低分子量聚丙烯酸钠的合成实验报告
- 格式:docx
- 大小:91.99 KB
- 文档页数:9
低分子量聚丙烯酸钠的合成实验报告Screen and evaluate the results within a certain period, analyze the deficiencies, learn from them and form Countermeasures.姓名:___________________单位:___________________时间:___________________编号:FS-DY-53217 低分子量聚丙烯酸钠的合成实验报告前言随着我国丙烯酸工业的迅速发展,对丙烯酸下游产品的研究不断深入,应用范围不断扩大。
聚丙烯酸钠作为丙烯酸的一种主要下游产品,近年来在国内外的研究受到重视,生产也不断增加。
聚丙烯酸钠产品包括水溶性产品和水不溶性产品。
水溶性聚丙烯酸钠产品广泛应用于食品、纺织造纸、化工等领域。
水不溶性聚丙烯酸钠产品具高吸水性,主要用于农林园艺、生理卫生等领域。
聚丙烯酸钠的分子量从几百至几千万以上,不同分子量的聚丙烯酸钠各有各的用途。
超低分子量(700以下)的用途还未完全开发;低分子量(1000-5000)主要起分散作用;中等分子量(104-106)显示有增稠性;高分子量(106-107)的则主要做增稠剂和絮凝剂;超高分子量(107以上)的在水中溶胀,生成水凝胶,主要用作吸水剂。
水溶性聚丙烯酸钠中又包括高分子量和低分子量两类。
目前高分子量聚丙烯酸钠合成是采用丙烯酸经氢氧化钠中和形成丙烯酸钠溶液,然后再聚合的工艺路线。
在水溶性高分子量聚丙烯酸钠的合成中,通常是高浓度丙烯酸钠溶液和低浓度氧化还原引发剂在低温下进行水溶液聚合。
制备的关键是在聚合前要除去丙烯酸中的阻聚剂。
去除阻聚剂的方法有减压蒸馏或加人活性炭吸附。
高分子量聚丙烯酸钠聚合时往往因为自交联作用或聚合速度过快使产品水溶性降低,因此需加入抗交联剂和缓聚合剂。
日本专利报道了以过硫酸盐和有机苯胺的复合引发体系,常温下催化丙烯酸钠水溶液聚合,制得溶解性能好的聚丙烯酸钠。
低分子聚丙烯酸钠实验报告范文篇一:低分子量聚丙烯酸钠的合成实验报告前言随着我国丙烯酸工业的迅速发展,对丙烯酸下游产品的研究不断深入,应用范围不断扩大。
聚丙烯酸钠作为丙烯酸的一种主要下游产品,近年来在国内外的研究受到重视,生产也不断增加。
聚丙烯酸钠产品包括水溶性产品和水不溶性产品。
水溶性聚丙烯酸钠产品广泛应用于食品、纺织造纸、化工等领域。
水不溶性聚丙烯酸钠产品具高吸水性,主要用于农林园艺、生理卫生等领域。
聚丙烯酸钠的分子量从几百至几千万以上,不同分子量的聚丙烯酸钠各有各的用途。
超低分子量(700以下)的用途还未完全开发;低分子量(1000-5000)主要起分散作用;中等分子量(104-106)显示有增稠性;高分子量(106-107)的则主要做增稠剂和絮凝剂;超高分子量(107以上)的在水中溶胀,生成水凝胶,主要用作吸水剂。
水溶性聚丙烯酸钠中又包括高分子量和低分子量两类。
目前高分子量聚丙烯酸钠合成是采用丙烯酸经氢氧化钠中和形成丙烯酸钠溶液,然后再聚合的工艺路线。
在水溶性高分子量聚丙烯酸钠的合成中,通常是高浓度丙烯酸钠溶液和低浓度氧化还原引发剂在低温下进行水溶液聚合。
制备的关键是在聚合前要除去丙烯酸中的阻聚剂。
去除阻聚剂的方法有减压蒸馏或加人活性炭吸附。
高分子量聚丙烯酸钠聚合时往往因为自交联作用或聚合速度过快使产品水溶性降低,因此需加入抗交联剂和缓聚合剂。
日本专利报道了以过硫酸盐和有机苯胺的复合引发体系,常温下催化丙烯酸钠水溶液聚合,制得溶解性能好的聚丙烯酸钠。
戚银城等采用氧化-还原体系,添加氨水和氯化钠,在30℃时合成了分子量几百至几千万的聚丙烯酸钠。
水溶液聚合法具有设备简单,操作容易的特点,但缺点是所得到的聚合产物含水量高达60%-70%,难干燥。
反相悬浮聚合法也可用于合成高分子量聚丙烯酸钠。
韩淑珍[5]报道了北京化工大学开发出反相悬浮聚合法合成聚丙烯酸钠絮凝剂,并建成1000L聚合釜装置。
反相悬浮聚合法工艺复杂、设备利用率低。
低分子聚丙烯酸钠实验报告范文篇一:低分子量聚丙烯酸钠的合成实验报告前言随着我国丙烯酸工业的迅速发展,对丙烯酸下游产品的研究不断深入,应用范围不断扩大。
聚丙烯酸钠作为丙烯酸的一种主要下游产品,近年来在国内外的研究受到重视,生产也不断增加。
聚丙烯酸钠产品包括水溶性产品和水不溶性产品。
水溶性聚丙烯酸钠产品广泛应用于食品、纺织造纸、化工等领域。
水不溶性聚丙烯酸钠产品具高吸水性,主要用于农林园艺、生理卫生等领域。
聚丙烯酸钠的分子量从几百至几千万以上,不同分子量的聚丙烯酸钠各有各的用途。
超低分子量(700以下)的用途还未完全开发;低分子量(1000-5000)主要起分散作用;中等分子量(104-106)显示有增稠性;高分子量(106-107)的则主要做增稠剂和絮凝剂;超高分子量(107以上)的在水中溶胀,生成水凝胶,主要用作吸水剂。
水溶性聚丙烯酸钠中又包括高分子量和低分子量两类。
目前高分子量聚丙烯酸钠合成是采用丙烯酸经氢氧化钠中和形成丙烯酸钠溶液,然后再聚合的工艺路线。
在水溶性高分子量聚丙烯酸钠的合成中,通常是高浓度丙烯酸钠溶液和低浓度氧化还原引发剂在低温下进行水溶液聚合。
制备的关键是在聚合前要除去丙烯酸中的阻聚剂。
去除阻聚剂的方法有减压蒸馏或加人活性炭吸附。
高分子量聚丙烯酸钠聚合时往往因为自交联作用或聚合速度过快使产品水溶性降低,因此需加入抗交联剂和缓聚合剂。
日本专利报道了以过硫酸盐和有机苯胺的复合引发体系,常温下催化丙烯酸钠水溶液聚合,制得溶解性能好的聚丙烯酸钠。
戚银城等采用氧化-还原体系,添加氨水和氯化钠,在30℃时合成了分子量几百至几千万的聚丙烯酸钠。
水溶液聚合法具有设备简单,操作容易的特点,但缺点是所得到的聚合产物含水量高达60%-70%,难干燥。
反相悬浮聚合法也可用于合成高分子量聚丙烯酸钠。
韩淑珍[5]报道了北京化工大学开发出反相悬浮聚合法合成聚丙烯酸钠絮凝剂,并建成1000L聚合釜装置。
反相悬浮聚合法工艺复杂、设备利用率低。
低分子聚丙烯酸钠实验报告范文低分子聚丙烯酸钠(简称PAA-Na)是一种重要的高分子材料,具有良好的吸水性能和稳定性。
本实验通过合成PAA-Na并对其吸水性能进行测试,旨在深入了解PAA-Na的合成过程及其在实际应用中的表现。
以下是本次实验报告的范文,共计1200字以上:实验报告名称:低分子聚丙烯酸钠的合成及吸水性能测试摘要:本次实验以丙烯酸为单体,过硫酸铵为引发剂,合成了具有良好吸水性能的低分子聚丙烯酸钠(PAA-Na)。
通过对PAA-Na的红外光谱、元素分析和吸水性能测试,验证了合成产物的结构和性能。
实验结果表明,所合成的PAA-Na在水中具有优异的吸水性能,可应用于医学、环境保护等领域。
一、引言1.1背景低分子聚丙烯酸钠(PAA-Na)是一种新型高分子材料,具有良好的吸水性能和稳定性。
PAA-Na的合成方法多样,且应用广泛。
目前,PAA-Na在医学、环境保护、纺织工业等领域得到广泛应用。
本次实验旨在通过合成低分子聚丙烯酸钠,并对其吸水性能进行测试,探究其结构和性能。
1.2实验目的1.合成低分子聚丙烯酸钠;2.利用红外光谱、元素分析等手段验证所合成产物的结构;3.测试PAA-Na的吸水性能,并与市售吸水材料进行对比。
二、实验部分2.1实验材料与仪器实验材料:丙烯酸、过硫酸铵、聚乙二醇、DI水实验仪器:电子天平、紫外可见光谱仪、红外光谱仪、元素分析仪2.2实验步骤1.称取适量的丙烯酸、过硫酸铵和聚乙二醇,按一定比例混合;2.开始反应,加入适量的DI水,并通过磁力搅拌使溶液均匀混合;3.加热反应体系至70℃,反应2小时;4.将反应产物进行洗涤、干燥;5.对合成产物进行红外光谱、元素分析等手段的表征;6.测试PAA-Na的吸水性能。
三、实验结果与分析3.1合成产物的红外光谱分析对合成的PAA-Na样品进行红外光谱分析,观察到样品在波数范围为4000-500 cm-1的典型峰值。
根据光谱图可以得知,产物中出现特征性的羧酸峰(COOH)和羧酸盐峰(COONa),证明合成的产物为低分子聚丙烯酸钠。
水稳定剂—低分子量聚丙烯酸(钠盐)的合成与分析1 实验部分1.1 合成方法在三口烧瓶中加入定量的蒸馏水,开动搅拌,于一定温度下,滴加适量的丙烯酸及引发剂水溶液,保温反应至一定时间,用一定浓度的氢氧化钠水溶液中和至中性,停止反应,产物为浅黄色透明粘稠液.1.2 分子量的测定按参考文献[5]进行聚丙烯酸钠分子量的测定.计算公式如下:2 结果与讨论2.1 引发剂种类的选择在丙烯酸钠的聚合过程中添加异丙醇、十二烷基硫醇等链转移剂,可使生成的聚合物分子量降低.但反应温度较高,且要蒸馏回收链转移剂.本文在温度较低的反应条件下,考察了常见几种不同引发剂对聚丙烯酸钠分子量的影响,实验结果见表1.表1 引发剂对聚丙烯酸钠分子量的影响注:反应条件:反应温度为70~C 丙烯酸单体浓度为30%,反应时间3h.实验结果表明,以过硫酸铵一亚硫酸钠作为引发体系效果最佳,所得聚丙烯酸钠分子量较低.以过氧化氢一硫酸亚铁作引发剂,反应体系变棕黄色;以过硫酸钾作为引发剂,得到聚丙烯酸钠的分子量较大.故选择过硫酸铵一亚硫酸钠作为合成聚丙烯酸钠的引发剂.2.2亚硫酸钠浓度的影响将不同浓度的亚硫酸钠溶液滴加到质量浓度为30%的丙烯酸溶液中((NUn)2S208浓度为0.1%),于70~C下反应时间3h.实验结果表明,随着亚硫酸钠浓度的增加,聚丙烯酸钠分子量增大.亚硫酸钠浓度为0.7%时,其分子量最低.表2 亚硫酸钠用量对聚丙烯酸钠分子量的影响2.3 过硫酸铵浓度的影响在亚硫酸钠浓度为0.7%的反应体系中,改变过硫酸铵的浓度,结果表明,随着过硫酸铵浓度的增加,所得聚丙烯酸的分子量增大.但过硫酸铵的浓度为0.02%时,聚丙烯酸的分子量比较高在本实验条件中,过硫酸铵的浓度控制在0.1%左右,可合成较低分子量聚丙烯酸.表3 过硫酸铵的浓度对聚丙烯酸钠分子量的影响2.4丙烯酸浓度的影响以不同丙烯酸的浓度进行了实验对比,结果发现,随着单体丙烯酸浓度的减少,聚丙烯酸分子量明显减小,丙烯酸浓度低于25%时,聚合速度慢,反应不完全,残留丙烯酸溶液较多,难以除掉,因此,将丙烯酸浓度控制在25%~30%之间比较合适.表4 丙烯酸浓度对聚丙烯酸钠分子量的影响2.5反应温度的影响分别在80~C、75~C、70~C和65℃下进行丙烯酸聚合反应,实验发现,随着反应温度的升高,所得聚丙烯酸分子量降低.当反应温度大于75~C时,由于丙烯酸在反应过程中回流过快,致使其损耗较多,故反应温度控制在70~75~C左右较为适宜.2.6 反应时间的影响反应时间对聚丙烯酸分子量的影响见图1.实验结果表明,聚丙烯酸分子量随着反应时间增加而增大.在反应初期,丙烯酸浓度高,反应速度快,聚丙烯酸分子量增大的趋势较大.反应时间增至2~2 5h时,聚丙烯酸分子量变化不大.再继续增加反应时间,聚丙烯酸分子量迅速增加,故反应时间应控制在2~2.5h.__ 又称游离基聚合。
低分子量聚丙烯酸钠的合成实验报告一、实验目的1.了解低分子量聚丙烯酸钠的合成原理;2.掌握低分子量聚丙烯酸钠的合成方法;3.了解低分子量聚丙烯酸钠在医药、化妆品等领域中的应用。
二、实验仪器与试剂1.实验仪器:反应釜、加热器、磁力搅拌器、恒温水浴槽等;2.试剂:丙烯酸钠、空气过硫酸钠、高锰酸钾、脱离剂等。
三、实验步骤1.反应釜内加入一定量的蒸馏水,并在加热器上加热至水温达到80℃;2.将一定量的丙烯酸钠溶液慢慢倒入反应釜内,同时开启磁力搅拌器以加强溶液的混合;3.将空气过硫酸钠溶液滴加至反应釜中,继续搅拌均匀;4.将高锰酸钾溶液滴加至反应釜中,继续搅拌均匀;5.将反应釜置于恒温水浴槽中,并将水温调节至80℃,反应3-4小时;6.反应结束后,关闭热源,取出反应釜,并使用脱离剂对产物进行脱离处理;7.将产物进行过滤、洗涤及干燥处理,最终得到低分子量聚丙烯酸钠。
四、实验结果与讨论1.实验结果:通过上述实验步骤得到了低分子量聚丙烯酸钠。
产物为白色粉末状或颗粒状,溶于水中呈浑浊胶状溶液。
2.实验讨论:通过添加空气过硫酸钠和高锰酸钾,可以引发丙烯酸钠的自由基聚合反应。
反应过程中,空气过硫酸钠起到引发剂的作用,高锰酸钾起到活性物种的清除剂的作用。
恒温水浴槽的设定温度可以控制聚合反应的速率和产物的分子量。
五、实验结论通过本次实验,成功合成了低分子量聚丙烯酸钠,并对其形态、溶解性进行了初步的表征。
低分子量聚丙烯酸钠具有良好的溶解性和增稠性能,在医药、化妆品等领域有广泛应用。
六、实验总结本次实验通过合成低分子量聚丙烯酸钠,使我们对聚合反应以及高分子化合物的合成有了更深入的了解。
同时,对于合成产物的分离、纯化和表征也有了一定的经验。
通过本实验,我们不仅掌握了合成方法,还了解了新材料的制备及应用领域,为今后的科研工作奠定了基础。
XI'AN TECHNOLOGICAL UNIVERSITY专业综合实验报告低分子量聚丙烯酸钠的合成院系:材料与化工学院________________专业:高分子材料与工程______________: 强强_____________________学号:090307106 _________________指导老师:牛小玲XI'AN TECHNOLOGICAL UNIVERSITY 2012年12月、八、-前言随着我国丙烯酸工业的迅速发展,对丙烯酸下游产品的研究不断深入,应用围不断扩大。
聚丙烯酸钠作为丙烯酸的一种主要下游产品,近年来在国外的研究受到重视,生产也不断增加。
聚丙烯酸钠产品包括水溶性产品和水不溶性产品。
水溶性聚丙烯酸钠产品广泛应用于食品、纺织造纸、化工等领域。
水不溶性聚丙烯酸钠产品具高吸水性,主要用于农林园艺、生理卫生等领域。
聚丙烯酸钠的分子量从几百至几千万以上,不同分子量的聚丙烯酸钠各有各的用途。
超低分子量(700 以下)的用途还未完全开发;低分子量(1000-5000) 主要起分散作用;中等分子量(104-106) 显示有增稠性; 高分子量(106-107) 的则主要做增稠剂和絮凝剂; 超高分子量(107 以上) 的在水中溶胀,生成水凝胶,主要用作吸水剂。
水溶性聚丙烯酸钠中又包括高分子量和低分子量两类。
目前高分子量聚丙烯酸钠合成是采用丙烯酸经氢氧化钠中和形成丙烯酸钠溶液,然后再聚合的工艺路线。
在水溶性高分子量聚丙烯酸钠的合成中,通常是高浓度丙烯酸钠溶液和低浓度氧化还原引发剂在低温下进行水溶液聚合。
制备的关键是在聚合前要除去丙烯酸中的阻聚剂。
去除阻聚剂的方法有减压蒸馏或加人活性炭吸附。
高分子量聚丙烯酸钠聚合时往往因为自交联作用或聚合速度过快使产品水溶性降低,因此需加入抗交联剂和缓聚合剂。
日本专利报道了以过硫酸盐和有机苯胺的复合引发体系,常温下催化丙烯酸钠水溶液聚合,制得溶解性能好的聚丙烯酸钠。
戚银城等采用氧化-还原体系,添加氨水和氯化钠,在30C时合成了分子量几百至几千万的聚丙烯酸钠。
水溶液聚合法具有设备简单,操作容易的特点,但缺点是所得到的聚合产物含水量高达60%-70%,难干燥。
反相悬浮聚合法也可用于合成高分子量聚丙烯酸钠。
淑珍[5] 报道了化工大学开发出反相悬浮聚合法合成聚丙烯酸钠絮凝剂,并建成1000L 聚合釜装置。
反相悬浮聚合法工艺复杂、设备利用率低。
聚丙烯酸钠是一种线状、可溶性高分子化合物,其分子链上的梭基由于静电相斥,使聚合物链伸展,促成有吸附性功能团外露到表面上,这些活性点吸附在溶液中悬浮粒子上,形成粒子间的架桥,从而加速了悬浮粒子的沉降。
因此可作絮凝剂。
聚丙烯酸钠是近年来在各领域广泛使用的一类功能性高分子材料,高分子量聚丙烯酸钠在各使用行业越来越受重视。
但在我国其研究还不深,生产规模还小,性能尚不如人意。
研究其生产过程,提高产品应用性能,扩大产品的应用领域是当前的重要任务。
以上分析可见高分子量的聚丙烯酸钠在很多领域都广泛使用,但目前在国企业使用的多为国外产品。
国近两年已有生产,但厂家不多,生产能力不超过一千吨,其中还包括胶体产品。
由此可见国高分子量聚丙烯酸钠的生产缺口还很大,有必要增加生产满足国需求。
因此建设高质量的使用性能好的聚丙烯酸钠生产厂非常必要。
1研究背景、意义丙烯酸类聚合物是很重要的一种水溶性化合物,它广泛用于石油、采矿业分散剂,合成洗涤剂分散剂,印染增稠剂及工业循环冷却水处理分散阻垢剂等。
聚丙烯酸又因其分子量的大小用途有所差异,因此再合成方式上采用不同的工艺条件,合成不同分子量的聚丙烯产品,以满足应用上的需求。
近年来,由于聚丙烯酸钠的优越性能,其得到了广泛的研究。
聚丙烯酸钠(PAANa是一类高分子电解质,是一种新型功能高分子材料,用途广泛,可用于食品、饲料、纺织、造纸、水处理、涂料、石油化工、冶金等。
PAANa的用途与其分子量有很大关系,一般来说,低分子量(500〜5000 )产品主要用作颜料分散剂、水处理剂等;中等分子量(10 4〜10 6)主要用作增稠剂、粘度稳定剂、保水剂等;高分子量主要用作絮凝剂、增稠剂等。
在造纸工业,随着高浓度涂布机的引进和铜版纸生产的发展,对分散剂的需求越来越大。
低分子量PAANa作为造纸工业的有机分散剂,能提高颜料的细度、分散体系的稳定性,提高纸的柔软性、强度、光泽、白度、保水性等,且具有可溶于水、不易水解、不易燃、无毒、无腐蚀性特点,因此低分子量PAANa在造纸工业越来越受到重视。
2研究容1.聚丙烯酸钠的制备。
通过实验制得纯净的聚丙烯酸钠,最终烘干的得到白色粉末状的成品。
2•分析影响聚丙烯酸分子量的因素。
比如温度、单体浓度等因素。
3•低分子量聚丙烯酸的合成方法。
3实验部分3.1方案一3.1.1实验原理聚丙烯酸是水质稳定剂的主要原料之一。
高分子量的聚丙烯酸(相对分子质量在几万或几十万以上)多用于皮革工业、造纸工业等方面。
作为阻垢用的聚丙烯酸,分子量都在一万以下,聚丙烯酸分子量的大小对阻垢效果有极大影响,从各项试验表明,低分子量的聚丙烯酸阻垢作用显著,而高分子量的聚丙烯酸丧失阻垢作用。
丙烯酸单体极易聚合,可以通过本体、溶液、乳液和悬浮等聚合方法得到聚丙烯酸,它符合一般的自由基聚合反应规律。
本实验用控制引发剂用量和应用调聚剂异丙醇,合成低分子量的聚丙烯酸,并用端基滴定法测定其分子量。
引发剂nCH. =CH—COOHCOOH3.1.2实验仪器和试剂四口瓶,回流冷凝管,电动搅拌器,恒温水浴,温度计,滴液漏斗,pH计丙烯酸,过硫酸铵,异丙醇,氢氧化钠标准溶液3.1.3实验步骤I •低分子量聚丙烯酸的合成1.在装有搅拌器、回流冷凝管、滴液漏斗和温度计的250mL四颈瓶中,加入100mL蒸馏水和1 g过硫酸铵。
待过硫酸铵溶解后,加入5g丙烯酸单体和8 g异丙醇。
开动搅拌器,加热使反应瓶温度达到65~70 °C。
2•将40g丙烯酸单体和2 g过硫酸铵在40 mL水中溶解,由滴液漏斗渐渐滴入瓶,由于聚合过程中放热,瓶温度有所升高,反应液逐渐回流。
滴完丙烯酸和过硫酸铵溶液约0.5 h。
3. 在94 C继续回流1h,反应即可完成。
聚丙烯酸相对分子质量约在500~4000 之间。
4. 如要得到聚丙烯酸钠盐,在已制成的聚丙烯酸水溶液中,加入浓氢氧化钠溶液(浓度为30%)边搅拌边进行中和,使溶液的pH值达到10~12围即停止,即制得聚丙烯酸钠盐。
n.端基法测定聚丙烯酸的分子量准确称量约0.2 g样品放入100mL烧杯中,加入1 mol/L的氯化钠溶液50 mL,用0.2 mol/L的氢氧化钠标准溶液滴定,测定其pH值,用消耗的氢氧化钠毫升数对pH 值作图,找出终点所消耗的碱量。
利用下式计算聚丙烯酸的分子量式中M ------ 聚丙烯酸分子量;V --- 试样滴定所消耗的氢氧化钠标准溶液体积,mLM——氢氧化钠标准溶液的摩尔浓度,mol/L ;m -- 试样质量,g;1/72 ---- 每1g样品所含有的羧基摩尔理论值;2――聚丙烯酸1个分子链两端各有一个酯基。
3.1.4 实验数据3.1.5实验结果与分析根据聚合反应动力学原理,合成的聚丙烯酸钠分子量要受到很多因素的影响,如聚合反应温度、链转移剂浓度、单体浓度、单体浓度。
下面给予讨论,从而得出制备低分子量的聚丙烯酸的最佳条件。
图1链转移剂浓度对聚合物分/屋的影响链转移剂浓度的影响改变链转移剂异丙醇的加入量,通过滴定的方法测出在不同浓度的转移剂下制取的聚丙烯酸到达滴定终点时所消耗的氢氧化钠标准溶液的量,从而计算出聚丙烯酸的分子量。
分别测得在不同浓度链转移剂下制取的聚丙烯酸的分子量。
结果表示在图1中。
根据图1可看出链转移能力与链转移剂的键能强弱有关,键能强,链转移能力弱。
在聚合反应中,起到控制分子量大小和使分子量分布变窄的作用,使聚合物性能稳定。
根据图1所示我们可以得出,当异丙醇浓度增大,聚合物的分子量先上升后下降,当要制取低分子量的聚丙烯酸钠时需根据情况选择适当的链转移剂浓度。
合成分子量(2000 - 3000)聚丙烯酸钠适当的链转移剂浓度为130% - 225%。
图:!单体浓度对聚合物分了虽的影响单体浓度的影响改变加入丙烯酸单体的质量,单体浓度以丙烯酸质量占水重计算。
为防止暴聚,在实验时,单体是从分液漏斗中逐滴加入到三颈烧瓶中的。
用相同的方法进行计算,结果表示在图2中。
根据图2可以看出,当单体浓度逐渐增大但还不到90%寸,分子量是逐渐增大;不过当单体浓度大于90%寸分子量又开始有降低的趋势。
所以在合成低分子量聚丙烯酸钠时可以根据上述分析选择适当的单体浓度。
合成分子量(2000 -3000)聚丙烯酸钠适当的单体浓度应小于100%图3温度对聚合物分产址的議响将在不同温度下制取的聚合物用标准浓度的氢氧化钠溶液进行滴定,将pH对所消耗的氢氧化钠作图,然后再分别作图读出滴定终点时消耗的标准浓度氢氧化钠溶液的体积,运用和以上相同的方法分别进行计算得出聚合物的分子量,再将得出的分子量对温度作图如图3。
聚合温度是影响聚丙烯酸钠分子量的重要因素。
聚合温度对单体、引发剂、链转移剂都有影响。
聚合温度的高低直接影响到引发剂活化分子的含量,聚合温度高,向单体、溶剂链转移常数增大,链终止反应速度加快。
通过观察图3可以看出:随温度升高,分子量降低。
从而也可以得出聚丙烯酸钠的分子量随温度变化的规律。
但是当温度很高时,反应速度加快,反应不容易控制。
所以在制取低分子量聚丙烯酸钠时,我们可以根据上图所示选择适当的温将在不同的引发剂浓度下制得的聚合物用标准浓度的氢氧化钠溶液进行滴定,也用上述同样的方法进行操作和计算,可以得出聚合物的分子量,然后将聚合物的分子量对引发剂浓度进行作图如图4所示。
本聚合反应采用引发剂引发下的自由基聚合反应,遵循典型的连锁反应机理[。
过硫酸铵热分解生成自由基,自由基引发单体进行聚合。
引发剂的引发效率和引发剂的热分解速率对聚合物的分子量有影响。
通过对图4的分析可以看出当引发剂浓度增大时,聚合物的分子量会先降低后来又有一点升高,这也和理论上的聚合反应的速率与引发剂浓度的平方根成反比;而聚合物的分子量与引发剂浓度的平方根成反比一致。
所以我们在合成分子量(2000 - 3000)聚丙烯酸钠时可以根据上述图4分析选择2%左右的引发剂浓度。
3.2实验方案二3.2.1实验原理PAANa勺合成路线主要有先聚合再中和、先中和再聚合等几种。
本实验采用先中和再聚合的路线。
其反应式如下所示:3.2.2试剂和仪器试剂:丙烯酸,CP过硫酸铵,AR氢氧化钠,CP丙醇,CP去离子水。
仪器:四口烧瓶;滴液漏斗;球形冷凝管;电热套;调压器;水循环真空泵;布氏漏斗;真空烘箱;乌氏粘度计(0.6mm);恒温水浴;干燥箱等。