B-S期权定价模型
- 格式:ppt
- 大小:1.05 MB
- 文档页数:41
Black—Scholes期权定价模型(重定向自Black—Scholes公式)Black—Scholes期权定价模型(Black-Scholes Option Pricing Model),布莱克-肖尔斯期权定价模型Black—Scholes 期权定价模型概述1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。
他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。
与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。
结果,两篇论文几乎同时在不同刊物上发表.所以,布莱克-斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型.默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
瑞典皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献.[编辑]B—S期权定价模型(以下简称B-S模型)及其假设条件[编辑](一)B-S模型有7个重要的假设1、股票价格行为服从对数正态分布模式;2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割;4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);5、该期权是欧式期权,即在期权到期前不可实施.6、不存在无风险套利机会;7、证券交易是持续的;8、投资者能够以无风险利率借贷.[编辑](二)荣获诺贝尔经济学奖的B—S定价公式[1]C = S*N(d1) − Le− rT N(d2)其中:C—期权初始合理价格L-期权交割价格S—所交易金融资产现价T—期权有效期r—连续复利计无风险利率Hσ2—年度化方差N()—正态分布变量的累积概率分布函数,在此应当说明两点:第一,该模型中无风险利率必须是连续复利形式。
基于B-S公式与时间序列模型对期权价格的预测引言期权是一种金融工具,具有在未来某个时间点购买或出售某项资产的权利。
期权的价格受多种因素影响,包括标的资产价格、行权价格、期权到期时间、无风险利率和波动率等。
对期权价格的准确预测对于投资者具有重要意义,因为它能帮助投资者进行风险管理,合理进行买卖决策。
本文将基于B-S公式和时间序列模型,探讨对期权价格进行预测的方法。
一、B-S公式对期权价格的影响B-S(Black-Scholes)期权定价模型是由费舍尔·布莱克(Fisher Black)、梅伦·斯科尔斯(Myron Scholes)和罗伯特·默顿(Robert Merton)于1973年提出的,成为了衍生品市场定价的理论基础。
B-S模型使用了随机微分方程,可以通过计算得出期权合理价格。
B-S公式中的主要变量包括标的资产价格(S)、行权价格(K)、无风险利率(r)、期权到期时间(T)和标的资产波动率(σ)。
这些变量将直接影响期权价格的变动。
标的资产价格上升会使得看涨期权的价格上涨,而看跌期权价格下跌。
无风险利率的升降将直接影响期权价格的折现率,期权到期时间的延长会增加期权的时间价值,标的资产波动率的提高也会增加期权的价格波动性。
对于使用B-S公式进行期权价格预测来说,投资者首先要对期权价格的影响因素进行深入分析和预测。
只有准确把握了这些影响因素,才能对期权价格进行合理的预测。
二、基于时间序列模型的期权价格预测B-S公式的预测是基于已知的输入参数进行的,而时间序列模型则是基于历史数据对未来期权价格进行预测的方法。
时间序列模型通常会采用统计分析的方法,通过对历史期权价格数据进行建模,得出未来价格变动的规律。
时间序列模型中用得较多的包括ARIMA模型(自回归积分移动平均模型)、GARCH模型(广义自回归条件异方差模型)等。
ARIMA模型是一种建立在时间序列上的预测模型,可以用来预测未来一段时间内的值。
Black-Scholes期权定价模型Black-Scholes期权定价模型是一种能用来计算股票期权价格的数学模型。
它是由费希尔·布莱克和默顿·斯科尔斯于20世纪70年代初提出的,因此得名。
该模型的基本假设是市场条件持续稳定,且不存在利率和股票价格变动的趋势。
此外,它还假设股票价格服从几何布朗运动,即价格的波动是随机的。
根据这些假设,Black-Scholes模型将股票价格与利率、期权行权价、到期时间以及波动率等因素联系起来,以计算期权的合理价格。
Black-Scholes模型的公式为:C = S_0 * N(d1) - X * e^(-r * T) * N(d2)其中,C为期权的价格,S_0为股票的当前价格,N(d1)和N(d2)分别为标准正态分布函数的值,X为期权的行权价,r为无风险利率,T为期权的到期时间。
d1和d2是通过一系列数学计算得出的。
利用Black-Scholes模型,投资者可以根据个人的风险偏好和市场条件来评估一个期权的合理价格。
它对市场参与者来说是一种有用的工具,因为它能够帮助他们理解和衡量期权的价值。
然而,Black-Scholes模型也存在一些局限性。
首先,它假设市场条件持续稳定,而实际上市场是非常复杂和动态的。
其次,它假设股票价格服从几何布朗运动,这在现实中并不总是成立。
另外,模型中的波动率是一个固定的参数,而实际上波动率是随着时间和市场条件的变化而变化的。
因此,在使用Black-Scholes模型时,投资者需要慎重考虑其局限性,并结合其他因素和分析来作出投资决策。
此外,人们也一直在尝试改进这个模型,以更好地适应实际市场的复杂性和动态性。
Black-Scholes期权定价模型是金融领域中最著名的定价模型之一。
它提供了一个基于几何布朗运动的股票价格模型,可以计算欧式期权的合理价格。
该模型的公式给出了欧式期权的理论价格,而不考虑市场上的任何其他因素。
Black-Scholes模型的創始人费希尔·布莱克和默顿·斯科尔斯在1973年发布了这一模型,并以此获得了1997年诺贝尔经济学奖。
bs模型计算公式BS模型又称为布莱克-斯科尔斯模型(Black-Scholes model),是一种用于计算欧洲期权价格的数学模型。
它是由费希尔·布莱克(Fischer Black)、默顿·斯科尔斯(Myron Scholes)和罗伯特·马顿(Robert Merton)于1970年提出。
BS模型基于一些假设,如市场效率、股票价格的几何布朗运动、无风险利率等,通过对期权和股票组合进行对冲交易,从而得出期权的正确定价。
BS模型的计算公式如下:C=S*N(d1)-X*e^(-r*T)*N(d2)P=X*e^(-r*T)*N(-d2)-S*N(-d1)其中,C表示期权的看涨定价,P表示期权的看跌定价。
S表示标的资产的现价,X表示期权的执行价格,r表示无风险利率,T表示期权到期时间。
N(代表标准正态分布的累积分布函数。
d1和d2的计算公式如下:d1 = (ln(S/X) + (r + 0.5 * sigma^2) * T) / (sigma * sqrt(T)) d2 = d1 - sigma * sqrt(T)其中,sigma表示标的资产的波动率。
波动率是BS模型中的一个重要参数,通常需要根据历史数据或市场预期进行估计。
用于计算d1和d2的sigma应该是年化波动率。
BS模型的核心思想是对冲交易,即构建一个期权和标的资产的组合,使其不受市场波动的影响,从而消除了市场风险,只保留了无风险利率的影响。
通过对冲交易,可以使用风险中性的概率测度,将未来的现金流折现到当前时刻,得到期权的正确定价。
BS模型在计算期权价格时使用了一些理论前提和假设,比如市场效率、收益率的对数正态分布等。
这些假设可能与实际情况有所偏差,因此BS模型的应用也存在一定的局限性。
在实际应用中,需要根据具体情况对模型进行调整和修正,以提高对期权价格的准确度和可靠性。
总之,BS模型是一种用于计算欧洲期权价格的数学模型,通过对期权和标的资产的对冲交易,消除了市场风险,保留了无风险利率的影响,从而得出期权的正确定价。
bs模型计算公式(二)bs模型计算公式1. bs模型简介Black-Scholes模型,简称bs模型,是一种金融衍生品定价模型,常被用于计算欧式期权的理论价格。
该模型假设市场上不存在套利机会,且金融资产价格的变动服从几何布朗运动。
2. bs模型计算公式bs模型主要通过以下公式进行计算:欧式看涨期权价格公式根据bs模型,欧式看涨期权的价格(C)可以通过以下公式计算:C = S * N(d1) - X * e^(-r*T) * N(d2)其中: - S为标的资产当前价格 - N()为标准正态分布的累积概率函数 - d1 = [ln(S/X) + (r + σ^2/2) * T] / (σ * sqrt(T)) - d2 = d1 - σ * sqrt(T) - X为期权行权价 - r为无风险利率 - σ为标的资产的波动率 - T为期权的剩余到期时间欧式看跌期权价格公式bs模型还可以用于计算欧式看跌期权的价格(P),其公式如下:P = X * e^(-r*T) * N(-d2) - S * N(-d1)同样地,其中的变量和符号含义与前述一致。
3. 公式解释和示例欧式看涨期权示例假设标的资产的当前价格S为100,期权行权价X为105,无风险利率r为,标的资产的波动率σ为,期限T为1年。
那么我们可以使用bs模型来计算该欧式看涨期权的价格。
根据公式,首先计算d1和d2的值:d1 = [ln(100/105) + ( + ^2/2) * 1] / ( * sqrt(1))≈ -d2 = - - * sqrt(1)≈ -接下来,使用累积概率函数N()计算d1和d2对应的值:N(d1) ≈N(d2) ≈最后,将这些值代入公式,可以得到期权的价格:C = 100 * - 105 * e^(-*1) *≈因此,根据bs模型,该期权的理论价格约为。
欧式看跌期权示例与上例类似,假设标的资产的当前价格S仍为100,期权行权价X 为105,无风险利率r为,标的资产的波动率σ为,期限T为1年。
BLACK-SCHOLES期权定价模型Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。
他们创立和发展的布莱克-斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础,特别是为评估组合保险成本、可转换债券定价及认股权证估值等提供了依据。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式(看涨和看跌)。
与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。
结果,两篇论文几乎同时在不同刊物上发表。
所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型(含红利的)。
默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。
(一)B-S模型有5个重要的假设1、金融资产收益率服从对数正态分布;(股票价格走势遵循几何布朗运动)2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;3、市场无摩擦,即不存在税收和交易成本;4、该期权是欧式期权,即在期权到期前不可实施;5、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);6、不存在无风险套利机会;7、证券交易是持续的;8、投资者能够以无风险利率借贷。
(二)荣获诺贝尔经济学奖的B-S 定价公式)()(21d N Le d SN c rT --=其中:C —期权初始合理价格L —期权交割价格S —所交易金融资产现价T —期权有效期r —连续复利计无风险利率2σ—年度化方差(波动率)N()—正态分布变量的累积概率分布函数,(标准正态分布 μ=0)在此应当说明两点: 第一,该模型中无风险利率必须是连续复利形式。
Black-Scholes期权定价模型摘要:期权定价是所有金融应用领域数学上最复杂的问题之一。
第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世。
B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。
不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。
现在,几乎所有从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。
这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用,该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
关键词:期权定价;有限差分方法一、引言期权,也即期货合约的选择权,指的是其购买者在交付一定数量的权利金之后,所拥有的在未来一定时间内以一定价格买进或卖出一定数量相关商品合约(不论是实物商品,金融证券或期货)的权利,但不负有必须买进或卖出的义务。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。
随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。
在过去的20年中,投资者通过运用布莱克——斯克尔斯期权定价模型,将这一抽象的数字公式转变成了大量的财富。
二、期权定价(一)期权定价的概念期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品(underlying-assets)的选择权。
期权价格是期权合约中唯一随市场供求变化而改变的变量,它的高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。
早在1900年法国金融专家劳雷斯·巴舍利耶就发表了第一篇关于期权定价的文章。
此后,各种经验公式或计量定价模型纷纷面世,但因种种局限难于得到普遍认同。
70年代以来,伴随着期权市场的迅速发展,期权定价理论的研究取得了突破性进展。
B-S 模型专门用来解决期权或权证这类衍生品的定价问题。
模型的假设条件主要有:
(1)资产价格的运动可以用对数正态分布描述;
(2)资产收益率的变化属于正态分布;
(3)模型使用的无风险利率在相应投资期内为常数;
(4)市场没有摩擦,无需支付税收或交易成本;
(5)期权为欧式期权,除非在到期日才能执行;
(6)投资者在市场中不能进行无风险套利;
(7)市场允许投资者根据个人选择进行卖空。
从这些假设出发,B-S 模型推导出期权价格是股票价格、股价波动率、无风险利率、期权执行价格和距到期曰剩余时间这五个变量的函数,并得出适用于无收益资产欧式看涨期权的一个微分方程:
rf S
f S S f rS t f =∂∂+∂∂+∂∂222221σ (3-3)
f:期权价格;S:当前时刻股票价格;r 无风险利率;t:当前时刻
求解该微分方程,即可得到在无收益条件下买入期权的定价公式: (3-
4)
c:期权理论价格;X:期权执行价格;T:到期时刻
其中,服从标准正态分布的d 1、d 2的数值由下列公式确定,公式中字母含义与上文一致。
t T d t
T t T r X S d t T t T r X S d --=---+=--++=
σσσσσ12221))(2/()/ln())(2/()/ln( (3-5)
)()(2)(1d N Xe d SN c t T r ---=。
B-S期权定价公式Black-Schole期权定价模型一、Black-Schole期权定价模型的假设条件Black-Schole期权定价模型的七个假设条件如下:1.风险资产(Black-Schole期权定价模型中为股票),当前时刻市场价格为S。
S遵循几何布朗运动,即dSSdtdz。
dt其中,dz为均值为零,方差为dt的无穷小的随机变化值(dz,称为标准布朗运动,代表从标准正态分布(即均值为0、标准差为1的正态分布)中取的一个随机值),为股票价格在单位时间内的期望收益率,则是股票价格的波动率,即证券收益率在单位时间内的标准差。
和都是已知的。
2.没有交易费用和税收,不考虑保证金问题,即不存在影响收益的任何外部因素。
3.资产价格的变动是连续而均匀的,不存在突然的跳跃。
4.该标的资产可以被自由地买卖,即允许卖空,且所有证券都是完全可分的。
5.在期权有效期内,无风险利率r保持不变,投资者可以此利率无限制地进行借贷。
6.在衍生品有效期间,股票不支付股利。
7.所有无风险套利机会均被消除。
二、Black-Schole期权定价模型在上述假设条件的基础上,Black和Schole得到了如下适用于无收益资产欧式看涨期权的Black-Schole微分方程:ftrSfS122S22f2rfS其中f为期权价格,其他参数符号的意义同前。
通过这个微分方程,Black和Schole得到了如下适用于无收益资产欧式看涨期权的定价公式:c其中,d1ln(S/某)(r2SN(d1)某er(Tt)N(d2)/2)(Tt)Tt2/2)(Tt)d1Ttd2ln(S/某)(rTtc为无收益资产欧式看涨期权价格;N(某)为标准正态分布变量的累计概率分布函数(即这个变量小于某的概率),根据标准正态分布函数特性,我们有N(某)1N(某)。
(二)Black-Schole期权定价公式的理解1.SN(d1)可看作证券或无价值看涨期权的多头;Ker(Tt)N(d2)可看作K份现金或无价值看涨期权的多头。