催化
- 格式:pdf
- 大小:312.41 KB
- 文档页数:6
Fsw第一章1催化剂和催化作用催化剂:是一种能够改变一个化学反应的反应速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显地消耗的化学物质催化作用:是指催化剂对化学反应所施加的作用。
具体地说,催化作用是催化剂活性中心对反应物分子的激发与活化,使后者以很高的反应性能进行反应。
2催化剂性能指标:催化活性、选择性、产物收率、稳定性或寿命第二章1.吸附现象:当气体与清洁的固体表面接触时,在固体表面上气体的浓度高于气相.这种现象称为吸附现象。
被吸附的气体称为吸附质。
吸附气体的固体称为吸附剂。
吸附平衡:当吸附过程进行的速率与脱附过程进行的速率相等时,表面上气体的浓度维持不变,这样的状态。
2..3.化学吸附态:是指分子或原子在固体催化剂表面进行化学吸附时的化学状态、电子结构及几何构型。
4.画出Langmuir等温线,Langmuir的假设:1、吸附的表面是均匀的,各吸附中心的能量同构;2、吸附粒子间的相互作用可以忽略;3、吸附粒子与空的吸附中心碰撞才有可能被吸附,一个吸附粒子只占据一个吸附中心,吸附是单分子层的;4、在一定条件下,吸附速率与脱附速率相等,从而达到吸附平衡。
Langmuir吸附等温式:第三章1.比表面积:每克催化剂上具有的表面积称为比表面积2.BET理论的假设:1、吸附的表面是均匀的;2、吸附粒子间的相互作用可以忽略;3、多层吸附,各层间吸附与脱附建立动态平衡。
3.比孔容:每克催化剂颗粒内所有的体积总和称为比孔体积,或比孔容,以Vg表示。
4.孔隙率:催化剂的孔体积与整个颗粒体积的比,以θ表示。
5.中孔:中孔,指半径在(2—50)nm。
6.接触角:在液体和固体接触处,分别作液体表面和固体表面的切线,这两条切线在液体内的夹角称为接触角。
(会画)第四章1.多相催化反应过程分析:(1)反应物分子从气流中向催化剂表面和孔内扩散;(2)反应物分子在催化剂表面上吸附;(3)被吸附的反应物分子在催化剂表面上相互作用或与气相分子作用进行化学反应;(4)反应产物自催化剂表面脱附;(5)反应产物离开催化剂表面向催化剂周围的介质扩散。
基本概念和常用术语1.活性:指物质的催化作用的能力,是催化剂的重要性质之一。
选择性:指所消耗的原料中转化成目的产物的分率。
用来描述催化剂上两个以上相互竞争反应的相对速率(催化剂的重要性质之一,指在能发生多种反应的反应系统中,同一催化剂促进不同反应的程度的比较。
)比活性:比活性(单位表面反应速率),取决于催化剂的组成与结构分散度:指催化剂表面上暴露出的活性组分的原子数占该组分在催化剂中原子总数的比例,即D=ns(A)/nt(A)。
TOF:单位时间内每摩尔催化剂(或者活性中心)上转化的反应底物的量。
2.空速:指单位时间内通过单位质量(或体积)催化剂的反应物的质量(或体积)WHSV:每小时进料的重量(液体或气体))/催化剂的装填重量空时收率:以“空时”作为时间的基准来计量所获得产物的收率。
对于大多数反应器,物料在反应器中的停留时间或反应时间是很难确定的。
在工程上经常采用空间速率的倒数来表示反应时间,称为“空时”。
空时收率大,表示过程和反应器有较高的效率。
3.化学吸附:过电子转移或电子对共用形成化学键或生成表面配位化合物等方式产生的吸附。
表面覆盖率:指单层吸附时,单位面积表面已吸附分子数与单位面积表面按二维密堆积所覆盖的最大吸附分子数之比。
朗格缪尔(Langmuir)吸附:1916年,朗格缪尔从动力学的观点出发,提出了固体对气体的吸附理论,称为单分子层吸附理论,该理论的基本假设如下:(1)固体表面对气体的吸附是单分子层的;(2)固体表面是均匀的,表面上所有部位的吸附能力相同;(3)被吸附的气体分子间无相互作用力,吸附或脱附的难易与邻近有无吸附分子无关;(4)吸附平衡是动态平衡,达到吸附平衡时,吸附和脱附过程速率相同。
定位吸附:被吸附物从一个吸附中心向另一吸附中心转移需克服能垒。
当吸附物不具有此能垒能量时不能向另一吸附中心转移,即为定位吸附。
非定位吸附:若固体表面上不同区域能量波动很小,没有吸附中心,被吸附物在表面上的转移不需克服能垒,即为非定位吸附。
1. 什么是催化剂什么是催化作用催化作用的特征有哪些工业生产中可逆反应为什么往往选择不同的催化剂催化剂是一种能够改变一个化学反应的反应速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显地消耗的化学物质。
催化剂是一种可以改变一个化学反应速度的物质。
催化作用是指催化剂对化学反应所产生的效应。
催化作用具有如下几个特征:1、催化剂只能加速热力学上可以进行的反应2、催化剂只能加速化学反应趋于平衡,而不能改变平衡的位置(平衡常数)3、催化剂对反应具有选择性4、催化剂的使用寿命有限实际工业上催化正、逆反应时为什么往往选用不同的催化剂第一,对某一催化反应进行正反应和进行逆反应的操作条件(温度、压力、进料组成)往往会有很大差别,这对催化剂可能会产生一些影响。
二,对正反应或逆反应在进行中所引起的副反应也是值得注意的,因为这些副反应会引起催化剂性能变化。
催化剂是如何加快化学反应速度的催化作用是通过加入催化剂,实现低活化能的化学反应途径,从而加速化学反应。
(催化剂通过改变反应历程,使化学反应所需克服的能垒数值大大减少。
结果:催化反应相对常规化学反应发生的条件温和得多,甚至常规条件下难以发生的反应,在催化剂参与下实现了工业化生产。
)3. 催化剂的活性、选择性的含义是什么活性是指催化剂对反应进程影响的程度,具体是指反应速率增加的程度,催化剂的活性是判断其性能好坏的重要标志。
当反应物在一定的反应条件下可以按照热力学上几个可能的方向进行反应时,使用特定的催化剂就可以对其中一个方向产生强烈的加速作用。
这种专门对某一化学反应起加速作用的能力称为催化剂的选择性选择性是指催化反应所消耗的原料中转化成目的产物的分率。
5. 催化剂为什么具有寿命影响催化剂的寿命的因素有哪些寿命指在工业条件下,催化剂的活性能够达到装置生产能力和原料消耗定额的允许使用时间;或满足上述条件经再生使用的累计时间,称为总寿命。
指催化剂的有效使用期限,是催化剂的重要性质之一。
催化操作规程
《催化操作规程》
催化操作是化学工业中常见的一种重要技术,可以加速化学反应速率并提高生产效率。
然而,催化操作也需要严格的规程和操作指导,以确保安全和有效性。
首先,催化操作规程需要明确指出使用的催化剂的种类、用量和处理方法。
不同的催化剂有不同的性质和作用机理,因此必须严格按照规程进行操作,以免发生意外事故或影响产品质量。
其次,规程需要包括催化剂的储存和运输要求。
催化剂可能对温度、湿度等环境因素敏感,所以在储存和运输过程中必须严格遵守规程,确保催化剂的稳定性和活性。
另外,规程还应包括催化反应的操作条件和控制要点。
如反应温度、压力、气体流量等参数,以及催化剂的再生和回收方法。
这些操作要点对于确保反应的顺利进行至关重要,必须得到严格的遵守和执行。
此外,催化操作规程还应包括对催化反应过程中可能出现的安全隐患及应急处置措施的详细说明,以保证操作人员的生命财产安全。
总之,催化操作规程是化学工业中不可或缺的一部分,它能够确保催化反应的稳定、安全和高效进行。
只有严格遵守规程,
才能够最大限度地发挥催化剂的作用,为化工生产带来更好的效益和质量保障。
催化作用的原理
催化作用是通过催化剂来加速化学反应速率的过程。
催化剂是一种物质,能够降低反应活化能,使得反应能够以更低的能量过程进行。
催化剂通过与反应物发生反应形成中间产物,然后再与中间产物发生反应生成最终产物,完成整个反应过程。
这样,催化剂在反应过程中不发生永久性变化,可以循环使用。
催化剂的作用可以通过多种方式实现。
一种常见的方式是通过提供新的反应途径来降低反应活化能。
催化剂能够与反应物发生吸附,使得反应物分子之间的相互作用变得更加密切,从而使得反应发生的概率增加。
另外,催化剂还可以通过改变反应物的电子结构,使得反应物更容易形成过渡态,从而降低反应活化能。
此外,催化剂还能调节反应的速率限制步骤,使得反应能够更快地进行。
总之,催化作用通过降低反应活化能和提供新的反应途径来加速化学反应速率。
催化剂通过与反应物发生反应形成中间产物,然后再与中间产物发生反应生成最终产物,完成整个反应过程。
催化剂在反应过程中不发生永久性变化,可以循环使用。
催化在化学反应中能改变化学反应速度而不影响化学平衡的作用称为催化。
其中能够改变化学反应速度而本身的组成和数量在反应前后均不发生改变的物质称为催化剂。
催化剂可以使化学反应速率增加或减慢,其中增加化学反应速率的催化剂为正催化剂,反之,则为负催化剂。
催化作用几乎涉及到化学反应的各个领域。
作用原理设想有化学反应A+B→D可缓慢进行,反应的活化能为E,当加入一种催化剂后,由于催化剂与其中的某一反应物发生化学作用生成新的过渡态物质,从而改变了原反应的进程。
如按以下两步进行:A+催化剂→A-催化剂+E1A+催化剂+B→D+催化剂+E2其中E1、E2为上两步中间反应的活化能,均小于E,这样提高了活化分子的百分数,增大反应速率,催化剂的作用是参与中间反应,在前后并未有数量和组成的变化。
催化剂的特性①催化活性:催化剂在化学反应中能大大降低化学反应的活化能,提高反应的速率,因而具有催化活性;②选择性:在一个化学反应体系中,可能发生许多反应,但其中某些反应的速率或全部反应在没有催化剂的作用下可能检测不出来,某一特定的催化剂可改变其中任一反应的速率而其他反应的速率不变,表现出催化剂的选择特性,如下表中CO+H2的反应在不同的催化剂作用下生成不同的产物;③稳定性:催化剂的稳定性以寿命表示,它包括热稳定性、机械稳定性和抗毒稳定性。
助催化剂在化学反应中本身不具有催化特性,但加人(加入量一般不低于主催化剂用量的10%)后可明显提高催化剂的催化活性、选择性和稳定性等性能。
例如合成氨工业中的Al2O3就是其中的助催化剂。
催化剂中毒在反应中由于某种杂质的沉积,致使催化剂的活性部位丧失活性的现象称为催化剂中毒。
如氢气中含有微量的H2S,则所用的氢化金属铁触媒将迅速降低活性。
中毒有暂时性中毒和永久性中毒,能够降低催化活性的物质称为抑制剂。
载体用于负载催化剂而本身不具有催化作用的物质,常用的有硅胶、硅藻土、活性炭、活性二氧化硅等,选用合适的载体,有利于提高催化剂的性能。
催化反应类型可以根据不同的分类标准进行划分。
以下是一些常见的催化反应类型:
1. 根据催化剂的作用机理分类:
- 氧化还原催化反应:催化剂通过氧化还原反应参与反应过程,如醇氧化、烃类选择性氧化等。
- 酸碱催化反应:催化剂通过酸碱性质影响反应速率,如酯化、水解、加成等。
- 配位催化反应:催化剂通过配位作用与反应物形成配合物,从而影响反应速率,如金属有机催化剂催化的反应。
2. 根据催化反应体系物象的均一性分类:
- 均相催化反应:催化剂与反应物处于同一相,反应机理易于研究,但工业化难,催化剂的回收也难。
- 多相催化反应:催化剂与反应物有相界隔开,易于工业化,但难于确定反应机理。
- 酶催化反应:兼有均相催化和多相催化的特点,活性和选择性都很高。
3. 根据酶的催化反应类型分类:
- 水解酶类:催化水解反应,如淀粉酶、蛋白酶等。
- 氧化还原酶类:催化氧化还原反应,如葡萄糖酶、乳酸脱氢酶等。
- 异构酶类:催化异构化反应,如磷酸果糖异构酶、乳酸脱氢酶等。
- 转移酶类:催化原子或官能团的转移,如葡萄糖-6-磷酸脱氢酶、果糖-1,6-二磷酸酶等。
- 裂解酶类:催化分解反应,如核酸酶、脂肪酶等。
- 合成酶类:催化合成反应,如DNA连接酶、肽链转移酶等。
以上是一些常见的催化反应类型,不同的催化反应类型具有不同的特点和催化机理。
催化剂的组成催化剂是一种能够加速化学反应速率的物质,而在反应结束后,其本身的质量和化学性质不发生变化。
催化剂在化工、环保、能源等领域具有广泛的应用,其组成和性质对催化效果具有重要影响。
本文将详细介绍催化剂的组成。
一、催化剂的组成1. 活性组分活性组分是催化剂中起主要催化作用的部分,它能够提供催化反应所需的活性位点。
活性组分的种类和性质决定了催化剂的催化效果。
活性组分可以是单一元素,如铂、钯等,也可以是化合物,如氧化铁、硝酸盐等。
2. 载体载体是一种固体材料,用于支撑活性组分,增加其分散性,提高催化效率。
载体本身不具有催化活性,但能够影响活性组分的分散状态和反应物分子的迁移速率。
常见的载体材料有硅胶、氧化铝、活性炭等。
3. 助剂助剂是一种辅助性组分,用于改善催化剂的性能,如提高活性、增强稳定性、扩大反应范围等。
助剂与活性组分之间可能存在相互作用,从而影响催化剂的催化效果。
常见的助剂包括碱金属、碱土金属、过渡金属等。
二、催化剂的制备方法1. 浸渍法浸渍法是一种常用的催化剂制备方法,将活性组分溶液均匀地浸渍在载体材料上,通过蒸发、干燥等步骤得到催化剂。
浸渍法适用于制备含有细小颗粒的催化剂。
2. 沉淀法沉淀法是将活性组分溶液与载体材料溶液混合,通过化学反应生成沉淀,再经过滤、洗涤、干燥等步骤得到催化剂。
沉淀法适用于制备具有特定结构的催化剂。
3. 离子交换法离子交换法是将载体材料与活性组分溶液进行离子交换,从而得到催化剂。
离子交换法适用于制备具有较高活性的催化剂。
4. 物理混合法物理混合法是将活性组分和载体材料进行机械混合,从而得到催化剂。
物理混合法简单易行,适用于制备活性组分与载体材料之间无相互作用的情况。
三、催化剂的性能评价指标1. 活性活性是指催化剂在特定条件下催化反应的能力。
活性评价指标包括转化率、选择性、反应速率等。
2. 稳定性稳定性是指催化剂在反应过程中保持活性不下降的能力。
稳定性评价指标包括寿命、耐热性、抗腐蚀性等。
催化元件的工作原理
催化元件是一种能够加速化学反应速率的物质,其工作原理涉及到催化剂与反应物之间的相互作用。
催化元件的工作原理主要包括两个方面:催化剂的吸附作用和活化作用。
1. 吸附作用:催化剂与反应物之间发生吸附作用,即反应物分子附着在催化剂的表面。
催化剂具有高表面积和活性位点,能够吸附大量的反应物分子。
吸附使得反应物分子之间的间距变小,增加了反应物分子之间的碰撞概率,从而提高了反应的速率。
2. 活化作用:催化剂与反应物发生相互作用,改变反应物的能垒,从而降低反应的活化能。
催化剂提供了一个新的反应路径,其中能垒较低,使得反应物分子能够更容易地转化为产物。
催化剂通过吸附和解离等过程,在反应进行中与反应物之间进行多次相互作用,从而提高了反应速率。
总体来说,催化元件的工作原理是通过催化剂与反应物之间的吸附和活化作用,降低反应的能垒和提高反应速率。
催化元件可以在相同温度和压力下,加速反应速率,降低能量消耗,并且在反应结束时催化剂可以进行再生,具有高度的选择性和效率。
催化剂的催化原理有几种
催化剂的催化原理可分为以下几种:
1. 吸附理论:催化剂吸附反应物分子,使其形成中间态,从而降低反应物分子之间的能垒,促进反应的进行。
2. 酸碱理论:催化剂表面存在酸性或碱性活性位点,通过吸附反应物分子并改变其电荷状态,加速反应的进行。
3. 电子理论:催化剂能够在反应过程中与反应物分子发生电子转移,改变反应物的电荷分布,提高反应速率。
4. 表面活性理论:催化剂表面具有特殊的物理结构,能够提供有效的表面活性位点,促使反应物分子在表面上发生反应。
5. 构象理论:催化剂通过调整反应物分子的构象或位点的排布,改变反应物分子之间的相互作用,从而加速反应的进行。
需要注意的是,不同类型的催化剂可能同时运用多种催化原理,或者某种催化原理在特定体系下起主导作用。
同时,催化剂的催化原理还受到多种因素的影响,如温度、压力、溶剂、反应物种类和反应条件等。