解:(如设以抛以物以线下图为)y ,=求a抛(x物-线20的)2表+达1式6 .
根据题意可知 ∵ 点(0 ,0)在抛物线上 ,
评价
∴ 所求抛物线表达式为
通过利用条件中的顶
点和过原点选用顶点 式求解 ,方法比较灵 活
封面 练习
用待定系数法求函数表达式的一般步骤:
1 、设出适合的函数表达式; 2 、把条件代入函数表达式中 ,得到关于待定 系数的方程或方程组; 3、 解方程〔组〕求出待定系数的值; 4、 写出一般表达式 .
• 交点式:y =a(x -x1)(x -x2) (a≠0)
例题选讲
例 1 抛物线的顶点为〔-1 ,-6〕 ,与轴交点为
〔2 ,3〕求抛物线的表达式 ?
解:因为二次函数图像的顶点坐标是〔-1 ,-6〕 ,
所以 ,设所求的二次函数为 y =a(x+1)2 -6
由条件得:点( 2 , 3 )在抛物线上 , 代入上式 ,得
\ BC = 12 cm.Q在RT △ABC中,AB = 4 cm.
由勾股定理,得
A
AC = AB2 + BC 2 = 42 +122 12.6 cm .
D
A
1
由于圆柱的侧面展开图是平面图形 , A ,C是该平 面内的两点 ,在A ,C两点的连线中 ,线段AC最||短. 所以,蚂蚁从点A沿着圆柱体侧面爬行到点C时 ,如 果沿着路径AC爬行 ,爬行的路径最||短 ,最||短路 径约为12.6 cm.
课堂小结
求二次函数表达式的一般方法:
▪ 图象上三点或三对的对应值 ,
▪ 通常选择一般式
y
▪ 图象的顶点坐标、对称轴或和最||值
▪ 通常选择顶点式
▪ 图象与x轴的两个交点的横x1、x2 ,