第五章平均指标ppt金融学
- 格式:ppt
- 大小:5.96 MB
- 文档页数:96
第五章平均指标▪平均指标(平均数)是反映现象的一般水平或平均水平的指标。
它反映总体分布的集中趋势,具有代表性和抽象性。
根据掌握资料、研究目的及现象性质不同,有多种计算方法。
重点掌握、H、G。
▪一、算术平均数▪二、调和平均数▪三、几何平均数▪四、中位数▪五、众数一、算术平均数()▪定义:观察值的总和除以观察值个数之商.▪注意:算术平均数是集中趋势测度中最重要的一种,它是所有平均数中应用最为广泛的平均数..▪计算公式:(一)简单算术平均数计算公式:应用条件:资料未分组,各组出现的次数都是1。
举例:5名学生的学习成绩分别为:75、91、64、53、82。
则平均成绩为:(二)加权算术平均数1、根据单项数列计算的▪计算公式:▪应用条件:单项式分组,各组次数不同。
▪例:某车间20名工人加工某种零件资料:2、根据组距数列计算的应用条件:组距式分组,各组次数不同。
计算公式:▪例:某车间200名工人日产量资料:(三)算术平均数的数学性质▪1、各个变量值与其平均数离差之和等于零(四)算术平均数的适用范围▪1、当变量值是绝对数时,变量值之间是和的关系,而且已知的是分母资料,在这种情况下,反映现象的平均水平用算术平均数。
▪2、当变量值是相对数或平均数时,变量值之间既不存在和的关系,也不存在相乘的关系,而且已知的是分母资料,在这种情况下,反映现象的平均水平用算术平均数。
二、调和平均数(H)▪定义:调和平均数是变量值倒数的算术平均数。
▪注意:调和平均数是算术平均数的变形,其计算结果与算术平均数的计算结果完全相同。
▪(一)简单调和平均数▪计算公式:▪例:在市场上,某种蔬菜早上、中午、晚上的单价分别为0.67元、0.50元和0.40元,假设该种蔬菜早上、中午、晚上的销售额相同,试计算这一天该种蔬菜的平均价格。
(二)加权调和平均数▪计算公式:例:某车间20名工人日产量资料:(三)调和平均数的适用范围▪1、当变量值是绝对数时,变量值之间是和的关系,而且已知的是分子资料,在这种情况下,反映现象的平均水平用调和平均数。
第5章平均指标第五章平均指标一、本章重点1.平均指标反映了总体分布的共性或一般水平,和标志变异指标一起分别从集中趋势和离中趋势两个方面来描述总体分布的特征。
平均指标有动态上的平均指标和静态上的平均指标之分。
静态上的平均数有算术平均数、调和平均数、几何平均数、中位数和众数。
2.算术平均数是平均数的基本形式,是总体标志总量与总体单位总量之比。
有简单算术平均数和加权算术平均数之分。
权数的大小,并不是以权数本身值的大小而言的,而是指各组单位数占总体单位数的比重,即权重系数。
每一个标志值与其算术平均数离差之和为零,每一个标志值与其算术平均数离差的平方和为最小,是算术平均数两个最重要的性质。
3.调和平均数也叫倒数平均数,是根据标志值的倒数计算的,它是标志值倒数的算术平均数的倒数。
是在缺乏算术平均数基本公式分母部分的资料时所采用的。
4.几何平均数是计算平均比率和平均速度最适用的一种方法。
是n个标志值连乘积的n次方根,有简单调和平均数与加权调和平均数之分。
5.中位数和众数是根据标志值的位置计算的,所以也叫位置平均数。
把标志值从小到大排列起来处于中间位置上的数就是中位数,在一个变量数列中出现次数最多的哪个数就是众数。
要掌握组距数列确定中位数和众数的方法。
众数、中位数、算术平均数存在一定的关系,无论左偏还是右偏,中位数总是居于两者中间。
在偏斜适度的情况下,中位数与算术平均数之差约等于众数与算术平均数之差的1/3。
6.只有在同质总体内才能计算和应用平均指标;用组平均数补充说明总平均指标;用分配数列补充说明平均数是计算和应用平均指标的三个基本原则。
二、难点释疑1.算术平均数通常用来反映总体分布的集中趋势,调和平均数往往只作为算术平均数的变形来使用,即在已知标志总量而未知总体单位总量的情况下计算调和平均数;而几何平均数较适用于计算平均比例和平均速度。
2.调和平均数虽然是根据标志值的倒数计算的,但其结果不等于算术平均数的倒数。
第五章平均指标一、本章重点1.平均指标反映了总体分布的共性或一般水平,和标志变异指标一起分别从集中趋势和离中趋势两个方面来描述总体分布的特征。
平均指标有动态上的平均指标和静态上的平均指标之分。
静态上的平均数有算术平均数、调和平均数、几何平均数、中位数和众数。
2.算术平均数是平均数的基本形式,是总体标志总量与总体单位总量之比。
有简单算术平均数和加权算术平均数之分。
权数的大小,并不是以权数本身值的大小而言的,而是指各组单位数占总体单位数的比重,即权重系数。
每一个标志值与其算术平均数离差之和为零,每一个标志值与其算术平均数离差的平方和为最小,是算术平均数两个最重要的性质。
3.调和平均数也叫倒数平均数,是根据标志值的倒数计算的,它是标志值倒数的算术平均数的倒数。
是在缺乏算术平均数基本公式分母部分的资料时所采用的。
4.几何平均数是计算平均比率和平均速度最适用的一种方法。
是n个标志值连乘积的n次方根,有简单调和平均数与加权调和平均数之分。
5.中位数和众数是根据标志值的位置计算的,所以也叫位置平均数。
把标志值从小到大排列起来处于中间位置上的数就是中位数,在一个变量数列中出现次数最多的哪个数就是众数。
要掌握组距数列确定中位数和众数的方法。
众数、中位数、算术平均数存在一定的关系,无论左偏还是右偏,中位数总是居于两者中间。
在偏斜适度的情况下,中位数与算术平均数之差约等于众数与算术平均数之差的1/3。
6.只有在同质总体内才能计算和应用平均指标;用组平均数补充说明总平均指标;用分配数列补充说明平均数是计算和应用平均指标的三个基本原则。
二、难点释疑1.算术平均数通常用来反映总体分布的集中趋势,调和平均数往往只作为算术平均数的变形来使用,即在已知标志总量而未知总体单位总量的情况下计算调和平均数;而几何平均数较适用于计算平均比例和平均速度。
2.调和平均数虽然是根据标志值的倒数计算的,但其结果不等于算术平均数的倒数。
在计算和应用平均指标时,除了考虑数理方面的要求外,更重要的是要考虑其现实的经济意义。