神经网络中的数据进行反向传播,以获得
最小化计算误差的参数,进而得到最终的分类结果。
一般来说,BP网络
由输入层、隐藏层和输出层组成,输入层将输入数据传递给隐藏层,隐藏
层再将这些数据传递给输出层,最终由输出层输出最终的类别结果。
BP网络的运算原理大致可以分为三个步骤:前向传播、误差反向传
播和参数调整。
在前向传播阶段,BP网络从输入层开始,将输入数据依
次传递给各个隐藏层,并将这些数据转化为输出结果。
在误差反向传播阶段,BP网络从后面向前,利用误差函数计算每层的误差,即:将误差从
输出层一层一层向前传播,以计算各层的权值误差。
最后,在参数调整阶段,BP网络以动量法更新网络中的权值,从而使网络更接近最优解。
二、BP神经网络的优缺点
1、优点
(1)BP神经网络具有非线性分类能力。
BP神经网络可以捕捉和利用
非线性的输入特征,从而进行非线性的分类。
(2)BP神经网络可以自动学习,并能够权衡它的“权衡”参数。
bp神经网络的应用综述近年来,人工神经网络(ANN)作为一种神经网络形式在不断发展,因其计算能力强,对现实世界较好地识别和适应能力,已得到越来越广泛的应用,其中,BP神经网络是最典型的人工神经网络之一。
BP神经网络是指以马尔可夫随机过程为基础的反向传播算法,具有自组织学习、泛化、模糊推理的特点,具有非常广泛的应用场景。
它可以用来解决实际问题。
首先,BP神经网络可以用来解决分类问题。
它可以根据给定的输入向量和输出向量,训练模型以分类相关的输入特征。
这种模型可以用来解决工业控制问题、专家系统任务等。
例如,BP神经网络可以用来识别照片中的面孔,帮助改进自动门的判断等。
此外,BP神经网络还可以用于计算机视觉,即以计算机图像识别的形式进行图像处理。
通常,计算机视觉技术需要两个步骤,即识别和分析。
在识别步骤中,BP神经网络可以被用来识别图片中的特征,例如物体的形状、大小、颜色等;在分析步骤中,BP神经网络可以用来分析和判断图片中的特征是否满足要求。
此外,BP神经网络还可以用于机器人技术。
它可以用来识别机器人环境中的物体,从而帮助机器人做出正确的动作。
例如,利用BP神经网络,机器人可以识别障碍物并做出正确的行动。
最后,BP神经网络还可以用于未来的驾驶辅助系统中。
这种系统可以利用各种传感器和摄像机,搜集周围环境的信息,经过BP神经网络分析,判断当前环境的安全程度,及时采取措施,以达到更好的安全驾驶作用。
综上所述,BP神经网络具有自组织学习、泛化、模糊推理的特点,拥有非常广泛的应用场景,可以用于分类问题、计算机视觉、机器人技术和驾驶辅助系统等。
然而,BP神经网络也存在一些问题,例如训练时间长,需要大量的训练数据,容易受到噪声攻击等。
因此,研究人员正在积极改进BP神经网络,使其能够更好地解决各种问题。
BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。
它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。
1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。
输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。
线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。
非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。
激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。
2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。
常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。
3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。
反向传播算法的核心思想是使用链式法则。
首先计算输出层的梯度,即损失函数对输出层输出的导数。
然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。
接着继续向输入层传播,直到更新输入层的权重和偏置。
在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。
4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。
权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。
梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。
bp神经网络算法步骤结合实例
BP神经网络算法步骤包括以下几个步骤:
1.输入层:将输入数据输入到神经网络中。
2.隐层:在输入层和输出层之间,通过一系列权值和偏置将输入数据进行处理,得到输出
数据。
3.输出层:将隐层的输出数据输出到输出层。
4.反向传播:通过反向传播算法来计算误差,并使用梯度下降法对权值和偏置进行调整,
以最小化误差。
5.训练:通过不断地进行输入、隐层处理、输出和反向传播的过程,来训练神经网络,使
其达到最优状态。
实例:
假设我们有一个BP神经网络,它的输入层有两个输入节点,隐层有三个节点,输出层有一个节点。
经过训练,我们得到了权值矩阵和偏置向量。
当我们给它输入一组数据时,它的工作流程如下:
1.输入层:将输入数据输入到神经网络中。
2.隐层:将输入数据与权值矩阵相乘,再加上偏置向量,得到输出数据。
3.输出层:将隐层的输出数据输出到输出层。
4.反向传播:使用反向传播算法计算误差,并使用梯度下降法调整权值和偏置向量,以最
小化误差。
5.训练:通过不断地输入、处理、输出和反向传播的过程,来训练神经网络,使其达到最
优状态。
这就是BP神经网络算法的基本流程。
在实际应用中,还需要考虑许多细节问题,如权值和偏置的初始值、学习率、激活函数等。
但是,上述流程是BP神经网络算法的基本框架。
BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。
(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。
(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。
(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。
2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。
输出模型又分为:隐节点输出模型和输出节点输出模型。
下面将逐个介绍。
(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。
一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。
(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。
BP 神经网络模型基本原理( 1) 神经网络的定义简介神经网络是由多个神经元组成的广泛互连的神经网络, 能够模拟生物神经系统真实世界及物体之间所做出的交互反应. 人工神经网络处理信息是通过信息样本对神经网络的训练, 使其具有人的大脑的记忆, 辨识能力, 完成名种信息处理功能. 它不需要任何先验公式, 就能从已有数据中自动地归纳规则, 获得这些数据的内在规律, 具有良好的自学习, 自适应, 联想记忆, 并行处理和非线性形转换的能力, 特别适合于因果关系复杂的非确定性推理, 判断, 识别和分类等问题. 对于任意一组随机的, 正态的数据, 都可以利用人工神经网络算法进行统计分析, 做出拟合和预测.基于误差反向传播(Back propagation)算法的多层前馈网络(Multiple-layer feedforward network, 简记为BP 网络), 是目前应用最成功和广泛的人工神经网络.( 2) BP 模型的基本原理[3]学习过程中由信号的正向传播与误差的逆向传播两个过程组成. 正向传播时, 模式作用于输入层, 经隐层处理后, 传入误差的逆向传播阶段, 将输出误差按某种子形式, 通过隐层向输入层逐层返回, 并“分摊”给各层的所有单元, 从而获得各层单元的参考误差或称误差信号, 以作为修改各单元权值的依据. 权值不断修改的过程, 也就是网络学习过程. 此过程一直进行到网络输出的误差准逐渐减少到可接受的程度或达到设定的学习次数为止. BP 网络模型包括其输入输出模型, 作用函数模型, 误差计算模型和自学习模型.BP 网络由输入层, 输出层以及一个或多个隐层节点互连而成的一种多层网, 这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系, 又不致使网络输出限制在-1和1之间. 见图( 1) .O 1 O 2 O i O m( 大于等于一层) W (1)…( 3) BP 神经网络的训练BP 算法通过“训练”这一事件来得到这种输入, 输出间合适的线性或非线性关系. “训练”的过程可以分为向前传输和向后传输两个阶段:输入层 输出层 隐含层图1 BP 网络模型[1]向前传输阶段:①从样本集中取一个样本,i j P Q , 将i P 输入网络;②计算出误差测度1E 和实际输出(1)(2)()21(...((())...))L i L iO F F F PW W W =; ③对权重值L W W W ,...,)2()1(各做一次调整, 重复这个循环, 直到i E ε<∑.[2]向后传播阶段——误差传播阶段:①计算实际输出p O 与理想输出i Q 的差;②用输出层的误差调整输出层权矩阵; ③211()2mi ij ij j E Q O ==-∑; ④用此误差估计输出层的直接前导层的误差, 再用输出层前导层误差估计更前一层的误差. 如此获得所有其他各层的误差估计;⑤并用这些估计实现对权矩阵的修改. 形成将输出端表现出的误差沿着与输出信号相反的方向逐级向输出端传递的过程.网络关于整个样本集的误差测度:i iE E =∑几点说明:一般地,BP 网络的输入变量即为待分析系统的内生变量(影响因子或自变量)数,一般根据专业知识确定。
BP⼈⼯神经⽹络试验报告⼀学号:北京⼯商⼤学⼈⼯神经⽹络实验报告实验⼀基于BP算法的XX及Matlab实现院(系)专业学⽣姓名成绩指导教师2011年10⽉⼀、实验⽬的:1、熟悉MATLAB 中神经⽹络⼯具箱的使⽤⽅法;2、了解BP 神经⽹络各种优化算法的原理;3、掌握BP 神经⽹络各种优化算法的特点;4、掌握使⽤BP 神经⽹络各种优化算法解决实际问题的⽅法。
⼆、实验内容:1 案例背景1.1 BP 神经⽹络概述BP 神经⽹络是⼀种多层前馈神经⽹络,该⽹络的主要特点是信号前向传递,误差反向传播。
在前向传递中,输⼊信号从输⼊层经隐含层逐层处理,直⾄输出层。
每⼀层的神经元状态只影响下⼀层神经元状态。
如果输出层得不到期望输出,则转⼊反向传播,根据预测误差调整⽹络权值和阈值,从⽽使BP 神经⽹络预测输出不断逼近期望输出。
BP 神经⽹络的拓扑结构如图1.1所⽰。
图1.1 BP 神经⽹络拓扑结构图图1.1中1x ,2x , ……n x 是BP 神经⽹络的输⼊值1y ,2y , ……n y 是BP 神经的预测值,ij ω和jk ω为BP 神经⽹络权值。
从图1.1可以看出,BP 神经⽹络可以看成⼀个⾮线性函数,⽹络输⼊值和预测值分别为该函数的⾃变量和因变量。
当输⼊节点数为n ,输出节点数为m 时,BP 神经⽹络就表达了从n 个⾃变量到m 个因变量的函数映射关系。
BP 神经⽹络预测前⾸先要训练⽹络,通过训练使⽹络具有联想记忆和预测能⼒。
BP 神经⽹络的训练过程包括以下⼏个步骤。
步骤1:⽹络初始化。
根据系统输⼊输出序列()y x ,确定⽹络输⼊层节点数n 、隐含层节点数l ,输出层节点数m ,初始化输⼊层、隐含层和输出层神经元之间的连接权值ij ω和式中, l 为隐含层节点数; f 为隐含层激励函数,该函数有多种表达形式,本章所选函数为:步骤3:输出层输出计算。
根据隐含层输出H ,连接权值jk ω和阈值b ,计算BP 神经⽹络预测输出O 。
bp神经网络第一篇:BP神经网络的基本原理BP神经网络是一种最为经典的人工神经网络之一,它在模拟神经元之间的信息传输和处理过程上有很高的效率,可以被应用于多种领域,如图像处理、模式识别、预测分析等。
BP神经网络的核心思想是通过将神经元之间的权值调整来达到优化网络结构的目的,从而提高网络的准确率和泛化能力。
BP神经网络包含三个基本部分:输入层、隐层和输出层。
其中,输入层用于接收原始数据,隐层是神经元之间信号处理的地方,而输出层则用于输出最终的结果。
与其他的神经网络不同,BP神经网络使用了反向传播算法来调整神经元之间的权值。
这个算法是一种基于梯度下降的优化方法,通过最小化目标函数来优化权值,从而获得最小的误差。
具体来说,反向传播算法分为两个步骤:前向传播和反向传播。
前向传播是指从输入层开始,将数据经过神经元的传递和处理,一直到输出层,在这个过程中会计算每一层的输出值。
这一步完成后,就会得到预测值和实际值之间的误差。
接着,反向传播将会计算每个神经元的误差,并将误差通过链式法则向后传播,以更新每个神经元的权值。
这一步也被称为误差反向传播,它通过计算每个神经元对误差的贡献来更新神经元之间的权值。
总的来说,BP神经网络的优点在于其具有灵活性和较高的准确率。
但同时也存在着过拟合和运算时间过长等问题,因此在实际应用中需要根据实际情况加以取舍。
第二篇:BP神经网络的应用BP神经网络作为一种人工智能算法,其应用范围非常广泛。
以下是BP神经网络在不同领域的应用案例。
1. 图像处理BP神经网络在图像处理方面的应用主要有两个方面:图像分类和图像增强。
在图像分类方面,BP神经网络可以通过对不同特征之间的关系进行学习,从而对图像进行分类。
在图像增强方面,BP神经网络可以根据图像的特征进行修复和增强,从而提高图像的质量。
2. 股票预测BP神经网络可以通过对历史数据的学习来预测未来股市趋势和股票价格变化,对投资者提供参考依据。
3. 语音识别BP神经网络可以对人声进行测量和分析,从而识别出人说的话,实现语音识别的功能。
BP 神经网络算法 三层BP 神经网络如图:设网络的输入模式为Tn x x x x ),...,(21=,隐含层有h 个单元,隐含层的输出为Th y y y y ),...,(21=,输出层有m 个单元,他们的输出为Tm z z z z ),...,(21=,目标输出为Tm t t t t ),...,,(21=设隐含层到输出层的传递函数为f ,输出层的传递函数为g于是:)()(1∑∑===-=ni i ij ni iij j x w f xw f y θ:隐含层第j 个神经元的输出;其中1,00=-=x w j θ)(0∑==hj j jk k y w g z :输出层第k 个神经元的输出此时网络输出与目标输出的误差为∑=-=m k k k z t 12)(21ε,显然,它是jk ij w w 和的函数。
下面的步骤就是想办法调整权值,使ε减小。
由高等数学的知识知道:负梯度方向是函数值减小最快的方向因此,可以设定一个步长η,每次沿负梯度方向调整η个单位,即每次权值的调整为:pqpq w w ∂∂-=∆εη,η在神经网络中称为学习速率 可以证明:按这个方法调整,误差会逐渐减小。
隐含层,隐含层输出向量传递函数输入层,输入向量BP 神经网络(反向传播)的调整顺序为: 1)先调整隐含层到输出层的权值 设k v 为输出层第k 个神经元的输入∑==hj j jkk y wv 0-------复合函数偏导公式若取x e x f x g -+==11)()(,则)1()111(11)1()('2k k v v v v k z z ee e e u g kk k k -=+-+=+=---- 于是隐含层到输出层的权值调整迭代公式为: 2)从输入层到隐含层的权值调整迭代公式为: 其中j u 为隐含层第j 个神经元的输入:∑==ni i ijj x wu 0注意:隐含层第j 个神经元与输出层的各个神经元都有连接,即jy ∂∂ε涉及所有的权值ij w ,因此∑∑==--=∂∂∂∂∂-∂=∂∂m k jk k k k j k k k m k k k k j w u f z t y u u z z z t y 002)(')()(ε于是:因此从输入层到隐含层的权值调整迭代为公式为: 例:下表给出了某地区公路运力的历史统计数据,请建立相应的预测模型,并对给出的2010和2011年的数据,预测相应的公路客运量和货运量。
BP神经⽹络 百度百科 在⼈⼯神经⽹络发展历史中,很长⼀段时间⾥没有找到隐层的连接权值调整问题的有效算法。
直到误差反向传播算法(BP 算法)的提出,成功地解决了求解⾮线性连续函数的多层前馈神经⽹络权重调整问题。
BP (Back Propagation)神经⽹络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。
输⼊层各神经元负责接收来⾃外界的输⼊信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能⼒的需求,中间层可以设计为单隐层或者多隐层结构;最后⼀个隐层传递到输出层各神经元的信息,经进⼀步处理后,完成⼀次学习的正向传播处理过程,由输出层向外界输出信息处理结果。
当实际输出与期望输出不符时,进⼊误差的反向传播阶段。
误差通过输出层,按误差梯度下降的⽅式修正各层权值,向隐层、输⼊层逐层反传。
周⽽复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经⽹络学习训练的过程,此过程⼀直进⾏到⽹络输出的误差减少到可以接受的程度,或者预先设定的学习次数为⽌。
BP神经⽹络模型BP⽹络模型包括其输⼊输出模型、作⽤函数模型、误差计算模型和⾃学习模型。
(1)节点输出模型 隐节点输出模型:Oj=f(∑Wij×Xi-qj) (1) 输出节点输出模型:Yk=f(∑Tjk×Oj-qk) (2) f-⾮线形作⽤函数;q -神经单元阈值。
图1 典型BP⽹络结构模型 (2)作⽤函数模型 作⽤函数是反映下层输⼊对上层节点刺激脉冲强度的函数⼜称刺激函数,⼀般取为(0,1)内连续取值Sigmoid函数:f(x)=1/(1+e) (3) (3)误差计算模型 误差计算模型是反映神经⽹络期望输出与计算输出之间误差⼤⼩的函数: Ep=1/2×∑(tpi-Opi) (4) tpi- i节点的期望输出值;Opi-i节点计算输出值。
(4)⾃学习模型 神经⽹络的学习过程,即连接下层节点和上层节点之间的权重拒阵Wij的设定和误差修正过程。
bp神经网络预测原理
BP神经网络是一种常见的前向人工神经网络,它主要用于解
决回归和分类问题。
其预测原理基于反向传播算法,该算法通过不断调整网络中连接权重来实现模型的训练和优化。
BP神经网络由输入层、隐藏层(可以有多个)和输出层组成。
每个层都由多个神经元节点构成,这些神经元通过加权和激活函数实现信息的传递与转换。
训练过程中,首先将输入数据通过输入层传递到隐藏层。
每个隐藏层的神经元根据输入和连接权重进行加权求和,并通过激活函数(如Sigmoid函数)映射到一个非线性输出。
这个输出
再传递到下一层的隐藏层,直至传递到输出层。
然后,将网络输出与实际值进行比较,计算误差。
接下来,反向传播算法根据误差大小调整连接权重,从输出层开始逐层向前调整。
调整过程使用梯度下降法,即根据误差关于权重的导数来更新权重,使误差逐步减小。
重复上述过程,直到网络输出的误差达到预定的精度要求或训练次数达到预定的上限。
此时,BP神经网络已经通过训练得
到了一组适应性较好的连接权重,可以用于预测新的输入数据。
通过上述预测原理,BP神经网络能够学习输入与输出之间的
复杂映射关系,实现对未知数据的预测。
然而,需要注意的是,在实际应用中,选择适当的网络结构和参数设置对BP神经网
络的预测性能至关重要。
机器学习实战—搭建BP神经⽹络实现⼿写数字识别看了⼏天的BP神经⽹络,总算是对它有⼀点点的理解了。
今天就⽤python搭建了⼀个模型来实现⼿写数字的识别。
⼀、BP神经⽹络简介BP(back propagation)神经⽹络是⼀种按照误差逆向传播算法训练的多层前馈神经⽹络,是应⽤最⼴泛的⼀种神经⽹络。
BP神经⽹络算法的基本思想是学习过程由信号正向传播和误差反向传播两个过程组成。
正向传播时,把样本的特征从输⼊层进⾏输⼊,信号经过各个隐藏层逐层处理之后,由输出层传出,对于⽹络的输出值与样本真实标签之间的误差,从最后⼀层逐层往前反向传播,计算出各层的学习信号,再根据学习信号来调整各层的权值参数。
这种信号的正向传播和误差的反向传播是反复进⾏的,⽹络中权值调整的过程也就是模型训练的过程,反复训练模型,直到模型的代价函数⼩于某个预先设定的值,或者训练次数达到预先设置的最⼤训练次数为⽌。
⼆、⼿写数字数据集介绍我⽤的⼿写数字数据集是sklearn.datasets中的⼀个数据集,使⽤load_digits()命令就可以载⼊数据集,数据集包含了1797个样本,也就是有1797张⼿写数字的图⽚,每个样本包含了64个特征,实际上每个样本就是⼀张8x8的图⽚,对应着0-9中的⼀个数字。
看⼀下第⼀个样本长什么样⼦:from matplotlib import pyplot as pltfrom sklearn.datasets import load_digits# 载⼊数据集digits = load_digits()# 展⽰第⼀张图⽚,plt.imshow(digits.images[0])plt.show()结果如下图:从结果也可以看出,是⼀张8x8的图⽚,这张图⽚显实的应该是数字0。
三、⽹络的介绍以及搭建1、⽹络的介绍我搭建的是⼀个2层的神经⽹络,包含⼀个输⼊层(注意:输⼊层⼀般不计⼊⽹络的层数⾥⾯),⼀个隐藏层和⼀个输出层。
数据预测之BP神经网络具体应用以及matlab代码2013-12-25 17:17 2467人阅读评论(0) 收藏举报1.具体应用实例。
根据表2,预测序号15的跳高成绩。
表2 国内男子跳高运动员各项素质指标4.4 (序号15)跳高成绩预测4.4.1 数据整理1)我们将前14组国内男子跳高运动员各项素质指标作为输入,即(30m行进跑,立定三级跳远,助跑摸高,助跑4-6步跳高,负重深蹲杠铃,杠铃半蹲系数,100m,抓举),将对应的跳高成绩作为输出。
并用matlab自带的premnmx()函数将这些数据归一化处理。
数据集:(注意:每一列是一组输入训练集,行数代表输入层神经元个数,列数输入训练集组数)P=[3.2 3.2 3 3.2 3.2 3.4 3.2 3 3.2 3.2 3.2 3.9 3.1 3.2;9.6 10.3 9 10.3 10.1 10 9.6 9 9.6 9.2 9.5 9 9.5 9.7;3.45 3.75 3.5 3.65 3.5 3.4 3.55 3.5 3.55 3.5 3.4 3.1 3.6 3.45;2.15 2.2 2.2 2.2 2 2.15 2.14 2.1 2.1 2.1 2.15 2 2.1 2.15;140 120 140 150 80 130 130 100 130 140 115 80 90 130;2.83.4 3.5 2.8 1.5 3.2 3.5 1.8 3.5 2.5 2.8 2.2 2.74.6;11 10.9 11.4 10.8 11.3 11.5 11.8 11.3 11.8 11 11.9 13 11.1 10.85;50 70 50 80 50 60 65 40 65 50 50 50 70 70];T=[2.24 2.33 2.24 2.32 2.2 2.27 2.2 2.26 2.2 2.24 2.24 2.2 2.2 2.35];4.4.2 模型建立4.4.2.1 BP网络模型BP网络(Back-ProPagation Network)又称反向传播神经网络,通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。
bp算法的案例BP算法(Back Propagation)是一种常见的神经网络训练算法,用于解决分类、回归等问题。
下面是一个关于使用BP算法进行手写数字识别的案例,包括神经网络结构、数据预处理、模型训练和模型评估等方面的内容。
1. 神经网络结构手写数字识别是一个多类别分类问题,常用的神经网络结构是多层感知器(Multi-Layer Perceptron,MLP)。
MLP通常包含输入层、若干隐藏层和输出层。
输入层接收手写数字的像素值作为输入,每个像素点对应一个输入节点。
隐藏层是一些全连接层,每一层都由若干个神经元组成,可以通过增加隐藏层的数量和神经元的数量来增加网络的复杂度。
输出层是一个全连接层,每个输出节点对应一个类别,其中概率最大的节点对应的类别即为预测结果。
2. 数据预处理手写数字识别通常使用MNIST数据集,该数据集包含了60000个用于训练的样本和10000个用于测试的样本。
每个样本是一张28x28像素的黑白图片,表示一个手写数字。
为了进行神经网络的训练,需要将图片数据转化为合适的格式,通常是将像素值进行标准化,将灰度值除以255,使其范围在0到1之间。
同时,还需要将每个样本的标签进行独热编码(One-Hot Encoding),将其转化为一个向量,其中目标类别对应的位置为1,其余位置为0。
3. 模型训练在进行模型训练之前,需要对神经网络的超参数进行设置,如学习率、隐藏层数量、每层的神经元数量等。
通过调节这些超参数可以影响模型的性能。
然后,使用训练数据集对神经网络进行训练。
训练过程中,首先将标准化后的像素值输入到网络中,通过前向传播计算出每个节点的输出值,然后根据实际的标签值和预测的输出值计算损失函数(常用的损失函数有均方误差和交叉熵损失)。
接下来,使用反向传播算法(Back Propagation)计算出每个节点的梯度,然后根据梯度更新网络中的参数,以减小损失函数的值。
反复迭代这一过程,直到模型收敛或者达到设定的迭代次数。