平均指标练习题
- 格式:doc
- 大小:35.50 KB
- 文档页数:2
平均指标和变异指标练习题题目一某班级共有40名学生,他们的身高数据如下:学生姓名身高(cm)小明160小红158小华165小李172小张155……请你使用平均指标和变异指标回答以下问题:1.计算这40名学生的平均身高。
2.计算这40名学生的身高的标准差。
3.根据平均身高和标准差,判断哪些学生的身高属于正常范围内(身高在平均身高的正负1个标准差范围内)。
题目二一家工厂连续30天生产的产品数量如下:日期产品数量2022-01-01 1002022-01-02 982022-01-03 1022022-01-04 992022-01-05 101……请你使用平均指标和变异指标回答以下问题:1.计算这30天内产品数量的平均值。
2.计算这30天内产品数量的极差。
3.根据平均值和极差,判断哪些天的产品数量与平均水平相差较大。
题目三某城市连续7天的气温数据如下:日期最高气温(℃)2022-01-01 102022-01-02 122022-01-03 82022-01-04 152022-01-05 20……请你使用平均指标和变异指标回答以下问题:1.计算这7天内最高气温的平均值。
2.计算这7天内最高气温的方差。
3.根据平均值和方差,判断这7天里的气温波动情况。
解答题目一1.计算这40名学生的平均身高。
使用平均指标,计算40名学生的平均身高可以通过求所有学生身高的和再除以学生人数得到。
平均身高 = (160 + 158 + 165 + 172 + 155 + ... + ... ) / 402.计算这40名学生的身高的标准差。
使用变异指标,计算40名学生的身高的标准差可以通过以下步骤进行:•计算每个学生身高与平均身高的差值。
•计算所有差值的平方和。
•求平方和的平均值。
•对平方和的平均值进行开方。
标准差可以描述数据的离散程度,数值越大表示数据的离散程度越大。
3.根据平均身高和标准差,判断哪些学生的身高属于正常范围内。
第三章平均指标与标志变异指标一、填空题1.平均指标是表明__________某一标志在具体时间、地点、条件下达到的_________的统计指标,也称为平均数。
2.权数对算术平均数的影响作用不决定于权数的大小,而决定于权数的________的大小。
3.几何平均数是n个__________的n次方根,.它是计算和平均速度的最适用的一种方法。
4.当标志值较大而次数较多时,平均数接近于标志值较的一方;当标志值较小而次数较多时,平均数靠近于标志值较的一方。
5.当时,加权算术平均数等于简单算术平均数。
6.利用组中值计算加权算术平均数是假定各组内的标志值是分布的,其计算结果是一个。
7.中位数是位于变量数列的那个标志值,众数是在总体中出现次数的那个标志值。
中位数和众数也可以称为平均数。
8.调和平均数是平均数的一种,它是的算术平均数的。
9.当变量数列中算术平均数大于众数时,这种变量数列的分布呈分布;反之算术平均数小于众数时,变量数列的分布则呈分布。
10.较常使用的离中趋势指标有、、、、、。
11.标准差系数是与之比。
12.已知某数列的平均数是200,标准差系数是30%,则该数列的方差是。
13.对某村6户居民家庭共30人进行调查,所得的结果是,人均收入400元,其离差平方和为5100000,则标准差是,标准差系数是。
14.在对称分配的情况下,平均数、中位数与众数是的。
在偏态分配的情况下,平均数、中位数与众数是的。
如果众数在左边、平均数在右边,称为偏态。
如果众数在右边、平均数在左边,则称为偏态。
15.采用分组资料,计算平均差的公式是,计算标准差的公式是。
二、单项选择题1.加权算术平均数的大小( )A受各组次数f的影响最大B受各组标志值X的影响最大C只受各组标志值X的影响 D受各组次数f和各组标志值X的共同影响2,平均数反映了( )A总体分布的集中趋势 B总体中总体单位分布的集中趋势C总体分布的离散趋势 D总体变动的趋势3.在变量数列中,如果标志值较小的一组权数较大,则计算出来的算术平均数( )A接近于标志值大的一方 B接近于标志值小的一方C不受权数的影响D无法判断4.根据变量数列计算平均数时,在下列哪种情况下,加权算术平均数等于简单算术平均数( )A各组次数递增 B各组次数大致相等 C各组次数相等 D各组次数不相等5.已知某局所属12个工业企业的职工人数和工资总额,要求计算该局职工的平均工资,应该采用( )A简单算术平均法 B加权算术平均法 C加权调和平均法 D几何平均法6.已知5个水果商店苹果的单价和销售额,要求计算5个商店苹果的平均单价,应该采用( )A简单算术平均法 B加权算术平均法 C加权调和平均法 D几何平均法7.计算平均数的基本要求是所要计算的平均数的总体单位应是( )A大量的 B同质的 C差异的 D少量的8.某公司下属5个企业,已知每个企业某月产值计划完成百分比和实际产值,要求计算该公司平均计划完成程度,应采用加权调和平均数的方法计算,其权数是( )A计划产值 B实际产值 C工人数 D企业数9.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )A各组的次数必须相等 B各组标志值必须相等C各组标志值在本组内呈均匀分布 D各组必须是封闭组10.离中趋势指标中,最容易受极端值影响的是( )A极差 B平均差 C标准差 D标准差系数11.平均差与标准差的主要区别在于( )A指标意义不同 B计算条件不同 C计算结果不同 D 数学处理方法不同12.某贸易公司的20个商店本年第一季度按商品销售额分组如下:则该公司20个商店商品销售额的平均差为( )A 7万元B 1万元C 12 万元D 3万元13.当数据组高度偏态时,哪一种平均数更具有代表性? ( )A算术平均数 B中位数 C众数 D几何平均数14.方差是数据中各变量值与其算术平均数的( )A离差绝对值的平均数 B离差平方的平均数C离差平均数的平方 D离差平均数的绝对值15.一组数据的偏态系数为1.3,表明该组数据的分布是( )A 正态分布 B平顶分布 C左偏分布 D右偏分布16.当一组数据属于左偏分布时,则( )A平均数、中位数与众数是合而为一的 B众数在左边、平均数在右边C众数的数值较小,平均数的数值较大 D众数在右边、平均数在左边17.四分位差排除了数列两端各( )单位标志值的影响。
第三章平均指标练习及答案第三章平均指数和标记变异指数1,填写问题1。
平均指数是一种统计指数,表明某个标记在特定的时间、地点和条件下达到_ _ _ _ _ _ _ _ _ _,也称为平均值2。
权重对算术平均值的影响不是由权重的大小决定的,而是由权重的大小决定的3。
几何平均数是n的n根。
这是最适合计算和平均速度的方法。
4。
当标记值较大且次数较多时,平均值接近标记值较大的一侧;当标志值小且次数大时,平均值接近标志值较小的一侧。
5。
当加权算术平均值等于简单算术平均值时6.使用组中值计算加权算术平均值时,假设每个组中的标记值都是分布的,计算结果为1 7。
中位数是位于可变序列中的标记值,模式是群体中出现次数的标记值中位数和众数也可以称为平均数8。
调和平均是一种平均,它是9。
当变量序列中的算术平均值大于模式时,变量序列的分布是分布的;另一方面,当算术平均值小于模式时,变量序列的分布是分布的10。
更常用的趋势指标是、、、、11.标准偏差系数是12。
据了解,XXXX一季度某一系列商品的平均销售数量按商品销售情况分为以下几类:按商品销售情况(低于2万-30元)公司20家店铺商品销售的平均差价是()如果店铺数量为1.530-40.9 40-50超过3 2(数)甲7万元乙10万元丙12万元丁3万元9当数据集高度倾斜时,哪个平均值更具代表性?()算术平均值b中值c模式d几何平均值14。
方差为()A绝对偏差平均值B平方偏差平均值C平方偏差平均值D绝对偏差平均值15。
一组数据的偏度系数为1.3。
显示这组数据的分布是()正态分布b 平顶分布c左偏置分布d右偏置分布16。
当一组数据属于左偏置分布时,则()A均值、中值和模式组合成左侧的一个B模式和右侧的C模式。
平均值越小,平均值越大。
d模式在右侧,平均值为17。
四分位偏差排除了序列两端()单位标志值的影响A1096B 15% C25 % D35 %18。
优势比是代表_ _ _ _ _ _ _ _ _ _ _规模的指标。
第五章相对与平均指标一、填空题1.总量指标的表现形式是_____,其数值随着_____大小而增加或减少。
2.根据总量指标所反映的社会经济现象总体内容不同,可将总量指标分为_____和_____两种。
3.总量指标是计算_____的基础。
4.某高校在校生人数是_____指标,其数值_____相加;毕业生人数是_____指标,其数值_____相加。
5.价值指标的特点是具有广泛的_____和_____。
6.属于同一总体对比的相对指标有_____、_____和_____;属于不同总体对比的相对指标有_____和_____。
7.相对指标的计量形式有两种,即:_____和_____,其中,除强度相对指标用_____表示外,其余都用_____表示。
8.检查长期计划执行情况时,如计划指标是按计划期末应达到的水平下达的,应采用_____法计算;如计划指标是按整个计划期累计完成总数下达的,应采用_____法计算。
9.某校在校生中男女之比为1.5:1,这是_____相对指标。
其中,男生所占比重为60%,这是_____相对指标。
10.同类指标数值在不同空间作静态对比形成_____指标;而同类指标数值在不同时间对比形成_____指标。
11.统计中的平均指标主要有_____、_____、_____、_____和_____五种。
12.简单算术平均数是加权算术平均数的_____,事实上简单算术平均数也有_____存在,只不过各变量值出现的_____均相等。
13.各变量值与其算术平均数的_____等于最小值。
14.权数对于平均数的影响作用,决定于作为权数的_____的比重大小。
15.在某市范围内以企业为单位研究企业平均规模时,各企业职工人数总和是_____总量指标。
16.调和平均数又可称为_____,它是作为_____的一种变形公式来使用的。
17.几何平均数是计算_____和_____最适用的一种方法。
18.中位数是位于数列_____的那个标志值;众数则是在总体中出现次数_____的那个标志值。
平均数专项练习题运用平均数解决带有缺失数值的问题在数学中,平均数是指一组数字的总和除以数字的个数,它是常用的一种统计指标。
通过计算平均数,我们可以得到一组数据的代表性指标,进而解决一些带有缺失数值的问题。
本文将通过一些专项练习题,展示如何使用平均数来解决这些问题。
问题一:班级考试成绩假设一个班级有30个学生,其中29个学生的考试成绩已知,而其中一个学生的成绩缺失。
请问如何利用平均数来估算这个学生的成绩?解决方法:1. 首先,计算已知成绩的平均数。
假设29个学生的成绩总和为S,那么平均成绩即为S/29。
2. 然后,将已知成绩的平均数与班级的平均成绩进行比较。
假设班级的平均成绩为A。
3. 根据平均数的性质,班级的平均成绩A应该等于(S+缺失学生的成绩)/30。
4. 通过解方程,可以计算出缺失学生的成绩为30A-S。
通过这种方法,我们可以估算出缺失学生的成绩,从而完整班级的考试成绩。
问题二:平均年龄问题某个家庭有父亲、母亲和两个孩子,已知父亲和母亲的年龄之和为80岁,而两个孩子的年龄之和为30岁。
如果已知孩子的平均年龄为15岁,那么父亲和母亲各自的年龄是多少?解决方法:1. 首先,根据已知条件,可以得到孩子的年龄之和为30岁,因此父亲和母亲的年龄之和再加上孩子的年龄之和应该为80岁+30岁=110岁。
2. 接下来,根据平均数的性质,父亲和母亲的年龄之和应该为110岁,再除以2,即父亲和母亲的平均年龄应该为55岁。
3. 通过已知孩子的平均年龄为15岁,可以得到父亲和母亲的年龄之和为55岁*2-30岁=80岁。
4. 解方程可得,父亲的年龄为55岁-15岁=40岁,母亲的年龄为55岁-40岁=15岁。
通过这种方法,我们可以求解出父亲和母亲各自的年龄,从而满足给定的条件。
问题三:考试成绩改进某学生的5门课程成绩分别为80、85、90、75和缺失。
如果这个学生想通过最后一门课程达到80分的平均分数,那么他需要在这门课程中获得多少分?解决方法:1. 首先,计算已知成绩的平均分数。
练习题一、判断题1、按人口平均的粮食产量是一个平均数。
2、算术平均数的大小,只受总体各单位标志值大小的影响。
()3、在特定条件下,加权算术平均数等于简单算术平均数。
()4、众数是总体中出现最多的次数。
()5、权数对算术平均数的影响作用只表现为各组出现次数的多少,与各组次数占总次数的比重无关。
()6、标志变异指标数值越大,说明总体中各单位标志值的变异程度就越大,则平均指标的代表性就越小。
()7、中位数和众数都属于平均数,因此他们数值的大小受到总体内各单位标志值大小的影响。
()8、对任何两个性质相同的变量数列,比较其平均数的代表性,都可以采用标准差指标。
()9、比较两总体平均数的代表性,标准差系数越大,说明平均数的代表性越好。
()10、工人劳动生产率是一个平均数。
()二、单选题1、计算平均指标最常用的方法和最基本的形式是()A中位数 B众数 C调和平均数 D算术平均数2、计算平均指标的基本要求是所要计算的平均指标的总体单位应该是()A大量的 B同质的 C有差异的 D不同总体的3、在标志变异指标中,由总体中最大变量值和最小变量值之差决定的是()A标准差系数 B标准差 C平均差 D全距(极差)4、为了用标准差比较分析两个同类总体平均指标的代表性,其基本的前提条件是()A 两个总体的标准差应相等B 两个总体的平均数应相等C 两个总体的单位数应相等D 两个总体的离差之和应相等5、已知两个同类型企业职工平均工资的标准差分别为4.3和4.7,则两个企业职工平均工资的代表性是()A 甲大于乙B 乙大于甲C 一样的D 无法判断6、甲乙两数列的平均数分别为100和14.5,它们的标准差为12.8和3.7,则()A甲数列平均数的代表性高于乙数列B乙数列平均数的代表性高于甲数列C两数列平均数的代表性相同 D两数列平均数的代表性无法比较7、对于不同水平的总体不能直接用标准差来比较其变动度,这时需分别计算各自的()来比较。
A标准差系数 B平均数 C全距D均方差8、平均数指标反映了同质总体的()。
2015年《统计学》第五章平均指标习题及满分答案(一)填空题1.平均数可以反映总体各单位标志值分布的(集中趋势)。
2.社会经济统计中,常用的平均指标有(算术平均指标)、(调和平均指标)、(几何平均指标)、(中位数)和(众数)。
3.算术平均数不仅受(标志值)大小的影响,而且也受(权数)多少的影响。
4.各变量值与其算术平均数离差之和等于(零),各变量值与其算术平均数离差平方和为(最小)。
5.调和平均数是平均数的一种,它是(标志值倒数)的算术平均数的(倒数),又称(倒数)平均数。
6.几何平均数是计算平均比率和平均速度最适用的一种方法,凡是变量值的连乘积等于(总比率)或(总速度)的现象,都可以使用几何平均数计算平均比率或平均速度。
7.众数决定于(分配次数)最多的变量值,因此不受(极端值)的影响,中位数只受极端值的(位置)影响,不受其(大小)的影响。
(二)单项选择题1.平均数反映了(A)。
A、总体分布的集中趋势B、总体中总体单位的集中趋势C、总体分布的离中趋势D、总体变动的趋势2.加权算术平均数的大小(D)。
A、受各组标志值的影响最大B、受各组次数的影响最大C、受各组权数系数的影响最大D、受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数(B)。
A、接近于变量值大的一方B、接近于变量值小的一方C、不受权数的影响D、无法判断4.权数对于算术平均数的影响,决定于(D)。
A、权数的经济意义B、权数本身数值的大小C、标志值的大小D、权数对应的各组单位数占总体单位数的比重5.各总体单位的标志值都不相同时(A)。
A、众数不存在B、众数就是最小的变量值C、众数是最大的变量值D、众数是处于中间位置的变量值6.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( C )。
A、算术平均法B、调和平均法C、几何平均法D、中位数法7.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数(D)。
第4章 练习题 一、单项选择题1.平均指标反映了( )①总体次数分布的集中趋势 ②总体分布的特征③总体单位的集中趋势 ④总体次数分布的离中趋势2.某单位的生产小组工人工资资料如下:90元、100元、110元、120元、128元、148元、200元,计算结果均值为128=X 元,标准差为( )①σ=33 ②σ=34 ③σ=34.23 ④σ=35 3.众数是总体中下列哪项的标志值( ) ①位置居中 ②数值最大 ③出现次数较多 ④出现次数最多4.某工厂新工人月工资400元,工资总额为200000元,老工人月工资800元,工资总额80000元,则平均工资为( )①600元 ②533.33元 ③466.67元 ④500元5.标志变异指标说明变量的( )①变动趋势 ②集中趋势 ③离中趋势 ④一般趋势 6.标准差指标数值越小,则反映变量值( )①越分散,平均数代表性越低 ②越集中,平均数代表性越高 ③越分散,平均数代表性越高 ④越集中,平均数代表性越低 7.在抽样推断中应用比较广泛的指标是( )①全距 ②平均差 ③标准差 ④标准差系数二、多项选择题1.根据标志值在总体中所处的特殊位置确定的平均指标有( ) ①算术平均数 ②调和平均数 ③几何平均数 ④众数 ⑤中位数2.影响加权算术平均数的因素有( )①总体标志总量 ②分配数列中各组标志值③各组标志值出现的次数 ④各组单位数占总体单位数比重 ⑤权数3.标志变异指标有( )①全距 ②平均差 ③标准差 ④标准差系数 ⑤相关系数 4.在组距数列的条件下,计算中位数的公式为( )①i f S fL M mm e ⋅-+=+∑12②i f S fU M m m e ⋅-=∑12--③i f S fL M mm e ⋅-+=∑12- ④i f S fU M mm e ⋅-=+∑12-⑤i f S fU M mm e ⋅-=∑12-+5.几何平均数的计算公式有( )①n n n X X X X ⋅⋅⋅121-Λ ②nX X X X nn ⋅⋅⋅121-Λ③122121-++++n X X X X nn -Λ ④∑f fIIX ⑤n IIX三、计算题1.某企业360名工人生产某种产品的资料如表1:试分别计算7、8月份平均每人日产量,并简要说明8月份平均每人日产量变化的原因。
平均数的计算与应用测验题一、选择题1. 以下数据是某小组同学们参加一次数学测试的分数,求平均数。
90, 82, 95, 78, 87, 93A. 86B. 86.5C. 87D. 882. 某班级的学生人数为30人,其中20人的身高为150cm,10人的身高为170cm,请计算班级学生的平均身高。
A. 150cmB. 160cmC. 165cmD. 155cm3. 一家超市连续五天的日销售额分别为1000元、800元、1200元、900元和1500元,请计算这五天的平均销售额。
A. 1000元B. 1050元C. 1100元D. 1150元二、填空题1. 某家庭连续四天的用电量分别为12度、18度、20度和15度,请计算这四天的平均用电量为______度。
2. 某班级10个学生的语文成绩如下:85分、90分、92分、88分、93分、86分、95分、80分、89分、91分。
请计算这10个学生的平均分为______分。
3. 某裁剪工厂连续三天的裁剪量分别为600件、700件和500件,请计算这三天的平均裁剪量为______件。
三、计算题1. 某班级有35名学生,其中20名学生的数学成绩为85分,15名学生的数学成绩为90分,请计算这个班级的数学平均成绩。
2. 某工厂连续七天的产量分别为1000件、1200件、900件、1100件、800件、1300件和950件,请计算这七天的平均产量。
3. 某小组同学们参加一次数学测试,其中8名同学的得分为88分,6名同学的得分为95分,请计算该小组同学们的平均得分。
四、应用题某小组同学们参加一次长跑比赛,以下是每位同学的成绩(单位:分钟):9, 11, 13, 12, 10, 8, 15, 14, 10, 111. 请计算这个小组同学们的平均成绩。
2. 请问有多少名同学的成绩低于平均成绩?五、解答题某班级36名学生的身高数据如下(单位:厘米):130, 140, 125, 135, 150, 145, 155, 160, 135, 140, 130, 135, 145, 150, 155, 160, 155, 140, 135, 130, 145, 150, 160, 165, 150, 155, 145, 155, 140, 135, 130, 145, 150, 155, 160, 165请计算这个班级学生的平均身高,并列举出身高高于平均身高的学生人数。
平均数典型例题
平均数的典型例题如下:
1.题目:小明期末数学考试成绩是90分,在期末考试中,数学老师
给他的成绩是92分,他的平均成绩是91分,那么他在期中考试的数学成绩是多少分?
2.题目:王明同学连续5次数学单元测试成绩分别是92分、87分、
90分、89分、93分,这5次测试的平均成绩是多少分?
3.题目:甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,
乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了多少元?
4.题目:李爷爷养了300只鸡,150只鸭,50只鹅,如果制成扇形
统计图,表示鸡的只数,扇形圆心角是多少度?
5.题目:某班在一次测验中,有26人语文获优,有30人数学获优,
其中语数双优的有12人,另外有4人语数成绩均未获优,这个班共有多少个学生?。