小车运动实验表格
- 格式:doc
- 大小:40.50 KB
- 文档页数:1
实例讲解丨小车往返运动编程案例一、小车往返运动用S7-200实现小车往返的自动控制,控制过程为按下启动按钮,小车从左边往右边(右边往左边运动)当运动到右边(左边)碰到右边(左边)的行程开关后小车自动做返回运动,当碰到另一边的行程开关后又做返回运动。
如此的往返运动,直到当按下停车按钮后小车停止运动。
▲电气接线图I/O分配表梯形图程序PLC接线图程序调试及结果分析▲控制平台操作面板当按下SB2即i0.0(鼠标点击i0.0f)接通后,Q0.0接通,小车右行(即指示灯Q0.0 亮)。
当小车运行碰到右限位开关SQ2即i0.4(用鼠标点击i0.4f,模拟SQ2被压下)接通,此时小车左行(指示灯Q0.0灭,指示灯Q0.1亮),当运行到左边碰到左限位SQ1即i0.3(鼠标点击i0.3f)接通,此时小车又往右运行(指示灯Q0.1灭,指示灯Q0.0 亮)。
如此往返运动下去直到按下SB1即i0.2(鼠标点i0.2f)接通,小车停止运行。
附:二、闪光电路当按下启动按钮后,要求在两秒钟内有一秒亮有一秒灭,如此反复,灯一闪一闪发光。
I/O分配表梯形图程序PLC接线图程序调试及结果分析把编写好的程序下载到西门子s7-200PLC中进行调试。
观察运行结果和实验要求是否相同。
通过在线控制面板进行调试,当按下在线控制面板上的I0.0f(即 I0.0 接通)此时Q0.0有输出,Q0.0所接负载灯就亮,同时启动定时器T37开始计时,当计时一秒后因T37动作,其常闭触点断开,所以Q0.0无输出,所接负载灯灭。
灯灭的同时启动定时器 T38,T38 计时一秒后,把串联在定时器T37的常闭触点断开,所以T37复位,T37常闭触点恢复常闭。
此时Q0.0 又有输出,所接负载灯又亮。
这样,输出Q0.0上所接的负载灯以接通一秒,断开一秒频率不停的闪烁,直到按下在线控制面板上的I0.1f(即I0.1接通),闪光电路不在继续工作。
若想改变灯闪烁的频率只要改变定时器的时间就能够达到改变要求。
小车的运动实验教案实验名称:小车的运动实验实验目的:1.了解小车在不同斜坡角度上的运动规律;2.观察小车在不同斜坡高度时的运动规律;3.探究小车在不同条件下的运动表现。
实验材料:1.倾斜桌面;2.不同高度的斜坡(可以用书籍等物品堆叠而成);3.小车;4.钢尺、刻度尺等测量工具;5.计时器;6.记录表格。
实验步骤:1.准备工作:a.在桌子上放置一块倾斜桌面,并确保其稳固;b.将小车放在桌面的底端;c.用测量工具测量斜坡的高度和角度,并记录在记录表格中。
2.观察小车在不同斜坡角度上的运动规律:a.将斜坡的角度调整为10度,将小车从斜坡顶端放下,并用计时器记录小车下滑的时间;b.重复上述步骤,将斜坡的角度依次调整为20度、30度、40度等,并记录小车下滑时间;c.分析记录数据,观察小车下滑时间与斜坡角度之间的关系,并绘制成图表。
3.观察小车在不同斜坡高度上的运动规律:a. 将斜坡的高度调整为5cm,按照同样的步骤记录小车下滑时间;b. 重复上述步骤,将斜坡的高度依次调整为10cm、15cm、20cm等,并记录小车下滑时间;c.分析记录数据,观察小车下滑时间与斜坡高度之间的关系,并绘制成图表。
4.探究小车在不同条件下的运动表现:a.在斜坡上加上一层光滑的物质(如油纸),重复步骤2和3,观察小车下滑时间是否发生变化;b.将小车上的轮子换成较大直径的轮子,重复步骤2和3,观察小车下滑时间是否发生变化;c.将小车与绳子相连,通过引力作用使小车下滑,重复步骤2和3,观察小车下滑时间是否发生变化。
实验记录与分析:在进行实验过程中,记录小车下滑时间与斜坡角度、斜坡高度、表面物质以及轮子直径等因素之间的关系。
根据实验数据和图表分析比较,得出以下结论:1.随着斜坡角度增加,小车下滑时间逐渐减少,即小车下滑速度增加。
2.随着斜坡高度增加,小车下滑时间也逐渐减少,即小车下滑速度增加。
3.表面物质的光滑程度会影响小车的下滑速度,摩擦力越小,小车下滑时间越短。
测量平均速度实验表格测量平均速度▲知识点一测量平均速度实验原理:;实验器材:斜面、小车、金属片、刻度尺、停表。
实验时用刻度尺测出小车通过的路程,用停表测出小车通过这段路程所用的时间,再用公式计算出小车在该段路程的平均速度。
实验目的:①测量下车下滑时的平均速度;②探究小车在斜面上运动的速度变化特点。
实验步骤:(1)如图,斜面的一端用木块垫起,使它保持很小的坡度。
(2)把小车放在斜面顶端,金属片放在斜面底端,用刻度尺测出小车车头到金属片的距离s1。
(3)用停表测量小车从斜面顶端滑下到撞击金属片的时间t1。
(4)将金属片移至斜面的中部,小车放在斜面顶端,测出小车车头到金属片的距离s2,然后测出小车由斜面顶端滑下到撞击金属片的时间t2。
(5)记录实验数据并求出相应物理量。
分析与论证:分析表中数据,可得出,我们还可以进一步分析下半段路程的速度,从图中我们可看出下半段的路程,下半段的速度,三次平均速度的大小关系依次是:。
实验结论:小车在从斜面顶端下滑到底端的过程中,速度越来越快。
2.注意事项(1)金属片的作用是什么?答:便于测量时间和让小车停止运动。
(2)斜面的坡度为什么不能太小也不能太大?答:斜面的坡度过小,小车可能达不到底部;斜面的坡度过大,记录时间不准确,导致实验误差大。
(3)如何测量小车在下半段的平均速度?答:先测量全程路程s1,总路程减去上半段路程s2,下半段所用时t2,全程所用总时间t1减去上半段所用时间t2,则(4)实验中为什么要求多测几组数据。
答:为避免因实验偶然性带给结果的误差,增强实验结论的普遍性。
(5)如何测小车下滑的距离。
答:小车的距离为车头到车头距离,不是斜面的长度。
(6)小车下滑的要求答:小车从斜面顶端静止释放,且保证每次小车都从同一位置释放。
(7)测量过程能否改变斜面坡度?答:测量过程中不能改变斜面坡度。
(8)测量中的偏大、偏小问题答:若小车开始开始滑动后才开始计时,会导致测量时间偏小(偏大/偏小),测量平均速度偏大(偏大/偏小);若过了终点才停止计时,会导致测量时间偏大(偏大/偏小),测量平均速度偏小。
第1篇一、实验目的本实验旨在研究小车运动速度的控制,分析影响小车运动速度的因素,并通过实验验证控制方法的有效性。
通过本实验,学生可以掌握以下知识:1. 了解小车运动的基本原理。
2. 掌握小车运动速度控制的基本方法。
3. 熟悉实验仪器的使用和数据处理方法。
4. 培养学生的实验操作能力和分析问题能力。
二、实验原理小车运动速度的控制主要依赖于驱动电机的转速。
通过改变电机转速,可以实现对小车运动速度的调节。
在本实验中,采用PWM(脉冲宽度调制)技术对电机转速进行控制。
PWM技术通过改变脉冲宽度来调整电机驱动电路中的平均电压,从而实现对电机转速的调节。
三、实验器材1. 小车平台2. 驱动电机3. 电机驱动电路4. PWM控制器5. 电流表6. 电压表7. 数据采集卡8. 计算机及实验软件四、实验步骤1. 搭建实验电路:按照实验电路图连接小车平台、驱动电机、电机驱动电路和PWM控制器。
2. 设置实验参数:通过计算机软件设置PWM控制器的参数,包括PWM频率、占空比等。
3. 启动实验:启动PWM控制器,观察小车的运动状态。
4. 数据采集:利用数据采集卡采集小车运动过程中的电流、电压等数据。
5. 分析数据:对采集到的数据进行处理和分析,研究小车运动速度与电机转速之间的关系。
五、实验结果与分析1. 实验结果:通过实验,我们得到了不同PWM占空比下小车的运动速度数据。
2. 数据分析:(1)当PWM占空比较小时,小车运动速度较慢;随着PWM占空比的增大,小车运动速度逐渐加快。
(2)当PWM占空比达到一定值后,小车运动速度趋于稳定,此时电机转速基本达到最大值。
(3)在小车运动过程中,电流和电压数据也呈现出一定的规律性变化。
六、结论1. 小车运动速度与PWM占空比呈正相关关系,PWM占空比越大,小车运动速度越快。
2. 通过调节PWM占空比,可以实现对小车运动速度的有效控制。
3. 本实验验证了PWM技术在电机转速控制方面的可行性,为实际工程应用提供了理论依据。