最新北师大版2018-2019学年数学九年级上学期期末模拟综合测试题及答案解析-精品试题
- 格式:docx
- 大小:420.60 KB
- 文档页数:10
九年级上学期期末数学试卷一、选择题(每小题3分,共30分)1.点(2,﹣2)是反比例函数y=的图象上的一点,则k=()A . ﹣1B .C . ﹣4D . ﹣2.一元二次方程x (x ﹣2)=2﹣x 的根是()A . x=﹣1B . x=2C . x 1=1,x 2=2D . x 1=﹣1,x 2=23.掷两枚质地均匀的骰子,两枚的点数都是6的概率为()A .B .C .D .4.x=1是关于x 的一元二次方程x 2+mx ﹣5=0的一个根,则此方程的另一个根是()A . 5B . ﹣5C . 4D . ﹣45.下列几何体中,主视图相同的是()A . ①②B . ①③C . ①④D . ②④6.已知点A (1,﹣1)在反比例函数y=的图象上,过点A 作AM ⊥x 轴于点M ,则△OAM 的面积为()A .B . 2C . 1D .7.下列关于x 的一元二次方程有实数根的是()A . x 2+1=0B . x 2+x+1=0C . x 2﹣x+1=0D . x 2﹣x ﹣1=08.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是红球的概率是()A.B.C.D.9.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,则EC=()A.0.9cm B.1cm C.3.6cm D.0.2cm10.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3 B.4 C.5 D.6二.填空题(每小题4分,共24分)11.方程(x﹣2)(x+3)=0的解是.12.一次函数y=kx+1经过点(﹣1,2),则反比例函数y=的图象经过点(2,).13.某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是.14.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为m.15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.16.如图,已知正方形ABCD的边长为4,点E、F分别在边AB,BC上,且AE=BF=1,则OC=.三.解答题(每小题6分,共18分)17.解方程:x2+7x+12=0.18.如图,直线y=x﹣3与反比例函数y=(x>0)的图象交于点A(4,1),与x轴交于点B.求k的值及点B的坐标.19.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.求证:四边形CEDF是平行四边形.四.解答题(每小题7分,共21分)20.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣1,0),与反比例函数y=在第一象限内的图象交于点B(,n).连结OB,若S△AOB=1.求反比例函数及一次函数的关系式.21.一个盒子中装有两个红球和三个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次都摸到白球的概率.22.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.五.解答题(每小题9分,共27分)23.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD 的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.25.如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC 和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,说明理由;(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE 于点Q,QR⊥BD,垂足为点R.当线段BP的长为何值时,△PQR与△BOC相似?九年级上学期期末数学试卷一、选择题(每小题3分,共30分)1.点(2,﹣2)是反比例函数y=的图象上的一点,则k=()A.﹣1 B.C.﹣4 D.﹣考点:反比例函数图象上点的坐标特征.分析:直接把点(2,﹣2)代入反比例函数y=,求出k的值即可.解答:解:∵点(2,﹣2)是反比例函数y=的图象上的一点,∴﹣2=,解得k=﹣4.故选C.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.一元二次方程x(x﹣2)=2﹣x的根是()A.x=﹣1 B.x=2 C.x1=1,x2=2 D.x1=﹣1,x2=2考点:解一元二次方程-因式分解法.专题:计算题;转化思想.分析:先移项得到x(x﹣2)+(x﹣2)=0,然后利用因式分解法解方程.解答:解:x(x﹣2)+(x﹣2)=0,(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选D.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3.掷两枚质地均匀的骰子,两枚的点数都是6的概率为()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两枚的点数都是6的情况,再利用概率公式即可求得答案.解答:解:列表得:1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)∵共有36种等可能的结果,两枚的点数都是6的只有1种情况,∴两枚的点数都是6的概率为:.故选B.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.x=1是关于x的一元二次方程x2+mx﹣5=0的一个根,则此方程的另一个根是()A.5 B.﹣5 C.4 D.﹣4考点:根与系数的关系.分析:由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.解答:解:设方程的另一根为x1,由根据根与系数的关系可得:x1•1=﹣5,∴x1=﹣5.故选:B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.5.下列几何体中,主视图相同的是()A.①②B.①③C.①④D.②④考点:简单几何体的三视图.分析:主视图是从物体上面看,所得到的图形.解答:解:圆柱的主视图是长方形,圆锥的主视图是三角形,长方体的主视图是长方形,球的主视图是圆,故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.已知点A(1,﹣1)在反比例函数y=的图象上,过点A作AM⊥x轴于点M,则△OAM 的面积为()A.B.2 C.1 D.考点:反比例函数系数k的几何意义.分析:直接根据反比例函数y=(k≠0)系数k的几何意义求解.解答:解:∵AC⊥x轴于点B,∴△MAO的面积=|k|=×1=.故选D.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.7.下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0考点:根的判别式.专题:计算题.分析:计算出各项中方程根的判别式的值,找出根的判别式的值大于等于0的方程即可.解答:解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选D点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.8.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是红球的概率是()A.B.C.D.考点:概率公式.分析:由一个口袋中有2个红球,3个白球,这些球除色外都相同,直接利用概率公式求解即可求得答案.解答:解:∵一个口袋中有2个红球,3个白球,这些球除色外都相同,∴从口袋中随机摸出一个球,这个球是红球的概率是:=.故选A.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,则EC=()A.0.9cm B.1cm C.3.6cm D.0.2cm考点:平行线分线段成比例.专题:计算题.分析:根据平行线分线段成比例定理得到=,然后利用比例性质求EC的长.解答:解:∵DE∥BC,∴=,即=,∴EC=0.9(cm).故选A.点评:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.10.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3 B.4 C.5 D.6考点:菱形的性质;相似三角形的判定与性质.分析:根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.解答:解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4.故选B.点评:本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM相似.二.填空题(每小题4分,共24分)11.方程(x﹣2)(x+3)=0的解是x1=2,x2=﹣3.考点:解一元二次方程-因式分解法.专题:计算题.分析:方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:(x﹣2)(x+3)=0,可得x﹣2=0或x+3=0,解得:x1=2,x2=﹣3.故答案为:x1=2,x2=﹣3点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.一次函数y=kx+1经过点(﹣1,2),则反比例函数y=的图象经过点(2,﹣).考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.分析:先把点(﹣1,2)代入一次函数y=kx+1求出k的值,故可得出反比例函数y=的解析式,再把x=2代入反比例函数的解析式求出y的值即可.解答:解:∵一次函数y=kx+1经过点(﹣1,2),∴2=﹣k+1,解得k=﹣1,∴反比例函数y=的解析式为y=﹣,∴当x=2时,y=﹣.故答案为:﹣.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是.考点:概率公式.分析:让习惯用左手写字的学生数除以学生总数即为所求的概率.解答:解:根据题意,某班共有50名同学,其中有2名同学习惯用左写字手,则老师随机抽1名同学,共50种情况,而习惯用左手字手的同学被选中的有2种;故其概率为=.故答案为:.点评:本题考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.14.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为7m.考点:相似三角形的应用.分析:此题中,竹竿、树以及经过竹竿顶端和树顶端的太阳光构成了一组相似三角形,利用相似三角形的对应边成比例即可求得树的高度.解答:解:如图;AD=6m,AB=21m,DE=2m;由于DE∥BC,所以△ADE∽△ABC,得:,即,解得:BC=7m,故答案为:7.点评:此题考查了相似三角形在测量高度时的应用;解题的关键是找出题中的相似三角形,并建立适当的数学模型来解决问题.15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=9cm.考点:三角形中位线定理;矩形的性质.分析:先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.解答:解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=cm,AF=AD=BC=4cm,AE=AO=AC=cm,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.点评:本题考查了三角形的中位线定理、勾股定理及矩形的性质,解答本题需要我们熟练掌握三角形中位线的判定与性质.16.如图,已知正方形ABCD的边长为4,点E、F分别在边AB,BC上,且AE=BF=1,则OC=.考点:全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.分析:首先证明△BEC≌△CFD,即可证明OC⊥DF,然后利用直角三角新的面积公式即可求得OC的长.解答:解:∵正方形ABCD中,AB=BC=CD=4,∠B=∠DCF,又∵AE=BF,∴BE=CF=4﹣1=3,DF===5,则在直角△BEC和直角△CFD中,,∴△BEC≌△CFD,∴∠BEC=∠CFD,又∵直角△BCE中,∠BEC+∠BCE=90°,∴∠CFD+∠BCE=90°,∴∠FOC=90°,即OC⊥DF,∴S△CDF=CD•CF=OC•DF,∴OC===.故答案是:.点评:本题考查了正方形的性质,以及全等三角形的判定与性质,证明△BEC≌△CFD是解题的关键.三.解答题(每小题6分,共18分)17.解方程:x2+7x+12=0.考点:解一元二次方程-因式分解法.分析:利用因式分解得到(x+3)(x+4)=0,推出x+3=0,x+4=0,求出方程的解即可.解答:解:x2+7x+12=0,(x+3)(x+4)=0,∴x+3=0,x+4=0,x1=﹣3,x2=﹣4.点评:此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.18.如图,直线y=x﹣3与反比例函数y=(x>0)的图象交于点A(4,1),与x轴交于点B.求k的值及点B的坐标.考点:反比例函数与一次函数的交点问题.分析:把(4,1)代入y=即可求得k的值,在y=x﹣3中,令y=0,即可求得B的横坐标,则B的左边即可求得.解答:解:把(4,1)代入y=得:k=4.在y=x﹣3中,令y=0,则x﹣3=0,解得:x=3,则B的坐标是(3,0).点评:本题考查了待定系数法求函数解析式以及函数与x轴的交点坐标的求法,待定系数法求解析式是一种基本的方法.19.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.求证:四边形CEDF是平行四边形.考点:平行四边形的判定与性质.专题:证明题.分析:由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形.解答:证明:如图,在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=.又∵CE=BC,∴DF=CE,且DF∥CE,∴四边形CEDF是平行四边形.点评:本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.四.解答题(每小题7分,共21分)20.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣1,0),与反比例函数y=在第一象限内的图象交于点B(,n).连结OB,若S△AOB=1.求反比例函数及一次函数的关系式.考点:反比例函数与一次函数的交点问题.分析:把B的坐标代入反比例函数的解析式,然后根据三角形的面积公式求得m、n的值,然后利用待定系数法求得一次函数解析式.解答:解:由反比例函数过点B(,n)得:n=m,由S△AOB=1得:×1×n=1,即n=2,则m=1,则反比例函数的关系式为:y=.设一次函数的解析式是y=kx+b,根据过点A(﹣1,0),B(,2),得:,解得:.则一次函数的关系式为:y=.点评:本题考查了待定系数法求函数解析式以及三角形的面积公式,正确求得m的值是本题的关键.21.一个盒子中装有两个红球和三个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次都摸到白球的概率.考点:列表法与树状图法.分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.解答:解:列表得:第二次第一次红球1 红球2 白球1 白球2 白球3红球1 (红1,红1)(红1,红2)(红1,白1)(红1,白2)(红1,白3)红球2 (红2,红1)(红2,红2)(红2,白1)(红2,白2)(红2,白3)白球1 (白1,红1)(白1,红2)(白1,白1)(白1,白2)(白1,白3)白球2 (白2,红1)(白2,红2)(白2,白1)(白2,白2)(白2,白3)白球3 (白3,红1)(白3,红1)(白3,白1)(白3,白2)(白3,白3)∵共有25种等可能的结果,两次都摸到白球的有9种情况,∴两次都摸到红球的概率为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在Rt△ADE中,利用勾股定理求出线段AE的长度.解答:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴,∴DE===12.在Rt△ADE中,由勾股定理得:AE===6.点评:本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点.题目难度不大,注意仔细分析题意,认真计算,避免出错.五.解答题(每小题9分,共27分)23.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?考点:一元二次方程的应用.专题:销售问题.分析:利用每件利润×销量=3750,进而求出答案即可.解答:解:设该玩具的销售单价为x元,则依题意有:[300﹣10(x﹣30)](x﹣20)=3750 化简得x2﹣80x+1575=0解这个方程得:x1=35,x2=45因为利润不得超过原价的100%,所以x2=45应舍去.答:该玩具应定价为35元.点评:考查了一元二次方程的应用,解题的关键是了解总利润等于单件利润乘以销量,难度不大.24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD 的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.考点:全等三角形的判定;等边三角形的性质.专题:几何综合题.分析:(1)根据SAS判定△AGE和△DAB全等;(2)证明四边形DEFB是平行四边形,△AEF是个等边三角形.解答:(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∴在△AGE与△DAB中,,∴△AGE≌△DAB(SAS);(2)解:由(1)知AE=BD,∠ABD=∠AEG.∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.∴EF=BD,∴EF=AE.∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.∴△AFE是等边三角形,∠AFE=60°.点评:本题考查了全等三角形的判定和性质,本题中利用全等三角形实现线段的相等和角的转换是解题的关键.25.如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC 和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,说明理由;(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE 于点Q,QR⊥BD,垂足为点R.当线段BP的长为何值时,△PQR与△BOC相似?考点:相似形综合题.分析:(1)利用平移的知识可得四边形ABCE是平行四边形,进而根据AB=BC可得该四边形为菱形;(2)如图2,当点P在BC上运动,使△PQR与△COB相似时,由∠2是△OBP的外角,得到∠2>∠3,由于∠2不与∠3对应,于是得到∠2与∠1对应,即∠2=∠1,于是得到OP=OC=3,过O作OG⊥BC于G,则G为PC的中点,△OGC∽△BOC,根据相似三角形的对应线段成比例可以求出CG,而PB=BC﹣PC=BC﹣2CG,根据这个等式就可以求出BP的长.解答:解:(1)四边形ABCE是菱形,证明如下:∵△ECD是由△ABC沿BC平移得到的,∴EC∥AB,且EC=AB,∴四边形ABCE是平行四边形,又∵AB=BC,∴四边形ABCE是菱形;(2)如图2,当点P在BC上运动,使△PQR与△COB相似时,∵∠2是△OBP的外角,∴∠2>∠3,∴∠2不与∠3对应,∴∠2与∠1对应,即∠2=∠1,∴OP=OC=3过O作OG⊥BC于G,则G为PC的中点,∴△OGC∽△BOC,∴CG:CO=CO:BC,即:CG:3=3:5,∴CG=,∴PB=BC﹣PC=BC﹣2CG=5﹣2×=.点评:此题主要考查了相似三角形的判定与性质以及菱形的判定、全等三角形的判定以及梯形面积求法等知识,根据相似三角形的判定得出△PQR∽△CBO,进而得出△OGC∽△BOC 是解题关键.。
初三上学期期末考试数学试卷分析九年级第一学期期末练习数学试卷(分数:120分时间:120分钟) 2016.1学校姓名准考证号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置. 题号 1 2 3 4 5 6 7 8 9 10 答案1.在△ABC 中,∠C=90°,BC=3,AB=5,则sinA 的值是A .53B .54C .34D .43【考点】解直角三角形 【试题解析】sinA=.故选A .【答案】A2.如图,△ABC 内接于⊙O ,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60° D .80° 【考点】圆周角定理及推论 【试题解析】,.故选B .【答案】B3.抛物线2(2)1y x =-+的顶点坐标是 A .(21)--,B .(21)-,C .(21)-,D .(21),BOCA【考点】二次函数的图像及其性质 【试题解析】根据抛物线顶点式可得顶点为(2,1).故选D . 【答案】D4. 若点A (a ,b )在双曲线3y x=上,则代数式ab-4的值为 A .12- B .7- C .1- D .1 【考点】反比例函数的图像及其性质 【试题解析】根据题意得ab-4=3-4.故选C . 【答案】C 5.如图,在ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCF 的面积比为A .49 B .19 C .14 D .12【考点】相似三角形判定及性质 【试题解析】根据题意得BE :CD=1:2,所以△BEF 与△DCF 的面积比是1:4.故选C . 【答案】C6.抛物线22y x =向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为A .()2213y x =++B .()2213y x =+-C .()2213y x =--D .()2213y x =-+ 【考点】二次函数图像的平移 【试题解析】根据题意得先向左平移1个单位为,在向下平移 3 个单位得.故选B .【答案】B7.已知点(11,x y )、(22,x y )、(33,x y )在双曲线1y x=上,当3210x x x <<<时,1y 、FE DA CB2y 、3y 的大小关系是A .321y y y <<B .231y y y <<C .213y y y <<D .132y y y << 【考点】反比例函数的图像及其性质 【试题解析】根据题意得双曲线在一、三象限,由于,所以()在第三象限,,()、()在第一象限,,由于双曲线图像随x 的增大而减小,所以.故选B .【答案】B8.如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,2cos 3D =,则AB 的长为 A .8133 B .163 C .2455D .12【考点】锐角三角函数圆周角定理及推论 【试题解析】 连接AC ,,根据题意得.故选D .【答案】D9.在平面直角坐标系xOy 中,A 为双曲线6y x=-上一点,点B 的坐标为(4,0).若 △AOB 的面积为6,则点A 的坐标为A .(4-,32) B .(4,32-) C .(2-,3)或(2,3-) D .(3-,2)或(3,2-)AOBCD【考点】反比例函数的实际应用 【试题解析】 根据题意得.∴点A 的坐标为(,3)或(2,)故选C .【答案】C10.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、 B 两点.若AB=3,则点M 到直线l 的距离为A .52 B .94 C .2 D .74【考点】二次函数的图像及其性质 【试题解析】由题意可得,又因为抛物线与平行于x 轴的直线l 有两个点,设l 的解析式为y=m,则有两个交点,所以方程有两个实数根,,又因为AB=3,所以,=3,=9,。
2018-2019学年九年级(上)期末考试数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.2.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.3.如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8B.12C.16D.204.若P1(x1,y1),P2(x2,y2)是函数y=图象上的两点,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0D.y2<y1<05.△ABC与△A′B′C′是位似图形,且△ABC与△A′BC′的位似比是2:3,那么这两个相似三角形面积的比是()A.2:3B.:C.4:9D.8:276.下列方程:①2x2﹣1=0,②3x2=﹣3,③x2+5x﹣7=0,④2x2+3x+8=0.无实数根的是()A.①②③④B.①③C.②④D.②③④7.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.B.C.D.8.已知:如图,⊙O的直径CD垂直于弦AB,垂足为P,且AP=4cm,PD=2cm,则⊙O 的半径为()A.4cm B.5cm C.4cm D.2cm9.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x名,据题意可列方程为()A.x(x+1)=253B.x(x﹣1)=253C.D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④二.填空题(共4小题,满分16分,每小题4分)11.(4分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为.12.(4分)如图,在△ABC中,D为AB边上一点,△CBD∽△ACD,AD=6,BD=9,那么AC的长等于.13.(4分)把二次函数y=x2﹣2x+3的图象绕原点旋转180°后得到的图象的函数解析式为.14.(4分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.三.解答题(共6小题,满分54分)15.(12分)(1)计算:(π﹣5)0+cos45°﹣|﹣3|+()﹣1(2)解方程:x2﹣6x+8=016.(6分)先化简,再求值:(1﹣)÷,从﹣1,0,1,2中选择一个适当的数作为x的值代入.17.(8分)已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)18.(9分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试,按照成绩分为优秀、良好、合格与不合格四个等级,并绘制了如图不完整的统计图.(1)根据给出的信息,求扇形统计图中a和b的值,并补全条形统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比賽,预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?19.(9分)如图,一次函数y=kx+2的图象与反比例函数y=的图象在第一象限的交点=1,于P,函数y=kx+2的图象分别交x轴、y轴于点C、D,已知△OCD的面积S△OCD OA=2OC(1)点D的坐标为;(2)求一次函数解析式及m的值;(3)写出当x>0时,不等式kx+2>的解集.20.(10分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)已知关于x的方程x2﹣3x﹣7=0的两个根分别为x1、x2,则x12x2+x1x22=.22.(4分)如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.23.(4分)点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是6,则k的值为.24.(4分)函数y=(x﹣1)2+4的对称轴是,顶点坐标是,最小值是.25.(4分)如图,正方形ABCD中,AD=4,E在AB上且AB=4BE,连接CE,作BF⊥CE 于F,正方形对角线交于O点,连接OF,将△COF沿CE翻折得△CGF,连接BG,则BG的长为.五.解答题(共3小题,满分30分)26.(8分)某商店经营一种小商品,进价是每件40元.据市场调查,销售价是60元时,平均每星期的销售量是300件.而销售价每降价1元,平均每星期的期就多售出30件.(1)假定每件商品降价x元,商店每星期的销售量是y件,请写出y与x之间的函数关系式(请直接写出结果);(2)每件小商品销售价是多少元时,商店每星期销售这种小商品的利润吸最大?最大利润是多少?27.(10分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C 重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD 为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.28.(12分)如图,抛物线y=ax2+bx+c经过点A(2,﹣3),且与x轴交点坐标为(﹣1,0),(3,0)(1)求抛物线的解析式;(2)在直线AB下方抛物线上找一点D,求出使得△ABD面积最大时点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】主视图有2列,每列小正方形数目分别为2,1.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.2.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.【分析】根据勾股定理求出OA,根据正弦的定义解答即可.【解答】解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sinA==,故选:A.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8B.12C.16D.20【分析】由四边形BCDE内接于⊙O知∠EFC=∠ABC=45°,据此得AC=BC,由EF是⊙O 的直径知∠EBF=∠ECF=∠ACB=90°及∠BCF=∠ACE,再根据四边形BECF是⊙O的内接四边形知∠AEC=∠BFC,从而证△ACE≌△BFC得AE=BF,根据Rt△ECF是等腰直角三角形知EF2=16,继而可得答案.【解答】解:∵四边形BCDE内接于⊙O,且∠EDC=135°,∴∠EFC=∠ABC=180°﹣∠EDC=45°,∵∠ACB=90°,∴△ABC是等腰三角形,∴AC=BC,又∵EF是⊙O的直径,∴∠EBF=∠ECF=∠ACB=90°,∴∠BCF=∠ACE,∵四边形BECF是⊙O的内接四边形,∴∠AEC=∠BFC,∴△ACE≌△BFC(ASA),∴AE=BF,∵Rt△ECF中,CF=2、∠EFC=45°,∴EF2=16,则AE2+BE2=BF2+BE2=EF2=16,故选:C.【点评】本题主要考查圆周角定理,解题的关键是掌握圆内接四边形的性质、圆周角定理、全等三角形的判定与性质及勾股定理.4.若P1(x1,y1),P2(x2,y2)是函数y=图象上的两点,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0D.y2<y1<0【分析】根据反比例函数图象上点的坐标特征得y1=,y2=,然后利用求差法比较y1与y2的大小.【解答】解:把点P1(x1,y1)、P2(x2,y2)代入y=得y1=,y2=,则y1﹣y2=﹣=,∵x1>x2>0,∴x1x2>0,x2﹣x1<0,∴y1﹣y2=<0,即y1<y2.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.△ABC与△A′B′C′是位似图形,且△ABC与△A′BC′的位似比是2:3,那么这两个相似三角形面积的比是()A.2:3B.:C.4:9D.8:27【分析】先利用位似的性质得到△ABC与△A′BC′的相似比是2:3,然后根据相似三角形的性质可得到这两个相似三角形面积的比.【解答】解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′BC′的位似比是2:3,∴△ABC与△A′BC′的相似比是2:3,∴这两个相似三角形面积的比为4:9.故选:C.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,也考查了相似三角形的性质.6.下列方程:①2x2﹣1=0,②3x2=﹣3,③x2+5x﹣7=0,④2x2+3x+8=0.无实数根的是()A.①②③④B.①③C.②④D.②③④【分析】逐一求出四个方程的根的判别式△的值,取△为负值的方程即可.【解答】解:①2x2﹣1=0中△=02﹣4×2×(﹣1)=8>0,此方程有两个不相等的实数根;②3x2=﹣3,即x2=﹣1<0,此方程没有实数根;③x2+5x﹣7=0中△=52﹣4×1×(﹣7)=53>0,此方程有两个不相等的实数根;④2x2+3x+8=0中△=32﹣4×2×8=﹣55<0,此方程没有实数根;故选:C.【点评】本题考查了根的判别式,牢记“①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根”是解题的关键.7.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.B.C.D.【分析】过点B作BP⊥AC,垂足为P,BP交DE于Q,三角形的面积公式求出BP的长度,由相似三角形的判定定理得出△BDE∽△BAC,设边长DE=x,根据相似三角形的对应边成比例求出x的长度可得.【解答】解:如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.=AB•BC=AC•BP,∵S△ABC∴BP===.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴.设DE=x,则有:,解得x=,故选:D.【点评】本题主要考查把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出边长,熟练掌握对应高的比等于相似比是关键.8.已知:如图,⊙O的直径CD垂直于弦AB,垂足为P,且AP=4cm,PD=2cm,则⊙O 的半径为()A.4cm B.5cm C.4cm D.2cm【分析】连结OA,如图,设⊙O的半径为R,由CD⊥AB得到∠APO=90°,在Rt△OAP 中根据勾股定理得(r﹣2)2+42=r2,然后解方程求出r即可.【解答】解:连结OA,如图,设⊙O的半径为R,∵CD⊥AB,∴∠APO=90°,在Rt△OAP中,∵OP=OD﹣PD=r﹣2,OA=r,AP=4,∴(r﹣2)2+42=r2,解得r=5,即⊙O的半径为5cm.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.9.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x名,据题意可列方程为()A.x(x+1)=253B.x(x﹣1)=253C.D.【分析】每个学生都要和他自己以外的学生握手一次,但两个学生之间只握手一次,所以等量关系为:×学生数×(学生数﹣1)=总握手次数,把相关数值代入即可求解.【解答】解:参加此会的学生为x名,每个学生都要握手(x﹣1)次,∴可列方程为x(x﹣1)=253,故选:D.【点评】本题考查用一元二次方程解决握手次数问题,得到总次数的等量关系是解决本题的关键.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由图象可知:>0,∴ab<0,故①正确;②由抛物线与x轴的图象可知:△>0,∴b2>4ac,故②正确;③由图象可知:x=1,y<0,∴a+b+c<0,故③正确;④∵=1,∴b=﹣2a,令x=﹣1,y>0,∴2a+b+c=c<0,故④错误故选:C.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为2019.【分析】把x=m代入方程,求出2m2﹣3m=1,再变形后代入,即可求出答案.【解答】解:∵m是方程2x2﹣3x﹣1=0的一个根,∴代入得:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴6m2﹣9m+2016=3(2m2﹣3m)+2016=3×1+2016=2019,故答案为:2019.【点评】本题考查了求代数式的值和一元二次方程的解,能求出2m2﹣3m=1是解此题的关键.12.(4分)如图,在△ABC中,D为AB边上一点,△CBD∽△ACD,AD=6,BD=9,那么AC的长等于3.【分析】依据△CBD∽△ACD,可得∠ACD=∠B,结合∠A=∠A,即可得出△ACD∽△ABC,进而得到AC2=AD×AB,可得AC的长.【解答】解:∵△CBD∽△ACD,∴∠ACD=∠B,又∵∠A=∠A,∴△ACD∽△ABC,∴,即AC2=AD×AB,∴AC===3,故答案为:3.【点评】本题主要考查了相似三角形的判定与性质,解题时注意:相似三角形的对应角相等,对应边的比相等.13.(4分)把二次函数y=x2﹣2x+3的图象绕原点旋转180°后得到的图象的函数解析式为y=﹣x2﹣2x﹣3.【分析】求出原抛物线的顶点坐标以及绕原点旋转180°后的抛物线的顶点坐标,再根据旋转后抛物线开口方向向下,利用顶点式解析式写出即可.【解答】解:∵抛物线y=x2﹣2x+3=(x﹣1)2+2的顶点坐标为(1,2),∴绕原点旋转180°后的抛物线的顶点坐标为(﹣1,﹣2),∴所得到的图象的解析式为y=﹣(x+1)2﹣2,即y=﹣x2﹣2x﹣3.故答案为y=﹣x2﹣2x﹣3.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化更简便.14.(4分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是15.【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.【解答】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,=•AC•DQ=×10×3=15,∴S△ACD故答案为:15.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.三.解答题(共6小题,满分54分)15.(12分)(1)计算:(π﹣5)0+cos45°﹣|﹣3|+()﹣1(2)解方程:x2﹣6x+8=0【分析】(1)根据特殊角的锐角三角函数的值、零指数幂以及负整数幂的意义即可求出答案(2)根据一元二次方程的解法即可求出答案.【解答】(1)解:原式=1+×﹣3+2=1+1﹣3+2=1(2)解:(x﹣2)(x﹣4)=0x﹣2=0或x﹣4=0x1=2,x2=4【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(6分)先化简,再求值:(1﹣)÷,从﹣1,0,1,2中选择一个适当的数作为x的值代入.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当a=﹣1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【分析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AP的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.【解答】解:(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴=,设AH=5km,则PH=12km,由勾股定理,得AP=13km.∴13k=26m.解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.在Rt△ABC中,tan76°=,即≈4.0,解得x=,即x≈19,答:古塔BC的高度约为19米.【点评】此题主要考查了坡度问题以及仰角的应用,根据已知在直角三角形中得出各边长度是解题关键.18.(9分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试,按照成绩分为优秀、良好、合格与不合格四个等级,并绘制了如图不完整的统计图.(1)根据给出的信息,求扇形统计图中a和b的值,并补全条形统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比賽,预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?【分析】(1)利用良好的人数除以良好的人数所占的百分比可得抽查的人数,然后计算出合格的人数和合格人数所占百分比,再计算出优秀人数,然后画图即可;(2)计算出成绩未达到良好的男生所占比例,再利用样本代表总体的方法得出答案;(3)直接利用树状图法求出所有可能,进而求出概率.【解答】解:(1)抽取的学生数:16÷40%=40(人);抽取的学生中合格的人数:40﹣12﹣16﹣2=10,合格所占百分比为10÷40=25%,即a=25优秀人数所占百分比为12÷40=30%,即b=30,如图所示:(2)估计成绩未达到良好有600×(5%+25%)=180(名);(3)如图:,可得一共有9种可能,甲、乙两人恰好分在同一组的有3种,所以甲、乙两人恰好分在同一组的概率=.【点评】此题主要考查了树状图法求概率以及扇形统计图和条形统计图的应用,由图形获取正确信息是解题关键.19.(9分)如图,一次函数y=kx+2的图象与反比例函数y=的图象在第一象限的交点=1,于P,函数y=kx+2的图象分别交x轴、y轴于点C、D,已知△OCD的面积S△OCD OA=2OC(1)点D的坐标为(0,2);(2)求一次函数解析式及m的值;(3)写出当x>0时,不等式kx+2>的解集.【分析】(1)利用y轴上的点的坐标特征,利用解析式y=kx+2确定D点坐标;=1求出OC的长得到C点坐标,则把C点坐标代入y=kx+2求出k得到一(2)利用S△OCD次函数解析式;再利用一次函数解析式求出P点坐标,然后利用反比例函数图象上点的坐标特征求出m的值;(3)在第一象限内,写出一次函数图象再反比例函数图象上方所对应的自变量的范围即可.【解答】解:(1)当x=0时,y=kx+2=2,则D(0,2),故答案为(0,2);=1,(2)∵S△OCD∴OD•OC=1,∴OC=1,∴C(﹣1,0),把C(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函数解析式为y=2x+2;∵OA=2OC=2,∴P点的横坐标为2,当x=2时,y=2x+2=6,∴P(2,6),把P(2,6)代入y=,∴m=2×6=12;(3)不等式kx+2>的解集为x>2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了数形结合的思想.20.(10分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.【分析】(1)先判断出∠DAC=∠DAB,∠ABH=∠CBH,进而判断出∠DHB=∠DBH,即可得出结论;(2))①先判断出OD∥AC,进而判断出OD⊥EF,即可得出结论;②先判断出△CDE≌△BDG,得出GB=CE=1,再判断出△DBG∽△ABD,求出DB2=5,即DB=,DG=2,进而求出AE=AG=4,最后判断出△OFD∽△AFE即可得出结论.【解答】解:(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,∵∠DBC=∠DAC,∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,∴DH=DB;(2)①连接OD,∵∠DOB=2∠DAB=∠BAC∴OD∥AC,∵AC⊥BC,BC∥EF,∴AC⊥EF,∴OD⊥EF,∵点D在⊙O上,∴EF是⊙O的切线;②过点D作DG⊥AB于G,∵∠EAD=∠DAB,∴DE=DG,∵DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1,在Rt△ADB中,DG⊥AB,∴∠DAB=∠BDG,∵∠DBG=∠ABD,∴△DBG∽△ABD,∴,∴DB2=AB•BG=5×1=5,∴DB=,DG=2,∴ED=2,∵H是内心,∴AE=AG=4,∵DO∥AE,∴△OFD∽△AFE,∴,∴,∴DF=.【点评】此题是圆的综合题,主要考查了三角形内心,圆的有关性质,相似三角形的判定和性质,切线的判定,平行线的性质和判定,求出DB是解本题的关键.四.填空题(共5小题,满分20分,每小题4分)21.(4分)已知关于x的方程x2﹣3x﹣7=0的两个根分别为x1、x2,则x12x2+x1x22=﹣21.【分析】由根与系数的关系可得x1+x2=3,x1•x2=﹣7,再将变形x12x2+x1x22为x1•x2(x1+x2),然后代入计算即可.【解答】解:∵关于x的方程x2﹣3x﹣7=0的两个根分别为x1、x2,∴x1+x2=3,x1•x2=﹣7,∴x12x2+x1x22=x1•x2(x1+x2)=﹣7×3=﹣21.故答案为﹣21.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.22.(4分)如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的,可得结论.【解答】解:如图所示:连接OA,∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是;故答案为:.【点评】此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.23.(4分)点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是6,则k的值为9.【分析】设A(a,),则B(,),可表示AB的长.根据矩形ABCD的面积是6,求得k的值.【解答】解:设A(a,),则B(,)∴AB=∵SABCD=AB×AD∴()×=6∴k=9故答案为9【点评】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征.关键是灵活运用反比例函数系数k的几何意义解决问题.24.(4分)函数y=(x﹣1)2+4的对称轴是直线x=1,顶点坐标是(1,4),最小值是y=4.【分析】根据题目中的函数解析式可以解答本题.【解答】解:函数y=(x﹣1)2+4的对称轴是直线x=1,顶点坐标为(1,4),最小值是y=4,故答案为:直线x=1,(1,4),y=4.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.25.(4分)如图,正方形ABCD中,AD=4,E在AB上且AB=4BE,连接CE,作BF⊥CE 于F,正方形对角线交于O点,连接OF,将△COF沿CE翻折得△CGF,连接BG,则BG的长为.【分析】Rt△BCE中,BF⊥CE,∠CBE=90°,可得BF==,再判定△COF∽△CEA,可得∠CFO=∠CAB=45°,进而得到∠CFG=∠CFO=45°,∠BFH=90°﹣45°=45°,可得△BFH是等腰直角三角形,再根据△COF∽△CEA,可得,即,进而得出OF==GF,HG=FG﹣FH=,最后在Rt△BHG中,由勾股定理可得BG==.【解答】解:如图,连接BG,过B作BH⊥GF于H,由题可得,BE=1,BC=4,AE=3,OC=2,∴Rt△BCE中,CE=,∵BF⊥CE,∠CBE=90°,∴BF==,∵Rt△BCE中,BF⊥CE;Rt△ABC中,BO⊥AC,∴BC2=CF×CE,BC2=CO×CA,∴CF×CE=CO×CA,即,又∵∠OCF=∠ECA,∴△COF∽△CEA,∴∠CFO=∠CAB=45°,由折叠可得,∠CFG=∠CFO=45°,∴∠BFH=90°﹣45°=45°,∴△BFH是等腰直角三角形,∴FH=BH=BF=,∵△COF∽△CEA,∴,即,∴OF==GF,∴HG=FG﹣FH=,∴Rt△BHG中,BG==.故答案为:.【点评】本题考查翻折变换、正方形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是运用折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.五.解答题(共3小题,满分30分)26.(8分)某商店经营一种小商品,进价是每件40元.据市场调查,销售价是60元时,平均每星期的销售量是300件.而销售价每降价1元,平均每星期的期就多售出30件.(1)假定每件商品降价x元,商店每星期的销售量是y件,请写出y与x之间的函数关系式(请直接写出结果);(2)每件小商品销售价是多少元时,商店每星期销售这种小商品的利润吸最大?最大利润是多少?【分析】(1)根据售价每降价1元,平均每星期的期就多售出30件进而得出答案;(2)利用总利润=(实际售价﹣进价)×销售量,即可得函数解析式,再配方即可得最值情况.【解答】解:(1)依题意有:y=300+30x;(2)设利润为w,则w=(300+30x)(20﹣x)=﹣30x2+300x+6000=﹣30(x﹣5)2+6750;∵a=﹣30<0,∴当x=5时w取最大值,最大值是6750,即降价5元时利润最大,∴每件小商品销售价是55元时,商店每天销售这种小商品的利润最大,最大利润是6750元.【点评】本题主要考查二次函数的应用,理解题意找到题目蕴含的相等关系列出函数解析式是解题的关键.27.(10分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C 重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD 为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.【分析】(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.【解答】解:(1)如图1,∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.【点评】本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.28.(12分)如图,抛物线y=ax2+bx+c经过点A(2,﹣3),且与x轴交点坐标为(﹣1,0),(3,0)(1)求抛物线的解析式;(2)在直线AB下方抛物线上找一点D,求出使得△ABD面积最大时点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.【分析】(1)把交点坐标为(﹣1,0),(3,0)代入二次函数的表达式,即可求解;=DE×(x A﹣x B)即可求解;(2)用S△ABD(3)当AB是为平行四边形的边长时,如下二图所示,M1、M2为所求点,当AB时平行四边形的对角线时,M3与点C重合,即可求解.【解答】解:(1)把交点坐标为(﹣1,0),(3,0)代入二次函数的表达式:解得:a=1,b=﹣2,故:二次函数的表达式为:y=x2﹣2x﹣3;(2)过D点做DF⊥x轴于F,交AB于E,把A(2,﹣3),B(﹣1,0)代入一次函数表达式得直线AB的方程为:y=﹣x﹣1,设:D(m,m2﹣2m﹣3),E(m,﹣m﹣1),∴DE=﹣m﹣1﹣(m,m2﹣2m﹣3)=﹣m2+m+2,S△ABD=DE×(x A﹣x B)=﹣(m﹣)2+,∴当D坐标为(,﹣)时,△ABD的面积最大;(3)当AB是为平行四边形的边长时,如下二图所示,M1、M2为所求点,∵四边形ANM1B为平行四边形,∴△ANH≌△BM1G,则M1的横坐标为:﹣2,代入二次函数表达式,解得:M1坐标为(﹣2,5);∵四边形ANM2B为平行四边形,∴△ABG≌△NHM2,则M2的横坐标为:4,代入二次函数表达式,解得:M2坐标为(4,5);当AB时平行四边形的对角线时,下图所示,M3与点C重合,故M3(0,﹣3);故M点的坐标为:(0,﹣3)、(4,5)、(﹣2,5).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2018-2019学年数学北师大版九年级上册1.1菱形的性质与判定(1)同步训练一、选择题1.平行四边形的一条边长是10cm ,那么它的两条对角线的长可能是()A 、6cm 和8cmB 、10cm 和20cmC 、8cm 和12cmD 、12cm 和32cm +2.如图,菱形ABCD 的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长 是( )A 、24B 、16C 、4D 、2 +3.菱形 的两条对角线长分别为和,则它的周长和面积分别为()A 、B 、C 、D 、 + 4.如图,在菱形中点,则 中, , ,、分别是边 、周长 等于()A、B、C、D、+5.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于(??)A、5B、10C、15D、20+6.如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为( )A、2B、2C、4D、4+7.在如图直角坐标系内,四边形AOBC是边长为2的菱形,E为边OB的中点,连结AE与对角线OC交于点D,且∠BCO=∠EAO,则点D坐标为(),)D、(1,)A、(,)B、(1,)C、(+8.如图,已知菱形ABCD的边长等于2,若∠DAB=60°,则对角线BD的长为( )A、1B、C、2D、+9.如图,在平面直角坐标系中,已知点,若平移点到点为顶点的四边形是菱形,则正确的平移方法是( ),使以点A、向左平移()个单位,再向上平移1个单位B、向左平移个单位,再向下平移1个单位C、向右平移个单位,再向上平移1个单位D、向右平移2个单位,再向上平移1个单位+二、填空题10.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相较于点O,点E在AC上,若OE=2 ,则CE的长为+11.菱形的两条对角线长分别为2和2 ,则该菱形的高为.+12.如图,点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FA D=45°,则∠CFE= 度.+13.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.+14.菱形ABCD中,∠A=60°,其周长为32,则菱形面积为.+15.如图,菱形ABC的对角线相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE、AE,AE交OD于点F,若AB=2,∠ABC=60°,则AE的长.+三、解答题16.如图,已知四边形ABCD是菱形,DE⊥AB,DF⊥BC,求证:△ADE≌△CDF.+17.如图,四边形ABCD是边长为2的菱形,E,F分别是AB,AD的中点,连接EF,EC,将△FAE绕点F旋转180°得到△FDM.(1)、补全图形并证明:EF⊥AC;(2)、若∠B=60°,求△EMC的面积.+18.如图,已知E、F分别是?ABCD的边BC、AD上的点,且.(1)、求证:四边形AECF是平行四边形;(2)、若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.+19.如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)、求证:AE=CF;(2)、若AB=2,点E是AB中点,求EF的长.+20.已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.(1)、如图1,线段EH、CH、AE之间的数量关系是;(2)、如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.+21.如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.(1)、菱形ABCO的边长(2)、求直线AC的解析式;(3)、动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,①当0<t<时,求S与t之间的函数关系式;②在点P运动过程中,当S=3,请直接写出t的值.+。
2018-2019九年级上数学期末试卷.选择题(共10小题)1 .已知x=2是一元二次方程x 2+mx+2=0的一个解,则m 的值是() A. -3 B. 3C. 0D. 0或 32 .方程x 2=4x 的解是( ) A. x=4 B, x=2 C, x=4 或 x=0 D. x=03 .如图,在?ABCD 中,AB=6, AD=9 , /BAD 的平分线交BC 于点E,交DC 的延长线于点F, BG±AE,垂足为G,若BG=4^,则ACEF 的面积是()A. 272 B .加 C. m D. 啦4 .在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E,作AF 垂直于直线 CD 于点 F,若 AB=5, BC=6,贝U CE+CF 的值为() C 11+11右或11 — ii 加D 11包近或1M 2 2 2 25 .有一等腰梯形纸片ABCD (如图),AD//BC, AD=1 , BC=3,沿梯形的高四边形ABED 不一定能拼成的图形是( )A.直角三角形B.矩形C.平行四边形D.正方形 7 .下列函数是反比例函数的是( ) A. y=x B. y=kx 1 C. y=-- D. 丫=乌8 .矩形的面积一定,则它的长和宽的关系是() A,正比例函数B. 一次函数 C.反比例函数 D.二次函数9 .已知一组数据:12, 5, 9, 5, 14,下列说法不正确的是() A.极差是5 B.中位数是9 C.众数是5 D.平均数是910 .在一个不透明的布袋中,红色、黑色、白色的玻璃球共有 40个,除颜色外其他完全相同,小明 通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在 15%和45%,则口袋中白色球的个 数可能是( ) cA. 24B. 18C. 16D. 6 / \ DE 剪下,由ADEC 与 A. 11+1W3 B. 11 - 11 的 2 2 6.如图是由5个大小相同的正方体组成的几何体,它的俯视图为(.填空题(共6小题)度. 13 .有两张相同的矩形纸片,边长分别为 2和8,若将两张纸片交叉重叠,则得到重叠部分面积最小是,最大的是.14 .直线11: y=k 1x+b 与双曲线12: y=*在同一平面直角坐标系中的图象如图所示,则关于x 的不等式上> k 1x+b 的解集为. x15 . 一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球 的个数,小明采用了如下的方法:每次先从口袋中摸出 10个球,求出其中红球数与10的比值,再把 球放回口袋中摇匀.不断重复上述过程 20次,得到红球数与10的比值的平均数为0.4.根据上述数 据,估计口袋中大约有 个黄球.16 .如图,在正方形 ABCD 中,过B 作一直线与CD 相交于点E,过A 作AF 垂直BE 于点F,过C 作CG 垂直BE 于点G,在FA 上截取FH=FB,再过H 作HP 垂直AF 交AB 于P.若CG=3.则4GE 与四边形BFHP 的面积之和为.三.解答题(共11小题)17 .解方程:(1) x 2-4x+1=0.(配方法) (2)解方程:x 2+3x+1=0.(公式法) (3)解方程:(x-3) 2+4x (x-3) =0.(分解因式法)18 .已知关于 x 的方程 x 2- (m+2) x+ (2m-1) =0.(1)求证:方程包有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长. 11 .某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 12.如图,AABC 中,DE 垂直平分 AC 交 AB 于 E, /A=30°, /ACB=80°, WJ/BCE=19.如图,AABC中,AB=AC , AD是小BC外角的平分线,已知/ BAC= / (1)求证:AABC^ACDA; (2)若/ B=60°,求证:四边形ABCD是菱形.20.如图,梯形ABCD 中,AB // CD, ACXBD 于点0, / CDB=/ CAB, DELAB , CFXAB , E. F 为垂足.设DC=m, AB=n. (1)求证:AACB^ABDA ; (2)求四边形DEFC的周长.21.如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆白^高DE=15m,旗杆与高墙的距离EG=16m, 请求出旗杆的影子落在墙上的长度.1 °22. 一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.模出小球次数时卜’一",「,............................. 竦色红色黄色蓝色除色小球颜色23.如图,在小BC中,AB=AC , D为边BC上一点,以AB , BD为邻边作?ABDE ,连接AD , EC. (1)求证: AADC^A ECD; (2)若BD=CD ,求证:四边形ADCE是矩形.24.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2, 3).双曲线y=- (x x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC S/XDEB,求直线FB的解析式.一 .选择题(共10小题)1.A2. C3. A4. D5. D6. A7. C8. C9. A 10. C二 .填空题(共6小题)11.20% 12. 50 13. 卫14. x< 一加或0<x<。
北 师 大 版 数 学 九 年 级 上 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________满分150分 时间120分钟A 卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(2020•新宾县四模)在△ABC 中,∠A ,∠B 都是锐角,tan A =1,sin B =√22,你认为△ABC 最确切的判断是()A .等腰三角形B .等腰直角三角形C .直角三角形D .锐角三角形2.(2020•成都模拟)如图所示的四棱柱的主视图为( )A .B .C .D .3.(2019•桓台县二模)已知a b =25,则a+b b 的值为( )A .25B .35C .23D .754.(2020•临沂模拟)已知x 1,x 2是方程x 2−√5x +1=0的两根,则x 12+x 22的值为( )A .3B .5C .7D .45.将二次函数y =x 2﹣2x +3配方为y =(x ﹣h )2+k 的形式为( )A .y =(x ﹣1)2+1B .y =(x ﹣1)2+2C .y =(x ﹣2)2﹣3D .y =(x ﹣2)2﹣16.(2020•南山区校级二模)下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A .3B .2C .1D .07.(2019秋•毕节市期末)已知AB =2,点P 是线段AB 上的黄金分割点,且AP >BP ,则AP 的长为( )A .√5−12B .√5−1C .3−√52D .3−√58.(2020•武昌区模拟)函数y =−a 2−1x(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 19.如图,EF ∥AC ,GH ∥AB ,MN ∥BC ,EF 、GH 、MN 、交于点P ,则图中与△PGF 相似的三角形的个数是( )个.A .4B .5C .6D .710.(2020•立山区二模)如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是( )A.2√2B.4C.4√2D.8√2二.填空题(共3小题,满分12分,每小题4分)11.(2019秋•仪征市期末)已知四条线段a,2,6,a+1成比例,则a的值为.12.(2019秋•深圳期末)元旦到了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,该班有个同学.13.(2020•无锡)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.三.解答题(共6小题,满分54分)14.(12分)(2018秋•新都区期末)计算(1)计算:(π﹣3)0+(﹣1)﹣3﹣3×tan30°+√27(2)解方程:x(x﹣3)=2x15.(6分)(2019•花都区一模)已知:A=(m+1)(m﹣1)﹣(m+2)(m﹣3)(1)化简A;(2)若关于x的一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,求A的值.16.(8分)(2020•陕西一模)小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)17.(8分)(2019秋•仪征市期末)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会.(1)抽取一名同学,恰好是甲的概率为;(2)抽取两名同学,求甲在其中的概率.18.(10分)(2020•宿州模拟)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.19.(10分)(2020•烟台二模)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O 的切线BC 于点C ,过点E 作ED ⊥AF ,交AF 的延长线于点D .(1)求证:DE 是⊙O 的切线;(2)若DE =3,CE =2,①求BC AE 的值;②若点G 为AE 上一点,求OG +12EG 最小值.B 卷(共50分)四.填空题(共5小题,满分20分,每小题4分)20.(2019•宿豫区模拟)若2m ﹣n +1=0,则代数式5﹣6m +3n 的值是 .21.(2019•大邑县模拟)有五张正面分别写有数字﹣4,﹣3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为n ,则抽取的n 既能使关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,又能使以x 为自变量的反比例函数y =n 2−16x 的图象在每个象限内y 随x 的增大而增大的概率为 .22.(2019秋•滦州市期中)计算:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)= . 23.(2019•南充)在平面直角坐标系xOy 中,点A (3m ,2n )在直线y =﹣x +1上,点B (m ,n )在双曲线y =k x 上,则k 的取值范围为 .24.(2020•青白江区模拟)如图,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,则四边形AGCD 的面积的最小值为 .五.解答题(共3小题,满分30分)25.(8分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)(2020•衢州模拟)(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B =∠C =∠EDF =a .△BDE 与△CFD 相似吗?请说明理由;(2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD =2.①如图2,当点D 在线段BC 上时,求AE AF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.27.(12分)(2020•铁岭四模)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=−49x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=−49x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.答案与解析A 卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020•新宾县四模)在△ABC 中,∠A ,∠B 都是锐角,tan A =1,sin B =√22,你认为△ABC 最确切的判断是( )A .等腰三角形B .等腰直角三角形C .直角三角形D .锐角三角形 [解析]解:由题意,得∠A =45°,∠B =45°.∠C =180°﹣∠A ﹣∠B =90°,故选:B .2.(3分)(2020•成都模拟)如图所示的四棱柱的主视图为( )A .B .C .D .[解析]解:由图可得,几何体的主视图是:故选:B . 3.(3分)(2019•桓台县二模)已知a b =25,则a+b b 的值为( ) A .25B .35C .23D .75 [解析]解:由a b =25,得a+b b =2+55=75.故选:D .4.(3分)(2020•临沂模拟)已知x 1,x 2是方程x 2−√5x +1=0的两根,则x 12+x 22的值为( )A .3B .5C .7D .4[解析]解:∵x 1,x 2是方程x 2−√5x +1=0的两根,∴x 1+x 2=√5,x 1•x 2=1,∴x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=5﹣2=3.故选:A .5.(3分)将二次函数y =x 2﹣2x +3配方为y =(x ﹣h )2+k 的形式为( )A .y =(x ﹣1)2+1B .y =(x ﹣1)2+2C .y =(x ﹣2)2﹣3D .y =(x ﹣2)2﹣1[解析]解:y =x 2﹣2x +3=x 2﹣2x +1+2=(x ﹣1)2+2,故选:B .6.(3分)(2020•南山区校级二模)下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A .3B .2C .1D .0[解析]解:过直线外一点有且只有一条直线与已知直线平行,①是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,②是假命题;图形平移的方向不一定是水平的,③是假命题;两直线平行,内错角相等,④是假命题;相等的角不一定是对顶角,⑤是假命题;垂线段最短,⑥是真命题,故选:C .7.(3分)(2019秋•毕节市期末)已知AB =2,点P 是线段AB 上的黄金分割点,且AP >BP ,则AP 的长为( )A .√5−12B .√5−1C .3−√52D .3−√5[解析]解:由于P 为线段AB =2的黄金分割点,且AP >BP ,则AP =√5−12×2=√5−1.故选:B.8.(3分)(2020•武昌区模拟)函数y=−a2−1x(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y1[解析]解:∵a2≥0,∴﹣a2≤0,﹣a2﹣1<0,∴反比例函数y=−a2−1x的图象在二、四象限,∵点(2,y3)的横坐标为2>0,∴此点在第四象限,y3<0;∵(﹣4,y1),(﹣1,y2)的横坐标﹣4<﹣1<0,∴两点均在第二象限y1>0,y2>0,∵在第二象限内y随x的增大而增大,∴y2>y1,∴y2>y1>y3.故选:A.9.(3分)如图,EF∥AC,GH∥AB,MN∥BC,EF、GH、MN、交于点P,则图中与△PGF相似的三角形的个数是()个.A.4B.5C.6D.7[解析]解:∵EF∥AC,GH∥AB,MN∥BC,∴△PGF∽△EBF,△PGF∽△HGC,△AMN∽△ABC,△EMP∽△ENF,△HPN∽△HGC,△EBF∽△ABC,故选:C.10.(3分)(2020•立山区二模)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是()A .2√2B .4C .4√2D .8√2[解析]解:过点O 作OC ⊥AB 于C ,交⊙O 于D 、E 两点,连结OA 、OB 、DA 、DB 、EA 、EB ,如图, ∵∠AMB =45°,∴∠AOB =2∠AMB =90°,∴△OAB 为等腰直角三角形,∴AB =√2OA =2√2,∵S 四边形MANB =S △MAB +S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值=S 四边形DAEB =S △DAB +S △EAB =12AB •CD +12AB •CE =12AB (CD +CE )=12AB •DE =12×2√2×4=4√2.故选:C .二.填空题(共3小题,满分12分,每小题4分)11.(4分)(2019秋•仪征市期末)已知四条线段a ,2,6,a +1成比例,则a 的值为 3 .[解析]解:∵四条线段a ,2,6,a +1成比例,∴a 2=6a+1,解得:a 1=3,a 2=﹣4(舍去),所以a =3,故答案为:312.(4分)(2019秋•深圳期末)元旦到了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,该班有 40 个同学.[解析]解:设该班有x 个同学,则每个同学需交换(x ﹣1)件小礼物,依题意,得:x (x ﹣1)=1560, 解得:x 1=40,x 2=﹣39(不合题意,舍去).故答案为:40.13.(4分)(2020•无锡)如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连接BE ,CD ,相交于点O ,则△ABO 面积最大值为83.[解析]解:如图,过点D 作DF ∥AE ,则DF AE=BD BA =23,∵ECAE=13,∴DF =2EC ,∴DO =2OC ,∴DO =23DC ,∴S △ADO =23S △ADC ,S △BDO =23S △BDC ,∴S △ABO =23S △ABC ,∵∠ACB =90°,∴C 在以AB 为直径的圆上,设圆心为G ,当CG ⊥AB 时,△ABC 的面积最大为:12×4×2=4,此时△ABO 的面积最大为:23×4=83.故答案为:83.三.解答题(共6小题,满分54分) 14.(12分)计算(1)计算:(π﹣3)0+(﹣1)﹣3﹣3×tan30°+√27(2)解方程:x (x ﹣3)=2x[解析]解:(1)原式=1﹣1﹣3×√33+3√3=1﹣1−√3+3√3=2√3; (2)x (x ﹣3)﹣2x =0,x (x ﹣3﹣2)=0,x =0或x ﹣3﹣2=0,所以x 1=0,x 2=5. 15.(6分)(2019•花都区一模)已知:A =(m +1)(m ﹣1)﹣(m +2)(m ﹣3) (1)化简A ;(2)若关于x的一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,求A的值.[解析]解:(1)A=(m+1)(m﹣1)﹣(m+2)(m﹣3)=m2﹣1﹣(m2﹣m﹣6),=m2﹣1﹣m2+m+6,=m+5,(2)∵一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,∴△=0,即△=(m+2)2﹣4×14m2=0,解得m=﹣1.当m=﹣1时,A=m+5=﹣1+5=4.16.(8分)(2020•陕西一模)小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)[解析]解:如图,过E点作EF⊥OB于F,过D点作DG⊥EF于G.在Rt△CEF中,CF=EF•tan50°=AB•tan50°=35.76m,在Rt△DEG中,DG=EG•tan60°=√3EG,设热气球的直径为x米,则35.76+12x=√3(30−12x),解得x≈11.9.故热气球的直径约为11.9米.17.(8分)(2019秋•仪征市期末)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会.(1)抽取一名同学,恰好是甲的概率为 14;(2)抽取两名同学,求甲在其中的概率.[解析]解:(1)随机抽取1名学生,可能出现的结果有4种,即甲、乙、丙、丁,并且它们出现的可能性相等.恰好抽取1名恰好是甲的结果有1种,所以抽取一名同学,恰好是甲的概率为14,故答案为:14.(2)随机抽取2名学生,可能出现的结果有6种,即甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,并且它们出现的可能性相等.恰好抽取2名甲在其中的结果有3种,即甲乙、甲丙、甲丁,故抽取两名同学,甲在其中的概率为36=12.18.(10分)(2020•宿州模拟)如图,已知反比例函数y =kx的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ).(1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.[解析]解:(1)把A 点(1,4)分别代入反比例函数y =kx ,一次函数y =x +b ,得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =4x 的图象上,∴n =4−4=−1;(2)如图,设直线y =x +3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.19.(10分)(2020•烟台二模)如图,已知AB 是圆O 的直径,F 是圆O 上一点,∠BAF 的平分线交⊙O 于点E ,交⊙O 的切线BC 于点C ,过点E 作ED ⊥AF ,交AF 的延长线于点D . (1)求证:DE 是⊙O 的切线; (2)若DE =3,CE =2,①求BC AE的值;②若点G 为AE 上一点,求OG +12EG 最小值.[解析](1)证明:连接OE ∵OA =OE ∴∠OAE =∠OEA ∵AE 平分∠BAF ∴∠OAE =∠EAF ∴∠OEA =∠EAF ∴OE ∥AD ∵ED ⊥AF ∴∠D =90°∴∠OED =180°﹣∠D =90°∴OE ⊥DE ∴DE 是⊙O 的切线(2)解:①连接BE ∵AB 是⊙O 直径∴∠AEB =90°∴∠BEA =∠D =90°,∠BAE +∠ABE =90° ∵BC 是⊙O 的切线∴∠ABC =∠ABE +∠CBE =90°∴∠BAE =∠CBE ∵∠DAE =∠BAE ∴∠DAE =∠CBE ∴△ADE ∽△BEC ∴AE BC=DE CE∵DE =3,CE =2∴BC AE=23②过点E 作EH ⊥AB 于H ,过点G 作GP ∥AB 交EH 于P ,过点P 作PQ ∥OG 交AB 于Q∴EP ⊥PG ,四边形OGPQ 是平行四边形∴∠EPG =90°,PQ =OG ∵BC AE=23∴设BC =2x ,AE =3x ∴AC =AE +CE =3x +2∵∠BEC =∠ABC =90°,∠C =∠C ∴△BEC ∽△ABC∴BC AC=CE BC∴BC 2=AC •CE 即(2x )2=2(3x +2)解得:x 1=2,x 2=−12(舍去)∴BC =4,AE =6,AC =8∴sin ∠BAC =BC AC =12,∴∠BAC =30°∴∠EGP =∠BAC =30°∴PE =12EG ∴OG +12EG =PQ +PE ∴当E 、P 、Q 在同一直线上(即H 、Q 重合)时,PQ +PE =EH 最短 ∵EH =12AE =3∴OG +12EG 的最小值为3B 卷(共50分)四.填空题(共5小题,满分20分,每小题4分)20.(4分)(2019•宿豫区模拟)若2m ﹣n +1=0,则代数式5﹣6m +3n 的值是 8 . [解析]解:∵2m ﹣n +1=0,∴2m ﹣n =﹣1,则原式=5﹣3(2m ﹣n )=5+3=8,故答案为:821.(4分)(2019•大邑县模拟)有五张正面分别写有数字﹣4,﹣3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为n ,则抽取的n 既能使关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,又能使以x 为自变量的反比例函数y =n 2−16x 的图象在每个象限内y 随x 的增大而增大的概率为15.[解析]解:∵关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,∴当n =﹣3时,关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,当n ≠﹣3时,(n +1)2﹣4(n +3)×12=n 2﹣5≥0,∴n 2≥5, ∵反比例函数y =n 2−16x的图象在每个象限内y 随x 的增大而增大,∴n 2﹣16<0,∴n 2<16,∴5≤n 2≤16,∴n =3,∴概率为,15,故答案为:15.22.(4分)(2019秋•滦州市期中)计算:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)=2019x(x+2019).[解析]解:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)=1x−1x+1+1x+1−1x+2+1x−2−1x+3+⋯+1x+2018−1x+2019=1x−1x+2019=2019x(x+2019)故答案为:2019x(x+2019).23.(4分)(2019•南充)在平面直角坐标系xOy 中,点A (3m ,2n )在直线y =﹣x +1上,点B (m ,n )在双曲线y =k x上,则k 的取值范围为 k ≤124且k ≠0 .[解析]解:∵点A (3m ,2n )在直线y =﹣x +1上,∴2n =﹣3m +1,即n =−3m+12, ∴B (m ,−3m+12),∵点B 在双曲线y =kx 上,∴k =m •−3m+12=−32(m −16)2+124,∵−32<0,∴k 有最大值为124,∴k 的取值范围为k ≤124,∵k ≠0,故答案为k ≤124且k ≠0.24.(4分)(2020•青白江区模拟)如图,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,则四边形AGCD 的面积的最小值为152.[解析]解:∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5,∵AB =3,AE =2, ∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G到AC的距离为h,∵S四边形AGCD=S△ACD+S△ACG=12AD×CD+12AC×h=12×4×3+12×5×h=52h+6,∴要四边形AGCD的面积最小,即:h最小,∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,∴EG⊥AC时,h最小,即点E,点G,点H共线.由折叠知∠EGF=∠ABC=90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC=BCAC=45,在Rt△AEH中,AE=2,sin∠BAC=EHAE=45,∴EH=45AE=85,∴h=EH﹣EG=85−1=35,∴S四边形AGCD最小=52h+6=52×35+6=152.故答案为:152.五.解答题(共3小题,满分30分)25.(8分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?[解析]解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:{200=15k +b300=10k +b ,解得:{k =−20b =500,即:函数的表达式为:y =﹣20x +500,(25>x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =−b 2a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完; 设:应定销售价为x 元时,既能销售完又能获得最大利润w ,由题意得:50(500﹣20x )≥12000,解得:x ≤13,w =﹣20(x ﹣25)(x ﹣6),当x =13时,w =1680, 此时,既能销售完又能获得最大利润.26.(10分)(2020•衢州模拟)(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B =∠C =∠EDF =a .△BDE 与△CFD 相似吗?请说明理由;(2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD =2.①如图2,当点D 在线段BC 上时,求AE AF的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.[解析]解:(1)△BDE ∽△CFD ,理由:∠B =∠C =∠EDF =a ,在△BDE 中,∠B +∠BDE +∠BED =180°,∴∠BDE +∠BED =180°﹣∠B =180°﹣α,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =180°﹣α,∴∠BED =∠CDF ,∵∠B =∠C ,∴△BDE ∽△CFD ;(2)①设AE =x ,AF =y ,∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =8, 由折叠知,DE =AE =x ,DF =AF =y ,∠EDF =∠A =60°,在△BDE 中,∠B +∠BDE +∠BED =180°, ∴∠BDE +∠BED =180°﹣∠B =120°,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =120°,∴∠BED =∠CDF ,∵∠B =∠C =60°,∴△BDE ∽△CFD ,∴BD CF=BE CD =DE FD∵BE =AB ﹣AE =8﹣x ,CF =AC ﹣AF =8﹣y ,CD =BC ﹣BD =6,∴28−y=8−x 6=xy,∴{2y =x(8−y)6x =y(8−x),∴xy =1014=57,∴AE AF =57; ②设AE =x ,AF =y ,∵△ABC 是等边三角形,∴∠A =∠ABC =∠ACB =60°,AB =BC =AC =8,由折叠知,DE =AE =x ,DF =AF =y ,∠EDF =∠A =60°,在△BDE 中,∠ABC +∠BDE +∠BED =180°,∴∠BDE +∠BED =180°﹣∠ABC =120°,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =120°,∴∠BED =∠CDF ,∵∠ABC =∠ACB =60°,∴∠DBE =∠DCF =120°,∴△BDE ∽△CFD ,∴BD CF=BE CD=DE FD∵BE =AB ﹣AE =8﹣x ,CF =AF ﹣AC =y ﹣8,CD =BC +BD =10,∴2y−8=8−x 10=x y ,∴{2y =x(y −8)10x =y(8−x),∴x y =13.∵△BDE ∽△CFD ,∴△BDE 与△CFD 的周长之比为DE DF=x y=13.27.(12分)(2020•铁岭四模)如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线y =−49x 2+bx +c 经过点A 、C ,与AB 交于点D . (1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S .①求S 关于m 的函数表达式;②当S 最大时,在抛物线y =−49x 2+bx +c 的对称轴l 上,若存在点F ,使△DFQ 为直角三角形,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.[解析]解:(1)将A 、C 两点坐标代入抛物线,得{c =8−49×36+6b +c =0,解得:{b =43c =8,∴抛物线的解析式为y =−49x 2+43x +8;(2)①∵OA =8,OC =6,∴AC =√OA 2+OC 2=10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB =QE QC =AB AC =35, ∴QE 10−m=35,∴QE =35(10﹣m ),∴S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m ; ②∵S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m =−310(m ﹣5)2+152, ∴当m =5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形,∵抛物线的解析式为y =−49x 2+43x +8的对称轴为x =32,D 的坐标为(3,8),Q (3,4),当∠FDQ =90°时,F 1(32,8),当∠FQD =90°时,则F 2(32,4),当∠DFQ =90°时,设F (32,n ),则FD 2+FQ 2=DQ 2,即94+(8﹣n )2+94+(n ﹣4)2=16,解得:n =6±√72,∴F 3(32,6+√72),F 4(32,6−√72),满足条件的点F 共有四个,坐标分别为F 1(32,8),F 2(32,4),F 3(32,6+√72),F 4(32,6−√72).。
九年级(上)第一学期期末模拟检测数学试题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共30分)1.(兰州中考)下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形2.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.45︒B.55︒C.60︒D.75︒第2题图第3题图3.(2015·浙江温州中考)如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数xky =的图象经过点B ,则k 的值是( ) A. 1 B. 2C.3 D. 324.若2-=x 是关于x 的一元二次方程02522=+-a ax x 的一个根,则a 的值为( ) A.1或4B.-1或-4C.-1或4D.1或-45. (2016· 兰州中考)如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE ∥BD,DE ∥AC ,AD=2错误!未找到引用源。
,DE=2,则四边形OCED 的面积 为( )A.2错误!未找到引用源。
B.4C.4错误!未找到引用源。
D.86. (2016·兰州中考)已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为错误!未找到引用源。
,则△ABC 与△DEF 对应中线的比为( ) A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
7.(2015·山东青岛中考)如图,正比例函数x k y 11=的图象与反比例函数xk y 22=的图象相交于A 、B 两点,其中点A 的横坐标为2,当21y y >时,x 的取值范围是( ) A .x<-2或x>2 B .x<-2或0<x<2 C .-2<x<0或0<x<2D .-2<x<0或x>2第7题图第8题图8. (2015·贵州安顺中考)如图,平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶FC等于()A.3∶2B.3∶1C.1∶1D.1∶29.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为错误!未找到引用源。
(完整)2018-2019北师大版九年级上学期期末数学试卷(word版可编辑修改)(完整)2018-2019北师大版九年级上学期期末数学试卷(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2018-2019北师大版九年级上学期期末数学试卷(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2018-2019北师大版九年级上学期期末数学试卷(word版可编辑修改)的全部内容。
第1 页共16 页第2页共16 页第 3 页 共 16 页第 4 页 共 16 页2018—2019学年上学期期末质量检测九年级数学试题(时间:120分钟,满分:100分)一、填空题:(每空3分,共21分) 1、方程x 2—3x=0的解是 ____________ .2、若点(2,1)在双曲线ky x上,则k 的值为_______。
3、若二次函数y=2x 2的图象向右平移 3个单位,向下平移4个单位,得到的抛物线的关系式为_______________。
4、某企业为节水,3月份净化污水2000吨, 5月份净化污水增加到28805、如图1,反比例函数图像上一点A, 过A 作AB ⊥x 轴于B ,若S △AOB =5,则反比例函数解析式为______ ___.6、已知等腰三角形的一个角是36°,则其顶是 。
7、已知四边形ABCD 是一个平行四边形,则只须补充条件__________________,就可以判定它是一个菱形.二、选择题(每题3分, 共24分)8、两个直角三角形全等的条件是( )。
九年级(上)期末模拟测试数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分100分,考试时间90分钟注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,之后务必用黑色签字笔在答题卡指定位置填写自己的学校、班级、姓名及座位号,在右上角的信息栏填写自己的考号,并用2B铅笔填涂相应的信息点.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上,不按要求填涂的,答案无效.3.非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排,如需改动,先划掉原来的答案,然后再写上新的答案.不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,不折叠,不破损.考试结束后,将答题卡交回.5.允许使用计算器.第Ⅰ卷选择题(36分)一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上................)1.如图的几何体是由五个同样大小的正方体搭成的,其主视图是A.B.C.D.2.一元二次方程x2﹣9=0的解是A. x=﹣3 B. x=3 C. x1=3,x2=﹣3 D.x=83.点(2,﹣2)是反比例函数y=的图象上的一点,则k=A.﹣1 B.C.﹣4 D.﹣4.下列关于x的一元二次方程有实数根的是A. x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=05.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是红球的概率是A.B.C.D.6.顺次连结对角线相等的四边形的四边中点所得图形是A.正方形B.矩形C.菱形D.以上都不对7.如图,在菱形ABCD 中,BD=6,AC=8,则菱形ABCD 的周长为 A .20 B .16C .25D . 308.下列命题中,假命题的是 A . 四边形的外角和等于内角和 B . 对角线互相垂直的平行四边形是菱形 C . 矩形的四个角都是直角D . 相似三角形的周长比等于相似比的平方9.如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则=A .B .C .D .10. 已知1(0),3a c e a c eb d f b d f b d f++===++≠=++则A .B .13C .D .2311.下列命题中, ①有一组邻边互相垂直的菱形是正方形②若2x=3y ,则③若(﹣1,a )、(2,b )是双曲线y=上的两点,则a >b 正确的有( )个A .1B .2C .3D .012. 如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为A . 2B . 3C . 22D .32第Ⅱ卷 非选择题二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡........上)...13.若x=﹣2是关于x 的一元二次方程x 2+3x+m+1=0的一个解,则m= .14.一个暗箱里放有a 个除颜色外完全相同的球,这a 个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a 的值大约是 .15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x>0)和y=﹣(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为 .16.如图,已知正方形ABCD的边长为4,点E、F分别在边AB,BC上,且AE=BF=1,则OC= .三、解答题(本大题有7题,共52分)17.(5分)解方程:x2+6x﹣7=018.(6分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“南”、“山”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“南山”的概率;19.(6分)如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.20.(8分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形.(2)若AB=5,AC=6,求四边形CODE的周长.21.(8分)A市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,请通过计算说明哪种方案更优惠?22.(9分)如图,Rt△ABO 的顶点A 是双曲线y 1=与直线y 2=﹣x ﹣(k+1)在第二象限的交点.AB⊥x 轴于B ,且S △ABO =. (1)求这两个函数的解析式; (2)求△AOC 的面积.(3)直接写出使y 1>y 2成立的x 的取值范围23.(10分)如图,在平面直角坐标系中,四边形ABCD 是平行四边形,AD =6,若OA 、OB的长是关于x 的一元二次方程01272=+-x x 的两个根,且OA >OB. (1)求OA 、OB 的长.(2)若点E 为x 轴上的点,且S △AOE =316,求经过D 、E 两点的直线解析式,并判断△AOE 与△AOD 是否相似.(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A 、C 、F 、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.九年级数学答案一、选择题(本题有12小题,每题3分,共36分)二、填空题(本题有4小题,每题3分,共12分.)三、解答题(本大题有7题,其中17题5分,18题6分,19题6分,20题8分,21题8,22题9分,23题10分,共52分)17.(5分)解方程:x2+6x﹣7=0.解:∵x2+6x﹣7=0,∴(x+7)(x﹣1)=0,…………………3分∴x1=﹣7或x2=1.…………………5分18.(6分)(1)∵有汉字“美”、“丽”、“南”、“山”的四个小球,任取一球,共有4种不同结果,∴球上汉字是“美”的概率为P=;…………………2分(2)列表如下:美丽南山美﹣﹣﹣(丽,美)(南,美)(山,美)丽(美,丽)﹣﹣﹣(南,丽)(山,丽)南(美,南)(丽,南)﹣﹣﹣(山,南)山(美,山)(丽,山)(南,山)﹣﹣﹣所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“美丽”或“南山”的情况有4种,则P==;…………………6分19.(6分)解:(1)如图:线段MG和GE就表示旗杆在阳光下形成的影子.…………………2分(2)过M作MN⊥DE于N,设旗杆的影子落在墙上的长度为x,由题意得:△DMN∽△ACB,∴…………………4分又∵AB=1.6,BC=2.4,DN=DE﹣NE=15﹣xMN=EG=16∴解得:x=,答:旗杆的影子落在墙上的长度为米.…………………6分20.(8分)解:(1)如图,∵四边形ABCD为菱形,∴∠COD=90°;而CE∥BD,DE∥AC,∴∠OCE=∠ODE=90°,∴四边形CODE是矩形.…………………4分(2)∵四边形ABCD为菱形,∴AO=OC=AC=3,…………………5分OD=OB,∠AOB=90°,由勾股定理得:BO2=AB2﹣AO2,而AB=5,∴DO=BO=4,…………7分∴四边形CODE的周长=2(3+4)=14.…………8分21.(8分)解:(1)设平均每次下调的百分率为,则,………………2分解得:(舍去).∴平均每次下调的百分率为10%. …………………4分(2)方案①可优惠:(元),…………………6分方案②可优惠:(元),…………………7分∴方案①更优惠. …………………8分21.(9分)解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,…………………1分又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;…………………3分(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),…………………4分∵A、C在反比例函数的图象上,∴,解得,,∴交点A为(﹣1,3),C为(3,﹣1),…………………6分∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.…………………7分(3)-1<x<0或x>3 (只写对一个不等式给1分)…………………9分23.(10分)(1)解一元二次方程得,∵OA>OB∴OA=4,OB=3;…………………1分(2)设E(x,0),由题意得解得∴E(,0)或(,0),…………………3分∵四边形ABCD是平行四边形,∴点D的坐标是(6,4)设经过D、E两点的直线的解析式为若图象过点(,0),(6,4)则,解得此时函数解析式为…………………4分若图象过点(,0),(6,4)则,解得此时函数解析式为………………… 5分在△AOE与△DAO中,,又∵∠AOE=∠OAD=90°∴△AOE ∽△DAO ; …………………6分(3)符合条件的F 点共有4个,其坐标分别为m (-3,0)或(3,8)或(),)或((25442542722,1475--- …………………10分。
九年级(上)期末数学模拟试卷一、精心选一选!(每小题3分,共30分)1.一元二次方程3x2﹣2x=1的二次项系数、一次项系数、常数项分别是()A. 3,2,1 B. 3,2,1 C. 3,﹣2,﹣1 D.﹣3,2,12.图中所示几何体的俯视图是()A. B. C. D.3.一个家庭有两个孩子,两个都是女孩的概率是()A. B. C. D.无法确定4.已知:,则:=()A. B.﹣ C. D.5.下列各点中,不在反比例函数图象上的点是()A.(﹣1,6) B.(﹣3,2) C. D.(﹣2,5)6.借助一面墙为一边,再用13米的铁丝网围成一个面积为20平方米的长方形,求长方形的长和宽.设长为x米,根据题意可得方程()A. x(13﹣x)=20 B. x=20 C. x (13﹣0.5x)=20 D.=207.如图,矩形ABCD的周长为68,它被分成7个全等的矩形,则矩形ABCD的面积为()A. 98 B. 196 C. 280 D. 2848.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为()A. 20米 B. 18米 C. 16米 D. 15米9.在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A. B. C.D.10.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为菱形,则四边形ABCD应具备的条件是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.一组对边平行而另一组对边不平行二、细心填一填!(每小题3分,共30分)11.已知关于x的方程是一元二次方程,则m的值为.12.如果点(m,﹣2m)在双曲线上,那么双曲线在象限.13.已知△ABC∽△DEF,相似比为3:1,若△DEF的面积为5,则△ABC的面积为.14.在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为.15.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转,如果这三种可能性大小相同,那么某辆汽车经过这个十字路口,恰好向左转的概率是.16.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是.17.某钢铁厂今年1月份钢产量为4万吨,三月份钢产量为4.84万吨,每月的增长率相同,问2、3月份平均每月的增长率是.18.一支铅笔长16cm,把它按黄金分割后,较长部分涂上橘红色,较短部分涂上浅蓝色,那么橘红色部分的长是 cm,浅蓝色部分的长是 cm.19.矩形的一条长边的中点与另一条长边构成等腰直角三角形,已知矩形的周长是36,则矩形一条对角线长是.20.在△ABC中,已知∠A、∠B、∠C的度数之比为1:2:3,AB边上的中线长为4cm,则△ABC面积等于cm2.三、用心解一解!21.解方程(1)7x(5x+2)=6(5x+2)(2)x2﹣4x﹣5=0(配方法)22.如图,楼房和旗杆在路灯下的影子如图所示.试确定路灯灯泡的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)23.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A,B两点,且A点的横坐标与B点的纵坐标都是﹣2.(1)一次函数的解析式;(2)△AOB的面积.24.某服装店平均每天售出“贝贝”牌童装20件,每件获利30元,为了迎接“六一”儿童节,商场决定适当降价,经过市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天获利800元,每件童装应降价多少元?25.如图,在△ABC中,正方形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,BC=15cm,BC边上的高是10cm,求正方形的面积.26.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.参考答案与试题解析一、精心选一选!(每小题3分,共30分)1.一元二次方程3x2﹣2x=1的二次项系数、一次项系数、常数项分别是()A. 3,2,1 B. 3,2,1 C. 3,﹣2,﹣1 D.﹣3,2,1考点:一元二次方程的一般形式.分析:要确定二次项系数、一次项系数和常数项,首先要把方程化成一般形式.解答:解:∵方程3x2﹣2x=1化成一般形式是3x2﹣2x﹣1=0,∴二次项系数是3,一次项系数为﹣2,常数项为﹣1.故选:C.点评:本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.图中所示几何体的俯视图是()A. B. C. D.考点:简单几何体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到三个矩形左右排在一起,中间的较大,故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.一个家庭有两个孩子,两个都是女孩的概率是()A. B. C. D.无法确定考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个都是女孩的情况,再利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有4种等可能的结果,两个都是女孩的有1种情况,∴两个都是女孩的概率是:.故选:C.点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.4.已知:,则:=()A. B.﹣ C. D.考点:分式的基本性质;比例的性质.专题:计算题.分析:由已知条件,可得4a=3b,而所求式子根据分式的基本性质得=,然后将4a=3b代入即可.解答:解:∵,∴4a=3b,∴===.故选C.点评:本题的关键是由已知条件得出4a=3b,即求得a,b的关系.5.下列各点中,不在反比例函数图象上的点是()A.(﹣1,6) B.(﹣3,2) C. D.(﹣2,5)考点:反比例函数图象上点的坐标特征.分析:把各点代入反比例函数的解析式进行检验即可.解答:解:A、∵(﹣1)×6=﹣6,∴此点在此函数的图象上,故本选项错误;B、∵(﹣3)×2=﹣6,∴此点在此函数的图象上,故本选项错误;C、∵(﹣12)×=﹣6,∴此点在此函数的图象上,故本选项错误D、∵(﹣2)×5=﹣10,∴此点不在此函数的图象上,故本选项正确.故选D.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.借助一面墙为一边,再用13米的铁丝网围成一个面积为20平方米的长方形,求长方形的长和宽.设长为x米,根据题意可得方程()A. x(13﹣x)=20 B. x=20 C. x (13﹣0.5x)=20 D.=20考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:设长方形的长为x米,那么宽为米,可根据长方形的面积公式即可列方程进行求解.解答:解:设长方形的长为x米,那么宽为米,根据题意得x=20.故选B.点评:本题考查了由实际问题抽象出一元二次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.7.如图,矩形ABCD的周长为68,它被分成7个全等的矩形,则矩形ABCD的面积为()A. 98 B. 196 C. 280 D. 284考点:矩形的性质.专题:计算题.分析:等量关系为:5个小矩形的宽等于2个小矩形的长;6个小矩形的宽加一个小矩形的长等于大长方形周长的一半.解答:解:设小矩形宽为x,长为y.则大矩形长为5x或2y,宽为x+y.依题意有x+y+5x==34;5x=2y.解得:x=4,y=10.则大矩形长为20,宽为14.所以大矩形面积为280.故选C.点评:本题考查了矩形的面积和一种很重要的思想:方程思想.8.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为()A. 20米 B. 18米 C. 16米 D. 15米考点:相似三角形的应用.分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.解答:根据题意解:=,即,∴旗杆的高==18米.故选:B.点评:本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,求解即可得出旗杆的高.9.在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A. B. C.D.考点:反比例函数的图象;一次函数的图象.专题:压轴题.分析:首先由四个图象中一次函数的图象与y轴的交点在正半轴上,确定k的取值范围,然后根据k的取值范围得出反比例函数y=(k≠0)的图象.解答:解:由一次函数的图象与y轴的交点在正半轴上可知k>0,故函数y=kx+k的图象过一、二、三象限,排除A,D;又当k>0时,y=(k≠0)的图象在二四象限,排除C.故选B.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.10.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为菱形,则四边形ABCD应具备的条件是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.一组对边平行而另一组对边不平行考点:中点四边形.分析:据已知条件可以得出要使四边形EFGH为菱形,应使EH=EFFG=HG,根据三角形中位线的性质可以求出四边形ABCD应具备的条件.解答:解:连接AC,BD,∵四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为菱形,∴EF=FG=GH=EH,∵FG=EH=DB,HG=EF=AC,∴要使EH=EF=FG=HG,∴BD=AC,∴四边形ABCD应具备的条件是BD=AC,故选C.点评:此题主要考查了三角形中位线的性质以及菱形的判定方法,正确运用菱形的判定定理是解决问题的关键.二、细心填一填!(每小题3分,共30分)11.已知关于x的方程是一元二次方程,则m的值为﹣1 .考点:一元二次方程的定义.专题:常规题型.分析:根据一元二次方程的定义,只含有一个未知数,并且未知数的最高次数是2,列出方程m2+1=2,且m﹣1≠0,继而即可得出m的值.解答:解:由一元二次方程的定义得:m2+1=2,且m﹣1≠0,解得:m=﹣1.故答案为:﹣1.点评:本题考查了一元二次方程的概念,属于基础题,关键是掌握一元二次方程是只含有一个未知数,并且未知数的最高次数是2的整式方程.12.如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可得k=﹣2m2<0,根据反比例函数的性质可得答案.解答:解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.点评:此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.已知△ABC∽△DEF,相似比为3:1,若△DEF的面积为5,则△ABC的面积为45 .考点:相似三角形的性质.分析:由△ABC∽△DEF,相似比为3:1,根据相似三角形的面积比等于相似比的平方,即可求得其面积比为9:1,然后由△DEF的面积为5,求得△ABC的面积.解答:解:∵△ABC∽△DEF,相似比为3:1,∴面积比为:9:1,∵△DEF的面积为5,∴△ABC的面积为:5×9=45.故答案为:45.点评:此题考查了相似三角形的性质.此题比较简单,注意相似三角形的面积比等于相似比的平方.14.在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为x=3或x=﹣7 .考点:解一元二次方程-因式分解法.专题:压轴题;新定义.分析:此题考查学生的分析问题和探索问题的能力.解题的关键是理解题意,在此题中x+2=a,5=b,代入所给公式得:(x+2)*5=(x+2)2﹣52,则可得一元二次方程,解方程即可求得.解答:解:据题意得,∵(x+2)*5=(x+2)2﹣52∴x2+4x﹣21=0,∴(x﹣3)(x+7)=0,∴x=3或x=﹣7.故答案为:x=3或x=﹣7点评:此题将规定的一种新运算引入题目中,题型独特、新颖,难易程度适中.15.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转,如果这三种可能性大小相同,那么某辆汽车经过这个十字路口,恰好向左转的概率是.考点:概率公式.专题:计算题.分析:让左转的可能性除以通行可能的总数即为所求的概率.解答:解:经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转,共有三种大小相同的可能性,所以恰好左转的概率是.故答案为.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是15°或75°.考点:正方形的性质;三角形内角和定理;等腰三角形的性质;等边三角形的性质.专题:计算题.分析:当E在正方形ABCD内时,根据正方形ABCD,得到AD=CD,∠ADC=90°,根据等边△CDE,得到CD=DE,∠CDE=60°,推出AD=DE,得出∠DAE=∠AED,根据三角形的内角和定理求出即可;当E在正方形ABCD外时,根据等边三角形CDE,推出∠ADE=150°,求出即可.解答:解:有两种情况:(1)当E在正方形ABCD内时,如图1∵正方形ABCD,∴AD=CD,∠ADC=90°,∵等边△CDE,∴CD=DE,∠CDE=60°,∴∠ADE=90°﹣60°=30°,∴AD=DE,∴∠DAE=∠AED=(180°﹣∠ADE)=75°;(2)当E在正方形ABCD外时,如图2∵等边三角形CDE,∴∠EDC=60°,∴∠ADE=90°+60°=150°,∴∠AED=∠DAE=(180°﹣∠ADE)=15°.故答案为:15°或75°.点评:本题主要考查对正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.17.某钢铁厂今年1月份钢产量为4万吨,三月份钢产量为4.84万吨,每月的增长率相同,问2、3月份平均每月的增长率是10% .考点:一元二次方程的应用.分析:要求平均每月的增长率,需设每月增长率为x,据题意可知:三月份钢产量=4.84万吨,依此等量关系列出方程,求解即可.解答:解:设2、3月份平均每月的增长率是x万吨,则二月份钢产量为4(1+x)万吨,三月份钢产量为4(1+x)2万吨,由题意可得:4(1+x)2=4.84,解得:x1=0.1=10%,x2=﹣2.1(不合题意舍去),答:2、3月份平均每月的增长率是10%.点评:解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份钢产量的代数式.18.一支铅笔长16cm,把它按黄金分割后,较长部分涂上橘红色,较短部分涂上浅蓝色,那么橘红色部分的长是8﹣8 cm,浅蓝色部分的长是24﹣8 cm.考点:黄金分割.分析:根据黄金分割的定义即可得出答案;把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值()叫做黄金比.解答:解:∵将长度为16cm的铅笔进行黄金分割,∴橘红色部分的长=16×=8﹣8(cm),∴浅蓝色部分的长是16﹣(8﹣8)=24﹣8(cm);故答案为:8﹣8,24﹣8.点评:本题主要考查了黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.19.矩形的一条长边的中点与另一条长边构成等腰直角三角形,已知矩形的周长是36,则矩形一条对角线长是6.考点:矩形的性质.分析:由矩形的一条长边的中点与另一条长边构成等腰直角三角形,可得长是宽的2倍,又由矩形的周长是36,即可求得矩形长与宽,然后由勾股定理求得答案.解答:解:设矩形的长边长为a,短边长为b,∵矩形的一条长边的中点与另一条长边构成等腰直角三角形,∴a=2b,∵矩形的周长是36,∴2(a+b)=36,∴a=12,b=6,∴矩形一条对角线长是:=6.故答案为:6.点评:此题考查了矩形的性质以及勾股定理.此题难度不大,注意掌握矩形的每个内角都是直角.20.在△ABC中,已知∠A、∠B、∠C的度数之比为1:2:3,AB边上的中线长为4cm,则△ABC面积等于8cm2.考点:解直角三角形;直角三角形斜边上的中线.分析:根据比例设∠A、∠B、∠C的度数分别为k、2k、3k,然后利用三角形的内角和定理列式求出三个角的度数,再根据直角三角形斜边上的中线等于斜边的一半求出AB的长,根据直角三角形30°角所对的直角边等于斜边的一半求出BC的长,利用勾股定理列式求出AC 的长,然后利用三角形的面积公式列式计算即可得解.解答:解:设∠A、∠B、∠C的度数分别为k、2k、3k,根据题意得,k+2k+3k=180°,解得k=30°,所以,∠A、∠B、∠C的度数分别为30°、60°、90°,∵AB边上的中线长为4cm,∴AB=2×4=8cm,BC=AB=×8=4cm,在Rt△ABC中,AC===4cm,△ABC面积=AC•BC=×4×4=8cm2.故答案为:8.点评:本题考查了解直角三角形,直角三角形斜边上的中线等于斜边的一半和直角三角形30°角所对的直角边等于斜边的一半的性质,利用“设k法”求出△ABC三个内角的度数是解题的关键,作出图形更形象直观.三、用心解一解!21.解方程(1)7x(5x+2)=6(5x+2)(2)x2﹣4x﹣5=0(配方法)考点:解一元二次方程-因式分解法;解一元二次方程-配方法.专题:计算题.分析:(1)先变形得到7x(5x+2)﹣6(5x+2)=0,然后利用因式分解法解方程;(2)先移项得到x2﹣4x=5,利用配方法得到(x﹣2)2=9,然后利用直接开平方法解方程.解答:解:(1)7x(5x+2)﹣6(5x+2)=0,(5x+2)(7x﹣6)=0,5x+2=0或7x﹣6=0,所以x1=﹣,x2=;(2)x2﹣4x=5,x2﹣4x+4=9,(x﹣2)2=9,x﹣2=±3,所以x1=5,x2=﹣1.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.22.如图,楼房和旗杆在路灯下的影子如图所示.试确定路灯灯泡的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)考点:中心投影.专题:作图题.分析:根据楼和旗杆的物高与影子得到光源所在,进而根据光源和树的物高得影子长.解答:解:点评:本题考查中心投影的特点与应用,解决本题的关键是得到点光源的位置.23.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A,B两点,且A点的横坐标与B点的纵坐标都是﹣2.(1)一次函数的解析式;(2)△AOB的面积.考点:反比例函数与一次函数的交点问题.专题:压轴题;待定系数法.分析:(1)先求出A,B两点坐标,将其代入一次函数关系式即可;(2)根据一次函数与y轴的交点为(0,2),则△AOC和△BOC的底边长为2,两三角形的高分别为|x1|和|x2|,从而可求得其面积.解答:解:(1)设A(x1,y1),B(x2,y2),则x1=﹣2,y2=﹣2,把x1=y2=﹣2分别代入y=得y1=x2=4,∴A(﹣2,4),B(4,﹣2).把A(﹣2,4)和B(4,﹣2)分别代入y=kx+b得解得∴一次函数的解析式为y=﹣x+2.(2)如图,分别过点AB作AD⊥y轴,BE⊥y轴,∵A(﹣2,4),B(4,﹣2).∴AD=2,BE=4,∵y=﹣x+2与y轴交点为C(0,2)∴OC=2,∴S△AOB=S△AOC+S△BOC=×OC×|AD|+×OC×|BE|=×2×2+×2×4=6.点评:解答本题的关键是要把△AOB分割为两个小三角形,进而再求解,同时本题数据比较多,同学们在解答时要细心.24.某服装店平均每天售出“贝贝”牌童装20件,每件获利30元,为了迎接“六一”儿童节,商场决定适当降价,经过市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天获利800元,每件童装应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:设每件童装应降价x元,那么现在可售出(20+2x),利润每件为(30﹣x),然后利用盈利800元就可以列出方程解决问题;解答:解:设每件童装应降价x元,根据题意得(30﹣x)(20+2x)=800,∴x1=x2=10.答:每件童装应降价20元;点评:此题主要考查了一元二次方程的实际应用,此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.25.如图,在△ABC中,正方形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,BC=15cm,BC边上的高是10cm,求正方形的面积.考点:相似三角形的判定与性质;正方形的性质.分析:如图,作辅助线;证明△AHG∽△ABC,进而求出HG的长,即可解决问题.解答:解:如图,作AD⊥BC,交GH于点M;∵四边形EFGH是正方形,∴EH=MD=HG(设为λ),则AM=10﹣λ;AM⊥GH;∵GH∥BC,∴△AHG∽△ABC,∴,即,解得:λ=6,∴该正方形的面积=36(cm2).点评:该题主要考查了正方形的性质、相似三角形的判定及其性质等几何知识点的应用问题;作辅助线,灵活运用有关定理来分析、判断、推理或解答是解题的关键.26.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.考点:矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定.专题:证明题;开放型.分析:(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.解答:(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.点评:本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.。
第一学期期末教学质量检查
九年级数学试卷
注意:请把答案写在答卷相应题号的位置上。
一、选择题(每小题3分,共30分)
1. 点P (-2,b )是反比例函数y=x
2的图象上的一点,则b=( ) A. -2 B. -1 C.1 D. 2
2. 用因式分解法解一元二次方程x (x -3) =x-3时,原方程可化为( )
A (x -1)(x-3)=0 B. (x+1)(x -3) =0 C.x (x -3)=0 D.(x-2)(x-3)=0 3. 准备两组相同的牌,每组两张且大小相同,两张牌的牌面数字分别是0,1,从每组牌中各摸出一张牌,两张牌的牌面数字和为1的概率为( ) A. 43 B. 31 C.21 D.4
1 4. 已知关于x 的一元二次方程x 2+(m-2)x+m+1=0有两个相等的实数根,则m 的值是( )
A. 0
B. 8
C. 42 D .0或8
5.如图是同一时刻学校里一棵树和旗杆的影子,如果树高为3米,测得它的影子长为1.2米,旗杆的高度为5米,则它的影子长为( )
A . 4米
B . 2米
C . 1.8米
D . 3.6米
6.如图,三角形ABC 中,D 、E 、F 分
别是AB ,AC ,BC 上的点,且DE ∥BC ,EF ∥AB ,AD:DB=1:2,BC=30cm ,则FC 的长为( )
A. 10 cm B . 20cm C. 5cm D. 6cm
7.桌面上放着1个长方体和1个圆柱体,按下图所示的方式摆放在一起,其左视图是( )
8.已知点P(1,2)在反比例函数y=x
k 的图象上,过P 作x 轴的垂线,垂足为M ,则∆OP M的面积为( )
A.2 B.4 C.8 D.1
9.如图,为了估计河的宽度,在河的对岸选定一个目标
点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,
且直线PS 与河垂直,在过点S 且与PS 垂直的直线a 上
选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交
点为R .如果QS=60 m ,ST=120 m ,QR=80 m ,则河的宽度PQ 为
A .40 m
B .60 m
C .120 m
D .180 m
10.如图,菱形ABCD的对角线相交于点O ,过点D 作DE
∥AC ,且DE=2
1AC ,连接CE 、OE ,连接AE ,交OD 于点F ,若AB=2,∠ABC=600,则AE 的长为( )
A .3
B .5
C .7
D .22
二.填空题(每小题4分,共24分)
11.方程(x-2)2=9的解是 .
第10题
12.反比例函数y=x
k 经过点(-2,1),则一次函数y=x+k 的图象经过点(-1,). 13.两位同学玩“石头、剪子、布”游戏,随机出手一次,两人手势相同的概率是.
14.如图,在矩形ABCD中 ,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E ,ED =3BE ,则∠AOB 的度数为 .
15. 如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC,FC=2,则AB 的长为 .
16.如图,已知正方形ABCD的边长为3,延长BC 至点M ,
使BM =1,连接AM ,过点B 作BN ⊥AM ,垂足为N ,O 是对角
线AC 、BD 的交点,连接ON ,则ON 的长为.
三.解答题(每小题6分,共18分)
17.解一元二次方程x 2-x-6=0
18.直线y=x+b 与反比例函数y=x
k (x>0)的图象交于点A(1,2),写出这两个函数的表达式。
19.如图,在正方形ABC D中,点E 在AB 上,点F 在BC
的延长线上,且AE=CF ,求证:DE=DF
四.解答题(每小题7分,共21分)
20.如图,在平面直角坐标系中,一次函数y =kx +b(k ≠0)的图象与x 、y 轴交于点 A (1,0),B (0,-1)与反比例函数y =
x
m 在第一象限内的图象交于点C ,点C 的纵坐标为1.
(1)求一次函数的解析式
(2)求点C 的坐标及反比例函数的解析式。
第19题
21某班从3名男生和2名女生中随机抽出2人参加演讲比赛,求所抽取的两名学生中至少有一名女生的概率。
22. 已知:如图,在矩形ABCD中,对角线AC、BD相交
第22题图
于点O,E是CD中点,连结OE.过点C作CF∥BD交线
段OE的延长线于点F,连结DF.
(1)求证:△ODE≌△FCE;
(2)试判断四边形ODFC是什么四边形,并说明理由.
五.解答题(每小题9分,共27分)
23.某公园绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
24.如图,正方形ABCD 中,AB=4,E 为BC 的中点,F 为AE 的中点,过点F 作GH ⊥AE ,分别交AB 和CD 于G 、H ,求GF 的长,并求
GH
GF 的值;
25.如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长交AD 于E ,交BA 的延长线于点F 。
(1)求证:∆APD ≌∆CPD
(2)求证:∆APE ∽∆FPA
(3)猜想: 线段PC ,PE ,PF 之间存在什么关系?
并说明理由。
九年级参考解答
一、选择题(每小题3分,共30分)
1.B
2.A
3.C
4.D
5.B
6.B
7.C
8.D
9.C 10.C
二、填空题(每小题4分,共24分)
11.x 1=5,x 2=-1 12. -3 13. 31 14 600 15 6 16 55
6 17.x 1=-2,x 2=3
18.解:∵.A(1,2)在反比例函数y=x
k 的图象上, ∴K=2
又直线y=x+b 过点(1,2),∴b=1
∴反比例函数的解析式为y=x
2 一次函数的解析式为y=x+1
19.证明:∵四边形ABCD 是正方形,∵AD=DC ,∠EAD=∠PCD=900
又∵AE=CF,∴∆EAD ≌∆FCD ∴ DE=DF
20.解:A(1,0),B(0,-1)在一次函数y=kx+b 的图象上,
∴⎩
⎨⎧=-+=b b k 10 即 ⎩⎨⎧-==11b k ∴一次函数的解析式为y=x-1
(2)一次函数y=x-1与y=
x m 交于点C,且点C 的纵坐标为1,由1=x-1,得x=2,即y=
x
m 的图象过点(2,1),∴m=2
∴反比例函数的解析式为y=x
2 21.解:设三名男生记为男1,男2,男3,2名女生记为女1,女2,则从这5名同学中随机抽取2名的所有情况为
所以从这5名同学中随机抽取2名,至少有一名女生的概率是:
2014即10
7 22.(1)证明:∵ABCD 是矩形,O 为BD 的中点,∠BCD=900
又∵E 为CD 的中点,∴OE ∥BC,ED=EC ∠OED=900
又∵CF ∥BD ,∴∠DOE=∠CFE ∴∆ODE ≌∆FCE
(2)四边形ODFC 是菱形,
由(1) ∆ODE ≌∆FCE
∴OD=FC ,又OD ∥CF
∴四边形ODFC 是平行四边形 又OF ⊥CD
∴平行四边形ODFC 是菱形
23.解:设人行道的宽度为x 米,依题意得:
2×56)23(2
320=-⨯-x x 即:3x 2-32x+52=0
解得:x 1=2,x 2=3
26(不合题意舍去) ∴人行道的宽度为2米。
24.解:RtABE 中,AE=52242222=+=+BE AB ∴AF=5 由Rt ∆AFG ∽Rt ∆ABE 得:AB AF BE GF =即4
52=GF ∴GF=25 过点F 作FM ∥AB 交BC 于点M
则M 为BE 的中点,∴41=BC BM ∴4
1=GH GF 25.(1)证明:∵ABCD 是菱形,
∴DA=DC ∠ DAP=∠CDP
又DP=DP
∴∆APD ≌∆CPD
(2)由(1)∆APD ≌∆CPD
得:∠PAE=∠PCD
又由DC ∥FB 得:∠PFA=∠PCD
∴∠PAE=∠PFA
又∠APE=∠AFP
∴∆APE ∽∆FPA
(3)线段PC 、PE 、PF 之间的关系是: PC 2=PE •PF
∵∆APE ∽∆FPA ∴PA
PF PE PA ∴PA 2=PE •PF
又PC=PA
∴PC 2=PE •PF。