2019版高考数学(理)一轮复习全国经典版:选修4-4 坐标系与参数方程 选4-4-1a
- 格式:doc
- 大小:36.00 KB
- 文档页数:5
选修4-4坐标系与参数方程考点1坐标系1.[2014江西,11(2),5分] [理]若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y=1-x(0≤x≤1)的极坐标方程为()A.ρ=,0≤θ≤B.ρ=,0≤θ≤C.ρ=cos θ+sin θ,0≤θ≤D.ρ=cos θ+sin θ,0≤θ≤2.直线3x-2y+1=0经过,变换后的直线方程为.3.在平面直角坐标系xOy中,曲线C的方程为(x-2)2+y2=4,直线l的方程为x+y-12=0.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)分别写出曲线C与直线l的极坐标方程;(2)在极坐标系中,极角为θ(θ∈(0,))的射线m与曲线C、直线l分别交于A,B两点(点A异于极点O),求的最大值.考点2参数方程4.[2014湖南,12,5分]在平面直角坐标系中,曲线C:,(t为参数)的普通方程为.5.已知直线l:,(t为参数),曲线C1:,(θ为参数).(1)试判断l与C1的位置关系;(2)若把曲线C1上各点的横坐标压缩为原来的,纵坐标压缩为原来的,得到曲线C2,设点P 是曲线C2上的一个动点,求它到直线l的距离的最小值.6.已知曲线C1的参数方程是-,(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=a sin θ(a>0),曲线周长为4π.(1)求曲线C1与C2的交点的平面直角坐标;(2)若A,B是曲线C1与C2的交点,点D在曲线C1上,求△ABD面积的最大值.答案1.A y=1-x(0≤x≤1)的极坐标方程为ρsin θ=1-ρcos θ,即ρ=,由0≤x≤1,得0≤y≤1,所以θ∈[0,].故选A.2.x-y+1=0由变换,得,,代入直线方程, 得3×-2×+1=0,即x'-y'+1=0, 所以变换后的直线方程为x-y+1=0.3.(1)由x=ρcos θ,y=ρsin θ,得曲线C的极坐标方程为ρ=4cos θ,直线l的极坐标方程为ρcos θ+ρsin θ-12=0.(2)由题意得|OA|=4cos θ,因为ρcos θ+ρsin θ-12=0,所以|OB|=,所以=()=+sin(2θ+),因为θ∈(0,),所以2θ+∈(,),所以sin(2θ+)∈(-,1],所以的最大值为,此时θ=.4.x-y-1=0直接化简,两式相减消去参数t,得x-y=1,整理得普通方程为x-y-1=0.5.(1)由题易知l的普通方程为x-y-2=0,C1的普通方程为x2+y2=1,所以C1的圆心到直线l的距离为d==>1,所以直线l与曲线C1相离.(2)易知曲线C2:,设点P(cos θ,sin θ),则点P到直线l的距离是d=--=(-)-,所以当-θ=+2kπ,k∈Z,即θ=--2kπ,k∈Z时,d取得最小值,最小值为.故点P到直线l的距离的最小值为.6.(1)由-,(θ为参数),得,(θ为参数),消参可得(x+2)2+y2=4①.故曲线C1是圆心为C1(-2,0),半径为r1=2的圆.由ρ=a sin θ,得ρ2=aρsin θ,则x2+y2=ay,即x2+(y-)2=,故曲线C2是圆心为C2(0,),半径为r2=的圆.易知曲线C2的周长为2π×=πa=4π,所以a=4.故曲线C2的方程为x2+y2=4y②.由①-②,得y=-x③,联立②③,解得,或-,,故曲线C1与C2的交点的平面直角坐标为(0,0),(-2,2).(2)由(1)可知,|AB|=()(-)=2且直线AB的方程为x+y=0.则圆心C1(-2,0)到直线AB的距离d==,所以点D到直线AB的距离的最大值为d+r1=+2.所以△ABD面积的最大值为×2×(+2)=2+2.。
M2 2M13α r绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.设z=-3+2i,则在复平面内z 对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB =(2,3),AC =(3,t),BC =1,则AB ⋅BC =A.-3 B.-2C.2 D.34.2019 年1 月3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2 点到月球的距离为r,根据牛顿运动定律和万有引力定律,r 满足方程:M1 +M2 = (R +r)M1 .(R +r)2r2R3α=r α3α3+ 3α4+α5≈3设,由于R 的值很小,因此在近似计算中(1+α)2,则的近似值为A.M2 RM1B.RD .3M2 R 3M15.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉1 个最高分、1 个最低分,得到7 个有效评分.7 个有效评分与9 个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差6.若a>b,则A.ln(a−b)>0 B.3a<3bC.a3−b3>0 D.│a│>│b│7.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆x y2+=1 的一个焦点,则p= 3 p pA.2 B.3 C.4 D.8π 9.下列函数中,以2ππ为周期且在区间( ,4 2)单调递增的是A.f(x)=│cos 2x│B.f(x)=│sin 2x│C.f(x)=cos│x│D.f(x)= sin│x│π10.已知α∈(0,2 A.15),2sin 2α=cos 2α+1,则sin α=B.5C.3x2 y2 D.2 5511.设F 为双曲线C:a2 -=1(a > 0, b > 0) 的右焦点,O 为坐标原点,以OF 为直径的b2圆与圆x2+y2=a2交于P,Q 两点.若PQ =OF A.,则C 的离心率为B.C.3 3M2 RM15 3232C.2 D.12.设函数f (x) 的定义域为R,满足f (x +1) = 2 f (x) ,且当x ∈ (0,1] 时,f (x) =x(x -1) .若对任意x ∈(-∞, m] ,都有f (x) ≥-8,则m 的取值范围是9A.⎛-∞,9 ⎤B.⎛-∞,7 ⎤4 ⎥ 3 ⎥ ⎝⎦C.⎛-∞,5 ⎤⎝⎦D.⎛-∞,8 ⎤2 ⎥ 3⎥ ⎝⎦⎝⎦二、填空题:本题共4 小题,每小题5 分,共20 分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10 个车次的正点率为0.97,有20 个车次的正点率为0.98,有10 个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.14.已知f (x) 是奇函数,且当x < 0 时,f (x) =-e ax.若f (ln 2) = 8 ,则a =.15.△ABC 的内角A, B, C 的对边分别为a, b, c .若b = 6, a = 2c, B =π,则△ABC 的面积3为.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2 是一个棱数为48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(.本题第一空2 分,第二空3 分.)三、解答题:共70 分。
选修4—4 坐标系与参数方程第1课坐标系[过双基]1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ). 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0).4.常见曲线的极坐标方程1.点P 的直角坐标为(1,-3),则点P 的极坐标为________.解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3,所以点P 的极坐标为⎝⎛⎭⎫2,-π3. 答案:⎝⎛⎭⎫2,-π3 2.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为________. 解析:把圆ρ=2cos θ的方程化为(x -1)2+y 2=1知,圆的垂直于极轴的两条切线方程分别为x =0和x =2,从而得这两条切线的极坐标方程为θ=π2(ρ∈R)和ρcos θ=2.答案:θ=π2(ρ∈R)和ρcos θ=23.(2017·北京高考)在极坐标系中,点A 在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP |的最小值为________.解析:将圆的极坐标方程化为直角坐标方程为x 2+y 2-2x -4y +4=0,即(x -1)2+(y -2)2=1,圆心为(1,2),半径r =1.因为点P (1,0)到圆心的距离d =(1-1)2+(0-2)2=2>1,所以点P 在圆外,所以|AP |的最小值为d -r =2-1=1.答案:14.(2017·天津高考)在极坐标系中,直线4ρcos ⎝⎛⎭⎫θ-π6+1=0与圆ρ=2sin θ 的公共点的个数为________.解析:依题意,得4ρ⎝⎛⎭⎫32cos θ+12sin θ+1=0,即23ρcos θ+2ρsin θ+1=0,所以直线的直角坐标方程为23x +2y +1=0. 由ρ=2sin θ,得ρ2=2ρsin θ, 所以圆的直角坐标方程为x 2+y 2=2y , 即x 2+(y -1)2=1,其圆心(0,1)到直线23x +2y +1=0的距离 d =|2×1+1|(23)2+22=34<1,则直线与圆相交, 故直线与圆的公共点的个数是2.答案:25.在极坐标系中,过点A ⎝⎛⎭⎫1,-π2引圆ρ=8sin θ的一条切线,则切线长为________. 解析:点A ⎝⎛⎭⎫1,-π2的极坐标化为直角坐标为A (0,-1), 圆ρ=8sin θ的直角坐标方程为x 2+y 2-8y =0, 圆的标准方程为x 2+(y -4)2=16, 点A 与圆心C (0,4)的距离为|AC |=5, 所以切线长为|AC |2-r 2=3. 答案:3[清易错]1.极坐标方程与直角坐标方程的互化易错用互化公式.在解决此类问题时考生要注意两个方面:一是准确应用公式,二是注意方程中的限制条件.2.在极坐标系下,点的极坐标不唯一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π)(k ∈Z),(-ρ,π+θ+2k π)(k ∈Z)表示同一点的坐标. 1.若圆C 的极坐标方程为ρ2-4ρcos ⎝⎛⎭⎫θ-π3-1=0,若以极点为原点,以极轴为x 轴的正半轴建立相应的平面直角坐标系xOy ,则在直角坐标系中,圆心C 的直角坐标是________.解析:因为ρ2-4ρcos ⎝⎛⎭⎫θ-π3-1=0,所以ρ2-2ρcos θ-23ρsin θ-1=0,即x 2+y 2-2x -23y -1=0,因此圆心坐标为(1,3).答案:(1,3)2.圆ρ=5cos θ-53sin θ的圆心的极坐标为________. 解析:将方程 ρ=5cos θ-53sin θ两边都乘以ρ得: ρ2=5ρcos θ-53ρsin θ,化成直角坐标方程为x 2+y 2-5x +53y =0. 圆心的坐标为⎝⎛⎭⎫52,-532,化成极坐标为⎝⎛⎭⎫5,5π3. 答案:⎝⎛⎭⎫5,5π3(答案不唯一)平面直角坐标系下图形的伸缩变换[典例] (1)在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝⎛⎭⎫13,-2经过φ变换所得的点A ′的坐标.(2)求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,变换后所得到的直线l ′的方程.[解] (1)设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝⎛⎭⎫13,-2, 于是x ′=3×13=1,y ′=12×(-2)=-1,∴A ′(1,-1)为所求.(2)设直线l ′上任意一点P ′(x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入y =6x 得2y ′=6×⎝⎛⎭⎫13x ′,∴y ′=x ′,即y =x 为所求. [方法技巧]伸缩变换的解题方法平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下得到的方程的求法是将⎩⎨⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝⎛⎭⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.[即时演练]1.求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y 后的曲线方程.解:由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.2.若函数y =f (x )的图象在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝⎛⎭⎫x ′+π6,求函数y =f (x )的最小正周期. 解:由题意,把变换公式代入曲线 y ′=3sin ⎝⎛⎭⎫x ′+π6得3y =3sin ⎝⎛⎭⎫2x +π6, 整理得y =sin ⎝⎛⎭⎫2x +π6,故f (x )=sin ⎝⎛⎭⎫2x +π6. 所以y =f (x )的最小正周期为2π2=π.极坐标与直角坐标的互化[典例] 在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为ρsin ⎝⎛⎭⎫π4-θ=22,直线与曲线C :ρsin 2θ=8cos θ相交于不同的两点A ,B ,求|AB |的值.[解] l :ρsin ⎝⎛⎭⎫π4-θ=22⇒22ρcos θ-22ρsin θ=22⇒x -y -1=0,C 的直角坐标方程是y 2=8x .由⎩⎪⎨⎪⎧y 2=8x ,x -y -1=0,可得x 2-10x +1=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=10,x 1x 2=1, 所以AB 的长为1+1·102-4=8 3. [方法技巧]1.极坐标与直角坐标互化公式的3个前提条件 (1)取直角坐标系的原点为极点. (2)以x 轴的非负半轴为极轴. (3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标的注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.[即时演练]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1(0≤θ<2π),M ,N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝⎛⎭⎫θ-π3=1,得ρ⎝⎛⎭⎫12cos θ+32sin θ=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y -2=0.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N⎝⎛⎭⎫233,π2.(2)M 点的直角坐标为(2,0).N 点的直角坐标为⎝⎛⎭⎫0,233. 所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6. 所以直线OP 的极坐标方程为θ=π6(ρ∈R).极坐标方程的应用[典例] 已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.[解] (1)C 1:ρsin ⎝⎛⎭⎫θ+π6=32,C 2:ρ2=61+2sin 2θ. (2)∵M (3,0),N (0,1), ∴P⎝⎛⎭⎫32,12,∴OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝⎛⎭⎫θ+π6=32得ρ1=1,P ⎝⎛⎭⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝⎛⎭⎫2,π6. ∴|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1. [方法技巧]曲线的极坐标方程的求解策略在已知极坐标方程求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转化为直角坐标方程解决.[即时演练]在直角坐标系xOy 中,圆C 的普通方程为(x -1)2+y 2=1.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=33,射线OM :θ=π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)因为圆C 的普通方程为(x -1)2+y 2=1, 又x =ρcos θ,y =ρsin θ,所以圆C 的极坐标方程是ρ=2cos θ. (2)设(ρ1,θ1)为点P 的极坐标, 则有⎩⎪⎨⎪⎧ ρ1=2cos θ1,θ1=π3,解得⎩⎪⎨⎪⎧ρ1=1,θ1=π3. 设(ρ2,θ2)为点Q 的极坐标,则有⎩⎪⎨⎪⎧ ρ2(sin θ2+3cos θ2)=33,θ2=π3,解得⎩⎪⎨⎪⎧ρ2=3,θ2=π3. 由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=2,即线段PQ 的长为2.1.(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. 解:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3 =2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.2.(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.3.(2016·北京高考改编)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,求|AB |.解:∵x =ρcos θ,y =ρsin θ,∴直线的直角坐标方程为x -3y -1=0. ∵ρ=2cos θ,∴ρ2(sin 2θ+cos 2θ)=2ρcos θ,∴x 2+y 2=2x .∴圆的直角坐标方程为(x -1)2+y 2=1. ∵圆心(1,0)在直线x -3y -1=0上, ∴AB 为圆的直径,∴|AB |=2.4.(2015·安徽高考改编)在极坐标系中,求圆ρ=8sin θ上的点到直线θ=π3(ρ∈R)距离的最大值.解:圆ρ=8sin θ即ρ2=8ρsin θ, 化为直角坐标方程为x 2+(y -4)2=16, 直线 θ=π3即tan θ=3,化为直角坐标方程为3x -y =0, 圆心(0,4)到直线的距离为|-4|4=2,所以圆上的点到直线距离的最大值为2+4=6.5.(2015·北京高考改编)在极坐标系中,求点⎝⎛⎭⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离. 解:点⎝⎛⎭⎫2,π3的直角坐标为()1,3, 直线ρ(cos θ+3sin θ)=6的直角坐标方程为x +3y -6=0. 所以点(1,3)到直线的距离d =|1+3×3-6|12+(3)2=22=1.1.在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0, 曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5, 所以圆心C 的坐标为(1,-2),半径r =5, 所以圆心C 到直线的距离为 |1+2+a |2= r 2-⎝⎛⎭⎫|AB |22=2,解得a =-5或a =-1. 故实数a 的值为-5或-1.2.在极坐标系中,求直线ρcos ⎝⎛⎭⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标.解:ρcos ⎝⎛⎭⎫θ+π6=1化为直角坐标方程为3x -y =2, 即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1), 化为极坐标为⎝⎛⎭⎫2,π6. 3.(2018·长春模拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2, 所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22. 4.已知曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 相交于异于原点的两点 A ,B ,求△AOB的面积.解:(1)∵曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y -1)2=5,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,代入并化简得ρ=4cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)在极坐标系中,C :ρ=4cos θ+2sin θ, ∴由⎩⎪⎨⎪⎧θ=π6,ρ=4cos θ+2sin θ,得|OA |=23+1,同理:|OB |=2+ 3. 又∵∠AOB =π6,∴S △AOB =12|OA |·|OB |sin ∠AOB =8+534,即△AOB 的面积为8+534.5.在坐标系中,曲线C :ρ=2a cos θ(a >0),直线l :ρcos θ-π3=32,C 与l 有且只有一个公共点.(1)求a 的值;(2)若原点O 为极点,A ,B 为曲线C 上两点,且∠AOB =π3,求|OA |+|OB |的最大值.解:(1)由已知在直角坐标系中,C :x 2+y 2-2ax =0⇒(x -a )2+y 2=a 2(a >0); l :x +3y -3=0.因为C 与l 只有一个公共点,所以l 与C 相切, 即|a -3|2=a ,则a =1. (2)设A (ρ1,θ),则B ⎝⎛⎭⎫ρ2,θ+π3, ∴|OA |+|OB |=ρ1+ρ2=2cos θ+2cos ⎝⎛⎭⎫θ+π3=3cos θ-3sin θ=23cos ⎝⎛⎭⎫θ+π6. 所以,当θ=-π6时,(|OA |+|OB |)max =2 3.6.在平面直角坐标系xOy 中,直线C 1:3x +y -4=0,曲线C 2:x 2+(y -1)2=1,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若曲线C 3的极坐标方程为θ=α⎝⎛⎭⎫ρ>0,0<α<π2,且曲线C 3分别交C 1,C 2于点A ,B ,求|OB ||OA |的最大值.解:(1)∵x =ρcos θ,y =ρsin θ,∴C 1:3ρcos θ+ρsin θ-4=0,C 2:ρ=2sin θ. (2)曲线C 3为θ=α⎝⎛⎭⎫ρ>0,0<α<π2, 设A (ρ1,α),B (ρ2,α),ρ1=43cos α+sin α,ρ2=2sin α,则|OB ||OA |=ρ2ρ1=14×2sin α(3cos α+sin α) =142sin2α-π6+1, ∴当α=π3时,⎝⎛⎭⎫|OB | |OA |max=34. 7.平面直角坐标系xOy 中,曲线C 1的方程为x 23+y 2=1,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ+π3,射线OM 的极坐标方程为θ=α0(ρ≥0).(1)写出曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若射线OM 平分曲线C 2,且与曲线C 1交于点A ,曲线C 1上的点满足∠AOB =π2,求|AB |.解:(1)曲线C 1的极坐标方程为ρ2=31+2sin 2θ,曲线C 2的直角坐标方程为(x -3)2+(y -1)2=4. (2)曲线C 2是圆心为(3,1),半径为2的圆, ∴射线OM 的极坐标方程为θ=π6(ρ≥0),代入ρ2=31+2sin 2θ,可得ρ2A =2. 又∠AOB =π2,∴ρ2B=65, ∴|AB |=|OA |2+|OB |2=ρ2A +ρ2B =455. 8.已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形; (2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.解:(1)作出图形如图所示,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得, 4+ρ2-4ρcos θ-π3=4,∴圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),设M (x ,y ),由Q (5,-3),M 是线段PQ 的中点, 得点M 的轨迹的参数方程为⎩⎨⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数),∴点M 的轨迹的普通方程为(x -3)2+y 2=1.第2课参数方程[过双基]1.参数方程的概念一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x ,y 是某个变数t 的函数:⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).[小题速通]1.参数方程⎩⎪⎨⎪⎧x =2-t ,y =-1-2t (t 为参数)与极坐标方程ρ=sin θ所表示的图形分别是________.解析:将参数方程⎩⎪⎨⎪⎧x =2-t ,y =-1-2t 消去参数t ,得2x -y -5=0,对应图形为直线.由ρ=sin θ,得ρ2=ρsin θ,即x 2+y 2=y , 即x 2+⎝⎛⎭⎫y -122=14,对应图形为圆. 答案:直线、圆2.曲线⎩⎪⎨⎪⎧x =sin θ,y =sin 2θ(θ为参数)与直线y =x +2的交点坐标为________. 解析:曲线的直角坐标方程为y =x 2.将其与直线方程联立得⎩⎪⎨⎪⎧y =x 2,y =x +2,∴x 2-x -2=0,∴x =-1或x =2.由x =sin θ知,x =2不合题意.∴x =-1,y =1,∴交点坐标为(-1,1).答案:(-1,1)3.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为________. 解析:∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),∴(x -2)2+(y +1)2=9, ∴圆心(2,-1)到直线l 的距离 d =|2+3+2|1+9=710=71010.又∵71010<3,141010>3,∴有2个点.答案:24.参数方程⎩⎪⎨⎪⎧x =2t 21+t 2,y =4-2t21+t2(t 为参数)化为普通方程为________.解析:∵x =2t 21+t 2,y =4-2t 21+t 2=4(1+t 2)-6t 21+t 2=4-3×2t 21+t 2=4-3x .又x =2t 21+t 2=2(1+t 2)-21+t 2=2-21+t 2∈[0,2), ∴x ∈[0,2),∴所求的普通方程为3x +y -4=0(x ∈[0,2)). 答案:3x +y -4=0(x ∈[0,2))[清易错]1.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致,否则不等价. 2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.1.直线y =x -1上的点到曲线⎩⎪⎨⎪⎧x =-2+cos θ,y =1+sin θ上的点的最近距离是________.解析:由⎩⎪⎨⎪⎧ x =-2+cos θ,y =1+sin θ得⎩⎪⎨⎪⎧cos θ=x +2,sin θ=y -1,∴(x +2)2+(y -1)2=1,∴圆心坐标为(-2,1), 故圆心到直线x -y -1=0的距离d =42=22, ∴直线上的点到圆上的点的最近距离是d -r =22-1. 答案:22-12.直线⎩⎪⎨⎪⎧x =4+at ,y =bt (t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,则切线的倾斜角为________.解析:直线的普通方程为bx -ay -4b =0,圆的普通方程为(x -2)2+y 2=3,因为直线与圆相切,则圆心(2,0)到直线的距离为3,从而有 3=|2b -a ·0-4b |a 2+b 2,即3a 2+3b 2=4b 2,所以b =±3a ,而直线的倾斜角α的正切值tan α=ba ,所以tan α=±3,因此切线的倾斜角π3或2π3. 答案:π3或2π3参数方程与普通方程的互化[典例] 已知椭圆C :x 24+y 23=1,直线l :⎩⎨⎧x =-3+3t ,y =23+t ,(t 为参数).(1)写出椭圆C 的参数方程及直线l 的普通方程;(2)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其到直线l 的距离相等,求点P 的坐标.[解] (1)椭圆C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l :x -3y +9=0.(2)设P (2cos θ,3sin θ), 则|AP |=(2cos θ-1)2+(3sin θ)2=2-cos θ,点P 到直线l 的距离 d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92.由|AP |=d ,得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1,得sin θ=35,cos θ=-45.故P ⎝⎛⎭⎫-85,335.[方法技巧]将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解. [即时演练]将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k 1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数). 解:(1)两式相除,得k =y 2x ,将其代入x =3k1+k 2,得x =3·y 2x 1+⎝⎛⎭⎫y 2x 2, 化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2],故所求的普通方程为y 2=2-x ,x ∈[0,2].参数方程[典例] 在平面直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为⎩⎨⎧x =-2+2t ,y =-4+2t(t 为参数),直线l 与曲线C 分别交于M ,N ,若|PM |,|MN |,|PN |成等比数列,求实数a 的值.[解] 曲线C 的直角坐标方程为y 2=2ax (a >0),将直线l 的参数方程化为⎩⎨⎧x =-2+22t ′,y =-4+22t ′(t ′为参数),代入曲线C 的方程得:12t ′2-(42+2a )t ′+16+4a =0, 则Δ>0,即a >0或a <-4.设交点M ,N 对应的参数分别为t 1′,t 2′, 则t 1′+t 2′=2(42+2a ),t 1′t 2′=2(16+4a ), 若|PM |,|MN |,|PN |成等比数列, 则|t 1′-t 2′|2=|t 1′t 2′|, 解得a =1或a =-4(舍去), 所以满足条件的a =1. [方法技巧](1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数).当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. [即时演练]已知直线l :x +y -1=0与抛物线y =x 2相交于A ,B 两点,求线段AB 的长度和点M (-1,2)到A ,B 两点的距离之积.解:因为直线l 过定点M ,且l 的倾斜角为3π4,所以它的参数方程为⎩⎨⎧x =-1+t cos3π4,y =2+t sin 3π4(t 为参数),即⎩⎨⎧x =-1-22t ,y =2+22t (t 为参数),把它代入抛物线的方程,得t 2+2t -2=0, 由根与系数的关系得t 1+t 2=-2,t 1·t 2=-2, 由参数t 的几何意义可知|AB |=|t 1-t 2|=10, |MA |·|MB |=|t 1t 2|=2.[典例] (2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt(t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k (m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.[解] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2); 消去参数m 得l 2的普通方程l 2:y =1k (x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为 5. [方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[即时演练]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为:ρ=4cos θ1-cos 2θ,直线的参数方程是⎩⎪⎨⎪⎧x =2+t cos α,y =2+t sin α.(α为参数,0≤α<π).(1)求曲线C 的直角坐标方程;(2)设直线与曲线C 交于两点A ,B ,且线段AB 的中点为M (2,2),求α. 解:(1)曲线C :ρ=4cos θ1-cos 2θ,即ρsin 2θ=4cos θ,于是有ρ2sin 2θ=4ρcos θ,化为直角坐标方程为y 2=4x .(2)法一: 把x =2+t cos α,y =2+t sin α代入y 2=4x , 得(2+t sin α)2=4(2+t cos α), 即t 2sin 2α+(4sin α-4cos α)t -4=0.由AB 的中点为M (2,2)得t 1+t 2=0,有4sin α-4cos α=0,所以k =tan α=1. 由0≤α<π,得α=π4.法二:设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2⇒(y 1+y 2)(y 1-y 2)=4(x 1-x 2). ∵y 1+y 2=4,∴k 1=tan α=y 1-y 2x 1-x 2=1, 由0≤α<π,得α=π4.1.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0, 由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程为x +4y -a -4=0, 故C 上的点(3cos θ,sin θ)到l 的距离为 d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,解得a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,解得a =-16.综上,a =8或a =-16.2.(2016·全国卷Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为 ρ2+12ρcos θ+11=0.(2)法一:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R). 设A ,B 所对应的极径分别为ρ1,ρ2, 将l 的极坐标方程代入C 的极坐标方程得 ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 法二:由直线l 的参数方程⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k , 则直线l 的方程为kx -y =0. 由圆C 的方程(x +6)2+y 2=25知, 圆心坐标为(-6,0),半径为5.又|AB |=10,由垂径定理及点到直线的距离公式得 |-6k |1+k 2=25-⎝⎛⎭⎫1022,即36k 21+k 2=904,整理得k 2=53,解得k =±153,即直线l 的斜率为±153. 3.(2015·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0), 其中0≤α<π.因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4. 4.(2014·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆. 因为G 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.1.(2017·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C 上的动点,求点P到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离 d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45.当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值455.2.已知曲线C 1:⎩⎪⎨⎪⎧ x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t (t 为参数)的距离的最小值. 解:(1)曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M -2+4cos θ,2+32sin θ.曲线C 3为直线x -2y -7=0, M 到C 3的距离d =55|4cos θ-3sin θ-13|,从而当cos θ=45,sin θ=-35时,d 取最小值855.3.在平面直角坐标系xOy 中,C 1的参数方程为⎩⎨⎧x =1-22t ,y =1+22t (t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,C 2的极坐标方程ρ2-2ρcos θ-3=0.(1)说明C 2是哪种曲线,并将C 2的方程化为普通方程;(2)C 1与C 2有两个公共点A ,B ,点P 的极坐标⎝⎛⎭⎫2,π4,求线段AB 的长及定点P 到A ,B 两点的距离之积.解:(1)C 2是圆,C 2的极坐标方程ρ2-2ρcos θ-3=0, 化为普通方程为x 2+y 2-2x -3=0,即(x -1)2+y 2=4. (2)点P 的直角坐标为(1,1),且在直线C 1上,将C 1的参数方程⎩⎨⎧x =1-22t ,y =1+22t (t 为参数)代入x 2+y 2-2x -3=0,得⎝⎛⎭⎫1-22t 2+⎝⎛⎭⎫1+22t 2-2⎝⎛⎭⎫1-22t -3=0,化简得t 2+2t -3=0.设A ,B 对应的参数分别为t 1,t 2, 则t 1+t 2=-2,t 1·t 2=-3, 所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =2+12=14,定点P 到A ,B 两点的距离之积|PA |·|PB |=|t 1t 2|=3.4.在平面直角坐标系xOy 中,已知圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =5-2t ,y =3-t(t 为参数),定点P (1,1).(1)以原点O 为极点,x 轴的非负半轴为极轴,单位长度与平面直角坐标系下的单位长度相同建立极坐标系,求圆C 的极坐标方程;(2)已知直线l 与圆C 相交于A ,B 两点,求||PA |-|PB ||的值. 解:(1)依题意得圆C 的一般方程为(x -1)2+y 2=4, 将x =ρcos θ,y =ρsin θ代入上式得ρ2-2ρcos θ-3=0, 所以圆C 的极坐标方程为ρ2-2ρcos θ-3=0.(2)因为定点P (1,1)在直线l 上,所以直线l 的参数方程可表示为⎩⎨⎧x =1-255t ,y =1-55t (t 为参数).代入(x -1)2+y 2=4,得t 2-255t -3=0. 设点A ,B 分别对应的参数为t 1,t 2, 则t 1+t 2=255,t 1t 2=-3. 所以t 1,t 2异号,不妨设t 1>0,t 2<0, 所以|PA |=t 1,|PB |=-t 2, 所以||PA |-|PB ||=|t 1+t 2|=255.5.已知直线l :⎩⎨⎧x =1+12t ,y =32t(t 为参数),曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标压缩为原来的12倍,纵坐标压缩为原来的32倍,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 距离的最小值.解:(1)由已知得l 的普通方程为y =3(x -1),C 1的普通方程为x 2+y 2=1,联立方程⎩⎨⎧y =3(x -1),x 2+y 2=1解得l 与C 1的交点为A (1,0),B ⎝⎛⎭⎫12,-32,则|AB |=1.(2)由题意,得C 2的参数方程为⎩⎨⎧x =12cos θ,y =32sin θ(θ为参数),故点P 的坐标为⎝⎛⎭⎫12cos θ,32sin θ, 从而点P 到直线l 的距离是d =⎪⎪⎪⎪32cos θ-32sin θ-32=342sin ⎝⎛⎭⎫θ-π4+2, 当sin ⎝⎛⎭⎫θ-π4=-1时,d 取得最小值,且最小值为23-64. 6.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t -1,y =t +2(t 为参数).在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=31+2cos 2θ.(1)直接写出直线l 的普通方程、曲线C 的直角坐标方程; (2)设曲线C 上的点到直线l 的距离为d ,求d 的取值范围. 解:(1)直线l 的普通方程为x -y +3=0, 曲线C 的直角坐标方程为3x 2+y 2=3. (2)∵曲线C 的直角坐标方程为3x 2+y 2=3, 即x 2+y 23=1,∴曲线C 上的点的坐标可表示为(cos α,3sin α), ∴d =|cos α-3sin α+3|2=⎪⎪⎪⎪2sin ⎝⎛⎭⎫π6-α+32=2sin ⎝⎛⎭⎫π6-α+32.∴d 的最小值为12=22,d 的最大值为52=522.∴22≤d ≤522,即d 的取值范围为⎣⎡⎦⎤22,522.7.平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m,0),且倾斜角为π6,以O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)写出曲线C 的极坐标方程与直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.解:(1)曲线C 的直角坐标方程为:(x -1)2+y 2=1,即x 2+y 2=2x ,即ρ2=2ρcos θ, 所以曲线C 的极坐标方程为ρ=2cos θ.直线l 的参数方程为⎩⎨⎧x =m +32t ,y =12t(t 为参数).(2)设A ,B 两点对应的参数分别为t 1,t 2,将直线l 的参数方程代入x 2+y 2=2x 中,得t 2+(3m -3)t +m 2-2m =0, 所以t 1t 2=m 2-2m , 由题意得|m 2-2m |=1,解得m =1或m =1+2或m =1- 2.8.已知直线的参数方程是⎩⎨⎧x =22t ,y =22t +42(t 是参数),圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ+π4. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 解:(1)∵ρ=4cos ⎝⎛⎭⎫θ+π4=22cos θ-22sin θ, ∴ρ2=22ρcos θ-22ρsin θ,∴圆C 的直角坐标方程为x 2+y 2-22x +22y =0, 即(x -2)2+(y +2)2=4, ∴圆心的直角坐标为(2,-2).(2)直线l 上的点向圆C 引切线,则切线长为⎝⎛⎭⎫22t -22+⎝⎛⎭⎫22t +42+22-4 =t 2+8t +48=(t +4)2+32≥42,∴直线l 上的点向圆C 引的切线长的最小值为4 2.。
板块三 模拟演练·提能增分
[基础能力达标]
1.[2018·广东珠海模拟]在极坐标系中,圆C 的极坐标方程为ρ2
=4ρ(cos θ+sin θ)-6.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.
(1)求圆C 的参数方程;
(2)在直角坐标系中,点P (x ,y )是圆C 上一动点,试求x +y 的最大值,并求出此时点P 的直角坐标.
解 (1)因为ρ2=4ρ(cos θ+sin θ)-6, 所以x 2+y 2=4x +4y -6, 所以x 2+y 2-4x -4y +6=0, 整理得(x -2)2+(y -2)2=2.
所以圆C 的参数方程为⎩⎨
⎧
x =2+
2cos θ,y =2+
2sin θ
(θ为参数).
(2)由(1)可得x +y =4+2(sin θ+cos θ)=4+2sin ⎝ ⎛
⎭
⎪⎫θ+π4.
当θ=π
4,即点P 的直角坐标为(3,3)时,x +y 取得最大值,其值为6.
2.[2018·宁波模拟]已知曲线C 1的参数方程为⎩
⎪⎨⎪⎧
x =4+5cos t ,
y =5+5sin t (t
为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.
(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). 解
(1)将⎩⎨
⎧
x =4+5cos t ,
y =5+5sin t
消去参数t ,
化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.
将⎩⎨
⎧
x =ρcos θ,y =ρsin θ,
代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-
10ρsin θ+16=0.
所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的直角坐标方程为x 2+y 2-2y =0.
由⎩⎨⎧
x 2+y 2-8x -10y +16=0,x 2+y 2
-2y =0,
解得⎩⎨
⎧
x =1,y =1
或⎩⎨⎧
x =0,y =2.
所以C 1与C 2交点的极坐标分别为⎝
⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2. 3.[2018·南通模拟]在直角坐标系xOy 中,圆C 的参数方程为
⎩
⎪⎨⎪⎧
x =2cos φ,
y =2+2sin φ(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.
(1)求圆C 的普通方程;
(2)直线l 的极坐标方程是2ρsin ⎝
⎛⎭
⎪⎫θ+π6=53,射线OM :θ=π
6与圆
C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.
解 (1)因为圆C
的参数方程为⎩⎨
⎧
x =2cos φ,
y =2+2sin φ
(φ为参数),所以
圆心C 的坐标为(0,2),半径为2,圆C 的普通方程为x 2+(y -2)2=4.
(2)将x =ρcos θ,y =ρsin θ代入x 2+(y -2)2=4,得圆C 的极坐标方程为ρ=4sin θ.
设P (ρ1,θ1),则由⎩⎪⎨⎪⎧
ρ=4sin θ,
θ=π
6,
解得ρ1=2,θ1=π
6.
设Q (ρ2,θ2),则由⎩⎪⎨⎪⎧
2ρsin ⎝
⎛
⎭⎪⎫θ+π6=53,
θ=π
6,
解得ρ2=5,θ2=π
6.所以|PQ |=3.
4.[2018·昆明模拟]将圆x 2+y 2=1上每一点的横坐标变为原来的2倍,纵坐标变为原来的3倍,得曲线Γ.
(1)写出Γ的参数方程;
(2)设直线l :3x +2y -6=0与Γ的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.
解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为Γ上的点(x ,y ),
依题意,得⎩⎨
⎧
x =2x 1,y =3y 1,
即⎩⎪⎨⎪⎧
x 1=x 2,
y 1=y 3.
由x 21+y 2
1=1,得⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭
⎪⎫y 32=1,即曲线Γ的方程为x 24+y 2
9=1.
故Γ的参数方程为⎩⎨
⎧
x =2cos t ,
y =3sin t
(t 为参数).
(2)由⎩⎪⎨
⎪⎧
x 24+y 29=1,3x +2y -6=0,
解得⎩⎨
⎧
x =2,
y =0
或⎩⎨⎧
x =0,y =3.
不妨设P 1(2,0),P 2(0,3),则线段P 1P 2的中点坐标为⎝ ⎛
⎭⎪⎫1,32,所求
直线的斜率k =23.于是所求直线方程为y -32=2
3(x -1),即4x -6y +5=0,化为极坐标方程,得4ρcos θ-6ρsin θ+5=0.
5.[2016·全国卷Ⅲ]在直角坐标系xOy 中,曲线C 1的参数方程为
⎩⎪⎨⎪⎧
x =3cos α,y =sin α
(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝
⎛
⎭
⎪⎫θ+π4=2 2.
(1)写出C 1的普通方程和C 2的直角坐标方程;
(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.
解 (1)由曲线
C 1:⎩⎨
⎧
x =3cos α,
y =sin α,
得⎩⎪⎨⎪⎧
x 3=cos α,y =sin α,
即曲线C 1
的直角坐标方程为x 23+y 2
=1.
由曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ+π4=22,得2
2ρ(sin θ+cos θ)=22,即曲线
C 2的直角坐标方程为x +y -4=0.
(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,
d (α)=|3cos α+sin α-4|2
=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛
⎭⎪⎫α+π3-2.
当且仅当α=2k π+π
6(k ∈Z )时,d (α)取得最小值,最小值为2,此
时P 的直角坐标为⎝ ⎛⎭
⎪⎫
32,12.
6.[2018·合肥模拟]在直角坐标系xOy 中,曲线C 1的参数方程为
⎩⎪⎨⎪⎧
x =2cos φ,
y =sin φ
(其中φ为参数),曲线C 2:x 2+y 2-2y =0,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l :θ=α(ρ≥0)与曲线C 1,C 2分别交于点A ,B (均异于原点O ) .
(1)求曲线C 1,C 2的极坐标方程;
(2)当0<α<π
2时,求|OA |2+|OB |2的取值范围. 解
(1)∵⎩⎨
⎧
x =2cos φ,y =sin φ
(φ为参数),∴x 22+y 2
=1.
由⎩⎨
⎧
x =ρcos θ,y =ρsin θ,
得曲线C 1的极坐标方程为ρ2
=2
1+sin 2
θ
. ∵x 2+y 2-2y =0,∴曲线C 2的极坐标方程为ρ=2sin θ.
(2)由(1)得|OA |2
=ρ2
=2
1+sin 2
α
,|OB |2=ρ2=4sin 2
α, ∴|OA |2+|OB |2
=
2
1+sin 2α+4sin 2
α=2
1+sin 2
α
+4(1+sin 2
α)-4, ∵0<α<π2,∴1<1+sin 2α<2,∴6<21+sin 2
α+4(1+sin 2
α)<9, ∴|OA |2+|OB |2的取值范围为(2,5).。