低分子量聚丙烯酸钠合成新工艺
- 格式:pdf
- 大小:76.82 KB
- 文档页数:1
实验---低分子量聚丙烯酸(钠盐)的合成和分析学校名称:江阴职业技术学院院系名称:化学纺织工程系时间:2017年1月10日1.实验目的1.掌握低分子量聚丙烯酸的合成2.用端基滴定法测定聚丙烯酸的分子量2.实验原理聚丙烯酸时水质稳定剂的主要原料之一,高分子量的聚丙烯酸(分子量在几万或几十万以上)多用于皮革工业、造纸工业等方面,作为阻垢效果有极大影响,从各项实验证明,低分子量的聚丙烯酸阻垢作用显著,而高分子量的聚丙烯酸丧失阻垢作用。
丙烯酸单体极易聚合,可以通过本体、溶液、乳液、和悬浮等聚合方法得到聚丙烯酸,它符合一般的游离基聚合反应规律,本实验用控制引发剂用量和应用调聚剂异丙醇,合成低分子量的聚丙烯酸,并用端基滴定法测定分子量。
三、主要试剂和仪器丙烯酸、过硫酸铵、异丙醇、搅拌器、三颈瓶、滴液漏斗、pH计等。
四、实验步骤低分子量聚丙烯酸的合成。
在带有回流冷凝管和两个滴液漏斗的100ml三颈瓶中,加入25ml蒸馏水和0.2克过硫酸铵,待过硫酸铵溶解后,加入1克丙烯酸单体和1.6克异丙醇。
开动搅拌器,加热使瓶内温度达到65-70o C。
在此温度下,把8克丙烯酸单体和1克过硫酸铵在8ml水中的溶液,分别由漏斗渐渐滴入瓶内,由于聚合过程中放出的热量,瓶内温度有所升高,反应液逐渐回流,其后在94 o C回流1小时,反应立即完成,聚丙烯酸分子量约在500-4000之间。
如要得到聚丙烯酸钠盐,在已制成的聚丙烯酸水溶液中,加入浓氢氧化钠溶液(浓度为30%)边搅拌边进行中和,使溶液得PH 值达到10-12范围内,即停止,制得聚丙烯酸钠盐。
[附]端基法测定聚丙烯酸分子量丙烯酸聚合物的酸性较其对应单体要弱,其滴定曲线随中和程度的增加而上升较慢,当聚丙烯酸只溶于水时,不易被精确的滴定。
但是如果滴定在0.01-1M 的中性盐类溶液中进行,滴定终点是清楚的,测定是准确的。
准确称量约0.2克样品放入100ml 烧杯中,加入1M 的氯化钠溶液50ml ,用0.2M 的氢氧化钠标准溶液滴定之,测定其pH 值,用消耗的氢氧化钠标准溶液的毫升数对pH 值作图,找到终点所消耗的碱量。
低分子聚丙烯酸钠实验报告范文篇一:低分子量聚丙烯酸钠的合成实验报告前言随着我国丙烯酸工业的迅速发展,对丙烯酸下游产品的研究不断深入,应用范围不断扩大。
聚丙烯酸钠作为丙烯酸的一种主要下游产品,近年来在国内外的研究受到重视,生产也不断增加。
聚丙烯酸钠产品包括水溶性产品和水不溶性产品。
水溶性聚丙烯酸钠产品广泛应用于食品、纺织造纸、化工等领域。
水不溶性聚丙烯酸钠产品具高吸水性,主要用于农林园艺、生理卫生等领域。
聚丙烯酸钠的分子量从几百至几千万以上,不同分子量的聚丙烯酸钠各有各的用途。
超低分子量(700以下)的用途还未完全开发;低分子量(1000-5000)主要起分散作用;中等分子量(104-106)显示有增稠性;高分子量(106-107)的则主要做增稠剂和絮凝剂;超高分子量(107以上)的在水中溶胀,生成水凝胶,主要用作吸水剂。
水溶性聚丙烯酸钠中又包括高分子量和低分子量两类。
目前高分子量聚丙烯酸钠合成是采用丙烯酸经氢氧化钠中和形成丙烯酸钠溶液,然后再聚合的工艺路线。
在水溶性高分子量聚丙烯酸钠的合成中,通常是高浓度丙烯酸钠溶液和低浓度氧化还原引发剂在低温下进行水溶液聚合。
制备的关键是在聚合前要除去丙烯酸中的阻聚剂。
去除阻聚剂的方法有减压蒸馏或加人活性炭吸附。
高分子量聚丙烯酸钠聚合时往往因为自交联作用或聚合速度过快使产品水溶性降低,因此需加入抗交联剂和缓聚合剂。
日本专利报道了以过硫酸盐和有机苯胺的复合引发体系,常温下催化丙烯酸钠水溶液聚合,制得溶解性能好的聚丙烯酸钠。
戚银城等采用氧化-还原体系,添加氨水和氯化钠,在30℃时合成了分子量几百至几千万的聚丙烯酸钠。
水溶液聚合法具有设备简单,操作容易的特点,但缺点是所得到的聚合产物含水量高达60%-70%,难干燥。
反相悬浮聚合法也可用于合成高分子量聚丙烯酸钠。
韩淑珍[5]报道了北京化工大学开发出反相悬浮聚合法合成聚丙烯酸钠絮凝剂,并建成1000L聚合釜装置。
反相悬浮聚合法工艺复杂、设备利用率低。
水质稳定剂——低分子量聚丙烯酸(钠)的合成一、实验目的1. 掌握低分子量聚丙烯酸(钠盐)的合成方法。
2. 用端基滴定法测定聚丙烯酸的分子量。
二、实验原理聚丙烯酸是水质稳定剂的主要原料之一。
高分子量的聚丙烯酸(相对分子质量在几万或几十万以上) 多用于皮革工业、造纸工业等方面。
作为阻垢用的聚丙烯酸,分子量都在一万以下,聚丙烯酸分子量的大小对阻垢效果有极大影响,从各项试验表明,低分子量的聚丙烯酸阻垢作用显著,而高分子量的聚丙烯酸丧失阻垢作用。
丙烯酸单体极易聚合,可以通过本体、溶液、乳液和悬浮等聚合方法得到聚丙烯酸,它符合一般的自由基聚合反应规律。
本实验用控制引发剂用量和应用调聚剂异丙醇,合成低分子量的聚丙烯酸,并用端基滴定法测定其分子量。
三、实验仪器和试剂四口瓶,回流冷凝管,电动搅拌器,恒温水浴,温度计,滴液漏斗,pH计丙烯酸,过硫酸铵,异丙醇,氢氧化钠标准溶液四、实验步骤Ⅰ.低分子量聚丙烯酸的合成1. 在装有搅拌器、回流冷凝管、滴液漏斗和温度计的250mL四颈瓶中,加入100mL蒸馏水和1 g 过硫酸铵。
待过硫酸铵溶解后,加入5g丙烯酸单体和8 g异丙醇。
开动搅拌器,加热使反应瓶内温度达到65~70℃。
2. 将40g丙烯酸单体和2 g过硫酸铵在40 mL水中溶解,由滴液漏斗渐渐滴入瓶内,由于聚合过程中放热,瓶内温度有所升高,反应液逐渐回流。
滴完丙烯酸和过硫酸铵溶液约0.5 h。
3. 在94℃继续回流1h,反应即可完成。
聚丙烯酸相对分子质量约在500~4000之间。
4. 如要得到聚丙烯酸钠盐,在已制成的聚丙烯酸水溶液中,加入浓氢氧化钠溶液(浓度为30%) 边搅拌边进行中和,使溶液的pH值达到10~12范围内即停止,即制得聚丙烯酸钠盐。
Ⅱ.端基法测定聚丙烯酸的分子量准确称量约0.2 g样品放入100mL烧杯中,加入1 mol/L的氯化钠溶液50 mL,用0.2 mol/L的氢氧化钠标准溶液滴定,测定其pH值,用消耗的氢氧化钠毫升数对pH值作图,找出终点所消耗的碱量。
水稳定剂—低分子量聚丙烯酸(钠盐)的合成与分析1 实验部分1.1 合成方法在三口烧瓶中加入定量的蒸馏水,开动搅拌,于一定温度下,滴加适量的丙烯酸及引发剂水溶液,保温反应至一定时间,用一定浓度的氢氧化钠水溶液中和至中性,停止反应,产物为浅黄色透明粘稠液.1.2 分子量的测定按参考文献[5]进行聚丙烯酸钠分子量的测定.计算公式如下:2 结果与讨论2.1 引发剂种类的选择在丙烯酸钠的聚合过程中添加异丙醇、十二烷基硫醇等链转移剂,可使生成的聚合物分子量降低.但反应温度较高,且要蒸馏回收链转移剂.本文在温度较低的反应条件下,考察了常见几种不同引发剂对聚丙烯酸钠分子量的影响,实验结果见表1.表1 引发剂对聚丙烯酸钠分子量的影响注:反应条件:反应温度为70~C 丙烯酸单体浓度为30%,反应时间3h.实验结果表明,以过硫酸铵一亚硫酸钠作为引发体系效果最佳,所得聚丙烯酸钠分子量较低.以过氧化氢一硫酸亚铁作引发剂,反应体系变棕黄色;以过硫酸钾作为引发剂,得到聚丙烯酸钠的分子量较大.故选择过硫酸铵一亚硫酸钠作为合成聚丙烯酸钠的引发剂.2.2亚硫酸钠浓度的影响将不同浓度的亚硫酸钠溶液滴加到质量浓度为30%的丙烯酸溶液中((NUn)2S208浓度为0.1%),于70~C下反应时间3h.实验结果表明,随着亚硫酸钠浓度的增加,聚丙烯酸钠分子量增大.亚硫酸钠浓度为0.7%时,其分子量最低.表2 亚硫酸钠用量对聚丙烯酸钠分子量的影响2.3 过硫酸铵浓度的影响在亚硫酸钠浓度为0.7%的反应体系中,改变过硫酸铵的浓度,结果表明,随着过硫酸铵浓度的增加,所得聚丙烯酸的分子量增大.但过硫酸铵的浓度为0.02%时,聚丙烯酸的分子量比较高在本实验条件中,过硫酸铵的浓度控制在0.1%左右,可合成较低分子量聚丙烯酸.表3 过硫酸铵的浓度对聚丙烯酸钠分子量的影响2.4丙烯酸浓度的影响以不同丙烯酸的浓度进行了实验对比,结果发现,随着单体丙烯酸浓度的减少,聚丙烯酸分子量明显减小,丙烯酸浓度低于25%时,聚合速度慢,反应不完全,残留丙烯酸溶液较多,难以除掉,因此,将丙烯酸浓度控制在25%~30%之间比较合适.表4 丙烯酸浓度对聚丙烯酸钠分子量的影响2.5反应温度的影响分别在80~C、75~C、70~C和65℃下进行丙烯酸聚合反应,实验发现,随着反应温度的升高,所得聚丙烯酸分子量降低.当反应温度大于75~C时,由于丙烯酸在反应过程中回流过快,致使其损耗较多,故反应温度控制在70~75~C左右较为适宜.2.6 反应时间的影响反应时间对聚丙烯酸分子量的影响见图1.实验结果表明,聚丙烯酸分子量随着反应时间增加而增大.在反应初期,丙烯酸浓度高,反应速度快,聚丙烯酸分子量增大的趋势较大.反应时间增至2~2 5h时,聚丙烯酸分子量变化不大.再继续增加反应时间,聚丙烯酸分子量迅速增加,故反应时间应控制在2~2.5h.__ 又称游离基聚合。
低分子量聚丙烯酸钠的合成实验报告一、实验目的1.了解低分子量聚丙烯酸钠的合成原理;2.掌握低分子量聚丙烯酸钠的合成方法;3.了解低分子量聚丙烯酸钠在医药、化妆品等领域中的应用。
二、实验仪器与试剂1.实验仪器:反应釜、加热器、磁力搅拌器、恒温水浴槽等;2.试剂:丙烯酸钠、空气过硫酸钠、高锰酸钾、脱离剂等。
三、实验步骤1.反应釜内加入一定量的蒸馏水,并在加热器上加热至水温达到80℃;2.将一定量的丙烯酸钠溶液慢慢倒入反应釜内,同时开启磁力搅拌器以加强溶液的混合;3.将空气过硫酸钠溶液滴加至反应釜中,继续搅拌均匀;4.将高锰酸钾溶液滴加至反应釜中,继续搅拌均匀;5.将反应釜置于恒温水浴槽中,并将水温调节至80℃,反应3-4小时;6.反应结束后,关闭热源,取出反应釜,并使用脱离剂对产物进行脱离处理;7.将产物进行过滤、洗涤及干燥处理,最终得到低分子量聚丙烯酸钠。
四、实验结果与讨论1.实验结果:通过上述实验步骤得到了低分子量聚丙烯酸钠。
产物为白色粉末状或颗粒状,溶于水中呈浑浊胶状溶液。
2.实验讨论:通过添加空气过硫酸钠和高锰酸钾,可以引发丙烯酸钠的自由基聚合反应。
反应过程中,空气过硫酸钠起到引发剂的作用,高锰酸钾起到活性物种的清除剂的作用。
恒温水浴槽的设定温度可以控制聚合反应的速率和产物的分子量。
五、实验结论通过本次实验,成功合成了低分子量聚丙烯酸钠,并对其形态、溶解性进行了初步的表征。
低分子量聚丙烯酸钠具有良好的溶解性和增稠性能,在医药、化妆品等领域有广泛应用。
六、实验总结本次实验通过合成低分子量聚丙烯酸钠,使我们对聚合反应以及高分子化合物的合成有了更深入的了解。
同时,对于合成产物的分离、纯化和表征也有了一定的经验。
通过本实验,我们不仅掌握了合成方法,还了解了新材料的制备及应用领域,为今后的科研工作奠定了基础。
低分子量聚丙烯酸钠的制备低分子量聚丙烯酸钠的制备2011-06-02 14:20低分子量聚丙烯酸钠的制备低分子量聚丙烯酸钠的合成主要有以下三种方法:①中和法;②聚合法;③皂化法。
1)中和法中和法是指在引发剂和链转移剂的作用下,丙烯酸在其水溶液中发生聚合反应,生成聚丙烯酸,然后用氢氧化钠水溶液中和,生成聚丙烯酸钠。
2)聚合法聚合法是指先用氢氧化钠水溶液中和单体丙烯酸,生成丙烯酸钠单体,然后在引发剂的和链转移剂的作用下,在水溶液中聚合,生成聚丙烯酸钠:3)皂化法皂化法是指先由丙烯酸与甲醇反应生成丙烯酸甲酯,在引发剂和链转移剂的作用下聚合为聚丙烯酸甲酯,再在聚丙烯酸甲酯的悬浮液或乳液中加入氢氧化钠水溶液,并加热至100℃维持几个小时,(或者先与氢氧化钠作用,再在引发剂何链转移剂的作用下聚合)即可得聚丙烯酸钠,副产品是烷基醇,可以用气提法除去。
由于这种方法工艺流程较长,还需要进一步除去副产物,因此在工业生产中应用不太多。
据文献U.S.P 4301266报道,采用APS引发剂体系,在异丙醇一水混合溶剂体系中,丙烯酸均聚合,可得分子量小于2x1护的低分子量聚丙烯酸。
国外有机分散剂产品的分散性能最好的为美国大洋公司的产品SN-5040。
近年来,国内有机分散剂的开发应用比较活跃,其中北京的DC分散剂,上海的YH分散剂为开发较成功的产品。
YH分散剂采用的工艺是:自由基水溶液聚合,异丙醇作链转移剂,过硫酸按作引发剂,引发游离基的聚合反应,固含量为30-38%.,分散性能良好,但固含量太低,生产成本高。
DC分散剂采用的工艺是:聚合、蒸馏(除去链转移剂和水的混合物)、中和,其固含量虽达要求,但生产周期长,成本高。
上述传统的生产工艺都是在比较高的温度进行,并且要蒸馏回收大量的链转移剂,操作费时、耗能。
孙晓日以氧化还原催化剂在较低温度下直接合成了低分子量聚丙烯酸钠,经造纸厂实际应用试验证明,该分散剂可单独或与无机磷酸盐分散剂复配使用,对高岭土、硫酸钡、碳酸钙及其混合体均有良好的分散效果。
低分子量聚丙烯酸钠的合成实验报告专业综合实验报告低分子量聚丙烯酸钠的合成院系:材料与化工学院专业:高分子材料与工程姓名:李强强学号:090307106指导老师:牛小玲2012年12月前言随着我国丙烯酸工业的迅速发展,对丙烯酸下游产品的研究不断深入,应用范围不断扩大。
聚丙烯酸钠作为丙烯酸的一种主要下游产品,近年来在国内外的研究受到重视,生产也不断增加。
聚丙烯酸钠产品包括水溶性产品和水不溶性产品。
水溶性聚丙烯酸钠产品广泛应用于食品、纺织造纸、化工等领域。
水不溶性聚丙烯酸钠产品具高吸水性,主要用于农林园艺、生理卫生等领域。
聚丙烯酸钠的分子量从几百至几千万以上,不同分子量的聚丙烯酸钠各有各的用途。
超低分子量(700以下)的用途还未完全开发;低分子量(1000-5000)主要起分散作用;中等分子量(104-106)显示有增稠性;高分子量(106-107)的则主要做增稠剂和絮凝剂;超高分子量(107以上)的在水中溶胀,生成水凝胶,主要用作吸水剂。
水溶性聚丙烯酸钠中又包括高分子量和低分子量两类。
目前高分子量聚丙烯酸钠合成是采用丙烯酸经氢氧化钠中和形成丙烯酸钠溶液,然后再聚合的工艺路线。
在水溶性高分子量聚丙烯酸钠的合成中,通常是高浓度丙烯酸钠溶液和低浓度氧化还原引发剂在低温下进行水溶液聚合。
制备的关键是在聚合前要除去丙烯酸中的阻聚剂。
去除阻聚剂的方法有减压蒸馏或加人活性炭吸附。
高分子量聚丙烯酸钠聚合时往往因为自交联作用或聚合速度过快使产品水溶性降低,因此需加入抗交联剂和缓聚合剂。
日本专利报道了以过硫酸盐和有机苯胺的复合引发体系,常温下催化丙烯酸钠水溶液聚合,制得溶解性能好的聚丙烯酸钠。
戚银城等采用氧化-还原体系,添加氨水和氯化钠,在30℃时合成了分子量几百至几千万的聚丙烯酸钠。
水溶液聚合法具有设备简单,操作容易的特点,但缺点是所得到的聚合产物含水量高达60%-70%,难干燥。
反相悬浮聚合法也可用于合成高分子量聚丙烯酸钠。
p科技成果简介p低分子量聚丙烯酸钠合成新工艺分子量几百至几千的聚丙烯酸钠用途极为广泛,主要用作工业水循环系统的阻垢防蚀剂,颜料(碳酸钙、高岭土、钛白粉、缎光白等)、陶瓷浆料和釉料、丁苯胶乳等的分散剂、钻井泥浆稳定剂、油井粘土分散剂、水泥添加剂、金属材料的新型淬火剂、氯化铵等无机盐防结块剂、矿物浮选剂等。
传统生产工艺为以过硫酸盐为引发剂,异丙醇为链转移剂进行水溶液聚合、以NaOH中和后蒸馏除去链转移剂得产品,使用该工艺合成分子量[2000的低分子量聚丙烯酸钠,生产中需使用单体量2)4倍的异丙醇作链转移剂,设备的利用率低,能耗较高,生产周期较长,生产成本较高。
我们通过研究影响聚丙烯酸钠分子量的各种因素,使用脂肪酸盐等助剂,采用分步聚合工艺合成了分子量500)700、1000)1500和2000)3000三种规格的低分子量聚丙烯酸钠,具体技术指标如下:型号D)1D)2D)3外观黄色透明粘性液体固含量(%)40?240?240?2分子量500)7001000)15002000)3000残余单体(%)[0.50.50.5pH 6.0)8.0 6.0)8.0 6.0)8.0密度(20e),g/cm2\ 1.25 1.25 1.25本法取消了原有工艺使用的异丙醇,简化了生产工艺,降低了生产成本。
合成的聚丙烯酸钠不仅分子量较低,而且分子量分布较窄,分散性良好,应用实验表明其分散效果优于分散剂DC,与进口产品SN)5040相当。
综合性能达到国内领先水平。
经查新未见国内有类似技术,属国内首创。
生产和销售实践表明使用本工艺生产低分子量聚丙烯酸钠具有较好的经济和社会效益。
鉴于低分子量聚丙烯酸钠有广泛的用途,而且本工艺合成的低分子量聚丙烯酸钠质量好,成本低,具有较强的市场竞争力,本项技术有良好的推广应用前景。
聚丙烯酸钠溶液配制方法及条件的探讨赵丽虹溶剂水的影响(1)当溶剂水显酸性时,易使聚丙烯酸钠晶体在溶解过程中变性,形成口香糖状薄片,失去絮凝作用。
(2)当溶剂水中杂质离子含量过多,电导率过高时,易使聚丙烯酸钠与这些杂质离子反应生成聚丙烯酸盐类沉淀,影响配制成的聚丙烯酸钠溶液浓度及絮凝能力,还可能堵塞聚丙烯酸钠溶液的输送泵以及泵的进、出口管,增加拆修泵次数。
另外可能堵塞聚丙烯酸钠溶液加入管,造成操作人员巡检不及时而断加聚丙烯酸钠的情况。
(3)溶剂水中一旦混入重金属盐溶液,如:BaCl2溶液,也会造成聚丙烯酸钠变性,生成沉淀,絮凝能力降低直至丧失。
因此,在水质差的地区,应选用纯水或软化水作配制用溶剂水。
温度的影响配制时水温过高极易使投入水中的聚丙烯酸钠固体颗粒立即融化变软形成外融内不融的聚丙烯酸钠固体团状物。
要使这样的团状物彻底溶解需要很长时间,否则不仅会影响配制成的聚丙烯酸钠浓度,还会因聚丙烯酸钠溶液中混有这种团状物堵塞聚丙烯酸钠泵及进、出口管路、聚丙烯酸钠溶液加入管,造成断加聚丙烯酸钠溶液的情况。
在配制聚丙烯酸钠溶液时应选择常温水中加入聚丙烯酸钠固体颗粒,然后在搅拌条件下升温到50℃左右。
溶液pH值的影响通过生产实际摸索,配制成的聚丙烯酸钠溶液pH值为10左右时其絮凝能力最大,呈淡蓝色透明溶液。
配成的聚丙烯酸钠溶液中性时易成为乳白色浊液,絮凝能力下降。
综上所述,配制聚丙烯酸钠溶液较理想的方法和条件是:先在聚丙烯酸钠溶液配制槽中加入一定量的纯水或软化水,然后用30 %NaOH溶液调节溶剂水的pH值至10 左右,打开配制溶液用的压缩空气管阀门,在搅拌的情况下,于常温下缓慢、均匀地投入适量聚丙烯酸钠固体颗粒,确保配制后聚丙烯酸钠溶液浓度为0.05%。
然后打开配制用的蒸汽管阀门,将溶液升温至50℃左右,关闭蒸汽管阀门,待聚丙烯酸钠固体颗粒完全溶解,溶液浓度均匀时(约半小时) ,关闭压缩空气管阀门。
这样配制出的聚丙烯酸钠溶液流动性好,絮凝能力大。
第一章 低分子量聚丙烯酸钠的合成、表征与应用性能试验聚丙烯酸钠 (PAANa)是一类高分子电解质,是一种新型功能高分子材料,用途广泛,可用于食品、饲料、纺织、造纸、水处理、涂料、石油化工、冶金等。
PAANa 的用途与其分子量有很大关系,一般来说 ,低分子量 (500~5000 )产品主要用作颜料分散剂、水处理剂等;中等分子量 (10 4~ 10 6 )主要用作增稠剂、粘度稳定剂、保水剂等;高分子量主要用作絮凝剂、增稠剂等。
在造纸工业,随着高浓度涂布机的引进和铜版纸生产的发展,对分散剂的需求越来越大。
低分子量 PAANa 作为造纸工业的有机分散剂 ,能提高颜料的细度、分散体系的稳定性,提高纸张的柔软性、强度、光泽、白度、保水性等,且具有可溶于水、不易水解、不易燃、无毒、无腐蚀性特点,因此低分子量 PAANa 在造纸工业越来越受到重视。
实验一 低分子量聚丙烯酸钠的合成1.1 实验目的(1) 了解聚丙烯酸钠水处理剂的合成原理和应用;(2) 掌握丙烯酸聚合反应的基本操作;(3) 掌握聚丙烯酸分子量测定的基本原理和基本操作;(4) 掌握阻垢剂和分散剂的评价原理和方法。
1.2 实验原理PAANa 的合成路线主要有先聚合再中和、先中和再聚合等几种。
本实验采用先中和再聚合的路线。
其反应式如下所示:CO 2H CO 2Na NaOH聚合CO 2Na n1 试剂和仪器试剂:丙烯酸 ,CP ;过硫酸铵 ,AR ;氢氧化钠 ,CP ;丙醇 ,CP ;去离子水。
仪器:四口烧瓶;滴液漏斗;球形冷凝管;电热套;调压器;水循环真空泵;布氏漏斗;真空烘箱;乌氏粘度计 (0 . 6mm);恒温水浴;干燥箱等。
2 实验方法在装有搅拌器、回流冷凝管、温度计、滴液漏斗的 250 ml 四口烧瓶中,加入20ml 去离子水和100ml 链转移剂丙醇,在不断搅拌下加热至 80-82℃左右,开始滴加由1.8g 引发剂过硫酸铵、10ml 水和29g 单体丙烯酸配成的溶液(首先将引发剂溶解于水中,再加丙烯酸),并在 2~3h 内将单体和引发剂滴加完毕,之后保温反应2 h 。
p科技成果简介p
低分子量聚丙烯酸钠合成新工艺
分子量几百至几千的聚丙烯酸钠用途极为广泛,主要用作工业水循环系统的阻垢防蚀剂,颜料(碳酸钙、高岭土、钛白粉、缎光白等)、陶瓷浆料和釉料、丁苯胶乳等的分散剂、钻井泥浆稳定剂、油井粘土分散剂、水泥添加剂、金属材料的新型淬火剂、氯化铵等无机盐防结块剂、矿物浮选剂等。
传统生产工艺为以过硫酸盐为引发剂,异丙醇为链转移剂进行水溶液聚合、以NaOH中和后蒸馏除去链转移剂得产品,使用该工艺合成分子量[2000的低分子量聚丙烯酸钠,生产中需使用单体量2)4倍的异丙醇作链转移剂,设备的利用率低,能耗较高,生产周期较长,生产成本较高。
我们通过研究影响聚丙烯酸钠分子量的各种因素,使用脂肪酸盐等助剂,采用分步聚合工艺合成了分子量500)700、1000)1500和2000)3000三种规格的低分子量聚丙烯酸钠,具体技术指标如下:
型号D)1D)2D)3外观黄色透明粘性液体
固含量(%)40?240?240?2
分子量500)7001000)15002000)3000
残余单体(%)[0.50.50.5
pH 6.0)8.0 6.0)8.0 6.0)8.0
密度(20e),g/cm2\ 1.25 1.25 1.25
本法取消了原有工艺使用的异丙醇,简化了生产工艺,降低了生产成本。
合成的聚丙烯酸钠不仅分子量较低,而且分子量分布较窄,分散性良好,应用实验表明其分散效果优于分散剂DC,与进口产品SN)5040相当。
综合性能达到国内领先水平。
经查新未见国内有类似技术,属国内首创。
生产和销售实践表明使用本工艺生产低分子量聚丙烯酸钠具有较好的经济和社会效益。
鉴于低分子量聚丙烯酸钠有广泛的用途,而且本工艺合成的低分子量聚丙烯酸钠质量好,成本低,具有较强的市场竞争力,本项技术有良好的推广应用前景。