催化氧化-还原吸收法脱除工业含湿废气中NOX
- 格式:pdf
- 大小:260.27 KB
- 文档页数:6
催化法脱出氮氧化物的原理催化法脱除氮氧化物(NOx)的原理主要是利用催化剂将有害的NOx转化为无害的氮(N2)和水(H2O)。
在催化法脱除NOx中,常用的催化剂包括贵金属催化剂(如铂、钯、铑)、过渡金属催化剂(如钒、铁、钴)、氧化物催化剂(如二氧化钛、硝酸钾、硝酸石墨、过氧化氢)等。
催化法脱除NOx的步骤一般包括催化还原和催化氧化两个过程。
催化还原主要是通过还原剂将氮氧化物(主要是NO和NO2)还原为N2和H2O。
在这个过程中,催化剂起到了关键作用。
高效的催化剂能够提供活性位点,促使还原剂与NOx发生反应。
在还原过程中,还原剂(如氨气、碱金属、柴油等)与NO发生反应,生成无害的氮和水。
氨气是常用的还原剂,当氨气通过催化剂床层时与NOx发生反应,生成氮和水,并且催化剂能够重新催化氨和NO生成NH3,形成反应循环。
催化氧化是将氮氧化物中的NO转化为NO2,进而使其更易被还原为N2和H2O。
这一步骤也需要催化剂的参与。
氧化剂(如空气、O2、H2O2等)在催化剂存在的条件下与NO发生反应,将NO氧化为NO2。
NO2能够更容易地被还原剂还原为无害的氮和水。
因此,在催化氧化过程中,催化剂能够提供催化活性和增加反应速率,从而实现NO的有效转化。
催化法脱除NOx的优点主要体现在以下几个方面:1. 高效性:催化剂能够加速反应速率,降低反应温度,使得脱除NOx的效率更高。
相较于其他方法,催化法能够在较低的温度下进行催化反应,节约能源。
2. 选择性:催化剂能够选择性地将NOx转化为无害的氮和水,避免产生其他有害的化合物。
3. 稳定性:催化剂具有较高的热稳定性和抗毒性,能够在高温和恶劣的工作条件下长期使用。
4. 可再生性:催化剂能够对废气中的NOx进行催化转化后,不会被氧化剂消耗,因此可以循环使用,减少催化剂的消耗。
总之,催化法脱除NOx依靠催化剂的作用,通过催化还原和催化氧化两个过程将有害的氮氧化物转化为无害的氮和水。
含氮氧化物废气的治理技术含氮氧化物(NOx)废气是指含有N2O、NO、NO2、N2O3、N2O4等气体的废气。
这类废气由于对人体有致毒作用,损害植物,形成酸雨、酸雾,与碳氢化合物形成光化学烟雾及参与臭氧层的破坏等,因而如不对其加以处理直接排入大气中,将给自然环境和人体健康带来严重危害。
废气处理方法1.选择性催化还原法(SCR)选择性催化还原法就是在固体催化剂存在下,利用各种还原性气体如H2、CO、烃类、NH3与Nox反映使之转化为N2。
该技术20世纪80年代初开始逐渐应用于燃煤锅炉的烟气脱除Nox。
SCR技术的关键问题是催化剂的选择。
在汽车尾气的催化反应中,一般用CO作为还原剂,Pt2RH或Pd类作为催化剂,这些催化剂一般分布在整体式陶瓷的涂料表面。
但是SCR 技术也存在一些不足,如对管路设备的要求高,造价昂贵,仅使用于固定污染源的净化。
催化还原工艺是一种广泛用于废气脱硝的成功的技术。
2. 选择性非催化还原法(SNCR)选择性非催化还原法是向高温烟气中喷射氨或尿素等还原剂,将Nox还原成N2,其主要化学反应与SCR法相同,一般可获得30%~50%的脱Nox率,所用的还原剂可为氨、氨水和尿素等,也可添加一些增强剂,与尿素一起使用。
SNCR法受温度、NH3/Nox摩尔比及停留时间影响较大。
该法不需催化剂,但氨液消耗量教SCR法多,目前国内基本不用此法。
3. 炙热碳还原法利用碳质团体还原废弃中的Nox属于无触媒非选择性还原法。
与以燃料气为还原剂的非选择性还原法相比,其优点是不需要价格昂贵的铂、钯贵金属催化剂,避免催化剂中毒所引起的问题;和NH3选择性非催化还原法相比,碳质固体价格比较便宜,来源亦广。
利用碳质固体还原Nox是基于下列反应:C+2NO→CO2+N2C+NO→CO+1/2 N2C+NO2→CO2+1/2 N2C+1/2 NO2→CO+1/4 N2国外对碳层热还原Nox进行了大量研究,实验结果表明,在温度为650~850°C时,NOx 能够被核炭、无烟煤、焦炭等碳质体还原,在所研究的Nox浓度下,还原率在99%左右。
双氧水催化氧化脱硝技术介绍(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--双氧水催化氧化法烟气脱硫脱硝工艺技术上海神绿节能环保工程设计研发有限公司华东理工大学2017年 09月双氧水催化氧化法烟气脱硫脱硝工艺技术一、脱硝工艺概述目前 NOx 的控制方法有关 NOx 的控制方法是从燃料的生命周期的三个阶段入手,即燃烧前、燃烧中和燃烧后。
当前,燃烧前脱硝的研究很少,几乎所有的研究成果都集中在燃烧中和燃烧后的 NOx 的控制。
国际上把燃烧中 NOx 的所有控制措施统称为一次措施,把燃烧后的 NOx 控制措施统称为二次措施,又称为烟气脱硝技术。
目前普遍采用的燃烧中 NOx 控制技术即为低 NOx 燃烧技术,主要有低 NOx 燃烧器、空气分级燃烧和燃料分级燃烧。
按应用在燃煤锅炉上的烟气脱硝技术主要有选择性催化还原技术(Selective Catalytic Reduction,简称 SCR)、选择性非催化还原技术(Selective Non-Catalytic Reduction,简称 SNCR)、SNCR/SCR 混合烟气脱硝技术。
1) SCR 烟气脱硝技术近几年来选择性催化还原烟气脱硝技术(SCR)发展较快,在欧洲和日本得到了广泛的应用,目前催化还原烟气脱硝技术是应用最多的技术。
世界上流行的 SCR 工艺主要分为氨法 SCR 和尿素法 SCR 两种。
此两种方法都是利用氨对 NOx 的还原功能,在催化剂的作用下将 NOx(主要是 NO)还原为对大气没有多少影响的 N2 和水。
还原剂为 NH3,其不同点则是在尿素法 SCR 中,先利用一种设备将尿素转化为氨之后输送至 SCR 触媒反应器。
运行条件需要烟气温度在 300-400℃的范围内,适合于多数催化剂的反应温度,因而它被广泛采用。
但是由于催化剂是在“不干净”的烟气中工作,因此催化剂的寿命需要 3 年更换一次。
污水处理中NOx去除的研究污水处理是一项重要的环境保护工作,而氮氧化物(NOx)的排放是污水处理过程中的一个重要问题。
NOx是指一类由氮和氧元素构成的气体,主要有一氧化氮(NO)和二氧化氮(NO2)两种。
这些氮氧化物的排放会对环境和人类健康造成严重影响,因此需要采取措施进行去除。
污水处理中NOx的去除研究已经成为环境科学领域的热点问题之一,许多学者和研究机构都投入了大量的精力和资源进行相关研究。
在过去的几十年里,已经提出了许多有效的去除方法,包括生物法、化学法和物理法等。
生物法是一种利用微生物对污水中的有害物质进行降解和转化的方法。
在处理NOx方面,生物法主要采用厌氧反硝化和硝化反硝化过程。
厌氧反硝化是指在无氧条件下,利用厌氧细菌将NO3-还原为NO2-、NO和N2O进而形成N2。
而硝化反硝化是指将废水中的NH4+氮转化为NO3-氮,然后由硝化菌将NO3-还原再转化为N2。
这些反应都需要有特定的环境条件和特定的微生物参与才能顺利进行。
化学法是利用化学反应将NOx转化为无害物质的方法。
目前,常用的化学法包括催化还原、催化氧化和吸附等。
催化还原是采用氨作为还原剂,通过催化剂的作用将NOx还原为N2。
催化氧化则是利用催化剂将废气中的NO转化为NO2,然后再将NO2与其他物质反应转化为无害物质。
吸附法则是将废气中的NOx通过与吸附剂的物理相互作用而去除。
物理法是利用物理现象对NOx进行去除的方法。
常用的物理法包括湿式气液吸收和非热等离子体技术。
湿式气液吸收是将废气中的NOx通过与溶液接触,使其被溶解在溶液中而去除。
非热等离子体技术则是利用高能电子束对NOx进行去除,使其分解变为无害的物质。
除了上述方法外,还有一些综合利用多种方法的联合处理技术,如生物-化学法、生物-物理法和化学-物理法等。
这些方法主要是通过将多种去除方法结合起来,以达到更好的去除效果。
总结起来,污水处理中NOx的去除是一项重要的研究课题。
简述催化法脱除nox的原理今天咱们来聊聊催化法脱除 NOx 这个神奇的事儿!NOx 这玩意儿可讨厌啦,对咱们的环境和健康都有不小的危害。
那怎么把它弄走呢?这就得靠催化法啦!简单来说,催化法脱除 NOx 就像是一场巧妙的化学魔术。
想象一下,在一个特殊的“魔法盒子”里,有一些神奇的小颗粒,它们就是催化剂。
这些催化剂就像是一群特别能干的小精灵。
当含有 NOx 的气体跑进来的时候,这些小精灵就开始工作啦!它们会让 NOx 发生一系列的化学反应。
比如说,它们能把有害的 NO 变成比较无害的 N₂和 O₂。
这个过程就好像是把一个调皮捣蛋的坏孩子,教育成了听话乖巧的好孩子。
那这些催化剂小精灵是怎么做到的呢?它们有着独特的结构和性质。
有的催化剂表面有很多小小的“坑坑洼洼”,NOx 分子一碰到这些地方,就像是找到了自己的“座位”,乖乖地待着,然后开始发生变化。
还有啊,催化剂能降低反应需要的能量。
这就好比原来要翻过一座很高的山才能完成的事情,现在有了催化剂,就变成了轻轻松松走过一个小山坡。
而且哦,不同的催化剂还有不同的“本领”呢!有的擅长对付 NO,有的对付其他形式的 NOx 更在行。
所以在实际应用中,科学家们会根据具体情况,选择最合适的催化剂,就像是给不同的病人开不同的药一样。
在这个过程中,温度、压力等条件也很重要。
就像做饭一样,火候掌握好了,饭菜才好吃。
温度和压力合适了,催化剂才能更好地发挥作用,把 NOx 脱除得更干净。
你看,催化法脱除 NOx 是不是很神奇?它就像是一个超级英雄,默默地守护着我们的环境,让我们能呼吸到更清新的空气,看到更蓝的天空。
虽然这个过程听起来很复杂,但科学家们一直在努力研究,让这个魔法变得更强大、更有效。
说不定未来的某一天,我们再也不用担心 NOx 带来的烦恼啦!。
氮氧化物废气处理方法氮氧化物(NOx)是一类对环境和人类健康造成重大影响的大气污染物。
它们主要是由能源燃烧过程中生成的,包括工业生产、汽车尾气排放、火力发电和家庭使用燃气等。
大量的氮氧化物的排放会导致空气污染和酸雨的形成,对生态系统和人类的健康产生不利影响。
因此,对氮氧化物废气进行有效处理变得至关重要。
目前,针对氮氧化物废气处理的方法主要包括催化还原法、吸附法和生物修复法等。
下面将逐一介绍这些方法及其原理。
催化还原法是目前最常用的氮氧化物废气处理方法之一。
这种方法利用催化剂将废气中的氮氧化物转化为无害的氮气和水。
催化还原法的原理是将废气与适当的还原剂(如氨水或尿素溶液)一起通入催化剂床层中,通过催化剂表面的反应作用,将氮氧化物还原为氮气。
其中,催化剂的选择非常重要,常用的催化剂有钒钛催化剂、铜催化剂和铁催化剂等。
吸附法是另一种常用的氮氧化物废气处理方法。
这种方法利用吸附材料吸附废气中的氮氧化物,达到净化废气的目的。
常见的吸附材料包括活性炭、分子筛和氧化铝等。
吸附法的原理是将废气经过吸附剂床层,废气中的氮氧化物被吸附剂表面的孔隙结构吸附下来。
吸附剂饱和后,可以通过升高温度或者压力的方式,将吸附的氮氧化物释放出来,再经过后续处理处理掉。
生物修复法是一种新兴的氮氧化物废气处理方法。
这种方法利用具有氮氧化物降解能力的微生物,将废气中的氮氧化物转化为无害物质。
生物修复法的原理是将废气直接通入生物反应器中,利用生物反应器中的微生物代谢作用,将氮氧化物转化为粪杆菌等微生物的生物质。
这种方法相对于传统的物理化学方法,具有操作简单、能耗低、废气处理效果好等优点。
除了以上三种主要的氮氧化物废气处理方法,还有一些其他的辅助方法。
如氮氧化物选择性催化还原(SCR)技术,在工业排放源中应用较广泛。
此外,还有非催化氧化脱硝(SNCR)技术、电化学脱氮(ED)技术等。
这些方法在实际应用中可以根据废气特点和处理要求进行选择。
总之,氮氧化物废气是一种严重的大气污染物,对环境和人类健康带来了巨大威胁。
氧化还原法除氮氧化物1.引言1.1 概述氮氧化物是大气中重要的污染物之一,对于环境和人类健康造成了严重的影响。
减少氮氧化物的排放已经成为当今社会所面临的一个重要课题。
氧化还原法被广泛应用于氮氧化物的除去。
这种方法利用了氧化还原反应中发生的电荷转移过程,将氮氧化物还原为低毒或无毒的物质。
氧化还原法的原理是在一定的温度和氧气浓度下,将氮氧化物与还原剂反应,将其还原为氮气或其他无害物质,从而将其从废气中去除。
氧化还原法除氮氧化物具有许多优点。
首先,这种方法可以在较低的温度下进行,从而降低了能源消耗。
其次,氧化还原反应是可逆的,可以实现连续循环使用还原剂,提高了氮氧化物的去除效率。
此外,氧化还原法应用广泛,可以在多种工业领域中使用,如电力、化工、钢铁等。
然而,氧化还原法除氮氧化物也存在一些挑战。
首先,还原剂的选择对反应效果具有重要影响,需要针对不同情况进行合理选择。
其次,氧化还原法在一些复杂的废气组分中可能受到干扰,需要进行适当的预处理。
此外,还需要考虑废气中其他污染物的处理问题,以综合考虑环境保护的整体效果。
本文将重点介绍氧化还原法除氮氧化物的原理和应用。
通过分析和总结已有研究成果,总结氧化还原法在氮氧化物控制方面的效果,并展望其发展前景。
希望本文能对进一步推动氮氧化物的减排工作提供一定的参考和指导。
1.2 文章结构文章结构部分内容:本文分为引言、正文和结论三个部分。
其中引言部分包括概述、文章结构以及目的三个子部分。
正文部分主要介绍了氧化还原法除氮氧化物的原理和应用。
结论部分总结了氧化还原法除氮氧化物的效果,并展望了其未来的发展。
在引言部分,首先进行了对整篇文章的概述,简要介绍了将要讨论的主题——氧化还原法除氮氧化物。
接着我们对文章的结构进行了介绍,明确了整篇文章的框架和分部内容。
最后,我们明确了本文的目的,即通过对氧化还原法除氮氧化物的原理和应用进行探讨,来深入了解这种方法在减排领域中的作用和效果。
一氧化氮的催化氧化摘要:本文介绍了分子筛及其负载型催化剂、活性炭负载型催化剂等催化氧化一氧化氮的方法,着重介绍了过渡金属氧化物负载型催化剂催化一氧化氮的方法。
关键词:一氧化氮、催化氧化引言燃烧过程产生的各种氮氧化物(x NO )是引发酸雨和光化烟雾的有害气体污染物[1]。
尽管人类在空气污染控制上已经进行了大量的科学研究和技术开发工作,但氮氧化物的减排和治理依然是全球日益关注的问题[2]。
氮氧气态化合物包括一氧化二氮(2N O )、一氧化氮(NO)、三氧化二氮(23N O )、二氧化氮(2NO )、四氧化二氮(24N O )、五氧化二氮(25N O )和三氧化氮(3NO )。
其中,NO 和2NO 是烟道气中主要的成分。
2NO 在水中的溶解度高,可选用合适的碱或盐溶液(如24Na SO )加以吸收[3];而NO 在水中的溶解度很小,很难用溶液吸收法去除[4]。
相比于物理或非催化反应的方法,催化反应似乎更适于除去NO 。
一般而言,NO的催化反应可分为催化分解、催化还原和催化氧化。
其中,催化分解将NO 直接分解为2O 和2N ,而无须加入其他化学试剂,因而更具吸引力[5],但至今尚未开发出高效且抗失活的催化剂。
选择性催化还原(SCR)目前已经发展成为烟道气脱硝的商业化技术。
例如,日本发明的SCR 技术,用3NH 作为还原剂和V /2TiO :作为催化剂在20世纪20年代就已占领了该领域的国际市场[6]。
但SCR 技术要求预先除去废气中硫氧化物,且处理温度高,反应器体积大,因而并不适合于流动废气源(如汽车尾气)中x NO 的消除。
所以,从经济实用的角度,催化氧化似乎是一种颇具潜力的消除NO 的替代技术。
它先将NO 催化氧化成2NO ,然后用吸附或溶液吸收方法除去2NO [7]。
目前催化剂研发工作大多围绕活性炭[8]、负载金属[9]而进行,并取得了进展。
分子筛及其负载型催化剂用于处理NO 的分子筛催化剂,大多用于还原法和分解法处理工艺,如Cu-ZSM .5催化剂及Co.ZSM.5催化剂等。
催化氧化法去除烟气中NO x 的研究现状与展望张瑞元,李㊀凯,宁㊀平,汤立红,刘㊀烨,王㊀驰(昆明理工大学环境科学与工程学院,昆明650500)摘要㊀㊀综述了SCO 法(选择性催化氧化法)中催化剂的研究现状㊂从过渡金属元素㊁稀土元素㊁贵金属㊁活性炭四类催化剂进行了介绍㊂锰类复合氧化物催化剂具有较高的催化活性,且成本较低㊂钙钛矿催化剂的催化活性能与贵金属类催化剂相媲美㊂这些非贵金属催化剂成本都较低,具有潜在的应用价值㊂但总的来说目前对于催化剂抗硫抗水的研究还不够深入,一些催化剂可能还未达到实际工业应用中应具有的抗中毒能力㊂总结分析了SCO 法应用中存在的问题,展望了其应用前景㊂关键词㊀㊀NO㊀选择性催化氧化㊀金属氧化物催化剂㊀烟气脱硝中图分类号:X511㊀㊀文献标识码:A㊀㊀DOI :10.11896/j .issn.1005-023X.2015.015.023Research Status and Pros p ects of Usin g Catal y tic OxidationMethod to Remove NO x in Flue GasZHANG Rui y uan ,LI Kai ,NING Pin g ,TANG Lihon g ,LIU Ye ,WANG Chi(Facult y of Environmental Science and En g ineerin g ,Kunmin g Universit y of Science &Technolo gy ,Kunmin g 650500)Abstract ㊀㊀The research status of the catal y st in the SCO method (Selective catal y tic oxidation )were summa -rized.It introduces four kinds of catal y sts ,which includin g transition metal oxides ,oxides of rare earth elements ,p recious metals ,and activated carbon.The com p osite oxides catal y sts of man g anese exhibit g ood p erformance ,whichis cost -low.The activit y of rare -earth p erovskite structure catal y sts can be com p arable with that of noble metal cata -l y sts.All these non -noble metal catal y sts is cost -low ,it has p otential a pp lication value for industr y .But now the re -search of p oison tolerance of the catal y sts is less ,the tolerant abilit y for p oisonin g of the catal y sts still could not reach the re q uirements of p ractical a pp lication.We also anal y ze the p roblems existin g in the a pp lication of SCO and the out -look of the SCO method.Ke y words ㊀㊀NO ,selective catal y tic oxidation ,catal y sts of metal oxide ,De-NO x ㊀张瑞元:男,1991年生,硕士生,研究方向为大气污染控制㊀E -mail :954770469@qq .com㊀李凯:通讯作者,男,1986年生,博士,讲师,研究方向为大气污染控制及资源化技术的研究㊀E -mail :likaikmust@0㊀引言氮氧化物(NO x )的排放一直都受到全球的重视㊂我国供电方式主要以燃煤火电为主,目前全球广泛采用SCR 法(选择性催化还原法)脱除燃煤电厂尾气中的NO x ;但现有的SCR 法不仅成本高昂[1],而且会对细颗粒物(PM2.5)的形成做出贡献㊂有研究结果表明大气中的氨在PM2.5的形成中起到了一定的作用[2-5],SCR 法就存在着NH 3逃逸的问题㊂环保部为推进大气污染防治工作,已发布了‘大气氨源排放清单编制技术指南“㊂除了氨逃逸污染之外,由于SCR 法催化反应温度大多要求在350ħ以上,为满足反应条件,未经过除尘脱硫的尾气直接参与催化反应会导致催化剂的寿命缩短,造成了较高的脱硝成本㊂如何低成本㊁无污染㊁高效率地去除燃煤尾气中的NO x 成为一个研究热点㊂SCO 法(Se -lective catal y tic oxidation ,选择性催化氧化法)是指将NO x 催化氧化到50%~60%的氧化度(n (NO 2)/n (NO x ))后,用碱液或其他吸收液将NO x 吸收脱除的污染控制方法,该法与前者相比具有无氨逃逸污染;催化氧化后的NO x 可与SO 2利用湿法一起脱除,工艺操作简便,成本较低等优势㊂根据对文献的统计发现,近期内对于SCO 法的研究主要集中在我国,而其他国家对NO 催化氧化的研究主要是针对控制柴油热机污染的LNT 技术(NO x 吸附还原催化系统)和快反应SCR 法中的氮氧化物氧化度问题展开的㊂虽然这两者与SCO 法不同,但其研究的针对催化氧化NO 的问题对SCO 法具有借鉴意义㊂SCO 法后一步的碱液吸收技术已经成熟[6],本文只对选择性催化氧化过程进行总结㊂1㊀选择性催化氧化+液相吸收法脱硝原理燃煤烟气中的氮氧化物90%以上是NO ,NO 很难被碱液吸收㊂利用催化剂催化氧化烟气中的NO ,当氧化度(n (NO 2)/n (NO x ))达到50%~60%之间时,利用碱液吸收法对其进行吸收的效率最高[7],脱硝效果与SCR 法相当㊂1.1㊀反应过程及方法催化氧化过程:2NO+O2催化剂NO2(1)由于燃煤烟气等工业尾气中氧含量较低,所以导致NO 的催化氧化较难进行㊂液相吸收过程以氢氧化钠碱液为例,催化氧化后的NO 分子与NO2分子结合生成N2O3,反应式为:NO+NO2=N2O3(2) N2O3易溶于水[7],与水反应:N2O3+H2O=2HNO2(3) HNO2与溶液中的OH-继续反应㊂由于整个过程在液相中进行,所以一般简写为NO x与氢氧化钠碱液发生的反应[8]㊂NO+NO2+2NaOH=2NaNO2+H2O(4) 2NO2+2NaOH=NaNO3+NaNO2+H2O(5) 1.2㊀热力学分析Joёl Des p rés等[9]针对NO2在不同氧气分压㊁温度的条件下分解为NO和O2的热力学平衡曲线做了研究,在实验中,200ħ以下NO2分解为NO和O2的现象并不明显,当温度升高到200ħ以上时,NO2分解趋势显现㊂900ħ时,体系内原有的NO2几乎全部分解㊂所以低温有利于NO2的形成㊂高温条件催化不利于NO2的氧化,且高温促进烟气中的SO2形成SO3,SO3与金属氧化物催化剂结合生成硫酸盐,导致催化剂中毒[6]㊂2㊀SCO法脱硝催化剂的研究现状目前,研究者已从尝试单一的金属氧化物,活性炭等作为催化剂,转变为面向多种金属复合氧化物㊁负载型催化剂等方向的研究㊂前人对各种单金属氧化物的催化活性进行了摸索尝试㊂Kai Li等[10]对Mn㊁Co㊁Ce㊁La四种金属氧化物在相同实验条件下做了催化实验,发现催化效率依次是MnO x>Co3O4>CeO2>LaO x㊂鲁文质等[11]研究了在γ-Al2O3上负载的过渡金属氧化物催化剂,发现活性顺序为Mn>Cr>Co>Cu>Fe>Ni>Zn㊂唐晓龙等[12]采用共沉淀法,将盐溶液与氨水混合,焙烧得到的金属氧化物活性顺序为Mn>Cr>Co>Cu>Fe>Zn㊂本文针对目前的催化剂制备文献,进行了总结归类,存在以下几个方向㊂2.1㊀锰氧化物类催化剂2.1.1㊀锰氧化物负载型由于MnO x对NO的催化氧化能力在所有金属氧化物中相对较高而受到关注㊂大量的研究都是针对MnO x及其负载型催化剂展开的㊂另外因为Mn与其他稀土元素㊁贵金属相比,价格较低,所以MnO x及其负载型催化剂是较有应用潜力的催化剂㊂Baohuai Zhao等[13]鉴于前人制备的负载型MnO x催化剂活性差异较大的问题,进行了研究㊂他们选用了两种常见载体:ZrO2㊁TiO2,将MnO x负载于其之上㊂由于载体ZrO2表面具有双官能团的性质,即同时具有酸性位和碱性位,所以能吸附更多的氮氧化物㊂MnO x/ZrO2的活性要明显优于MnO x/TiO2㊂不仅如此,负载于ZrO2之上的催化剂还有更好的抗硫抗湿特性㊂Zhon g biao Wu等[14]合成了MnO x/ TiO2催化剂,应用比较了沉积-沉淀法(DP)㊁浸渍法(WI)两种不同的制备方法㊂结果表明MnO x(0.3)/TiO2(DP)效果明显优于MnO x(0.3)/TiO2(WI)㊂经分析测试发现,MnO x(0.3)/ TiO2(DP)有更大的比表面积,活性组分MnO x高分散于载体之上,XPS㊁H2-TPR㊁NO-TPD表征都有力证明Mn3+在沉积-沉淀法中产生的更多,这可能是导致催化效率提高的原因㊂根据分析反应过程机理发现:NO2的产生源于催化剂吸附O2和NO后,在其上生成的含氮化合物(中间产物)之后发生了热分解㊂程俊楠等[15]利用等体积浸渍法(IM)和共沉淀法(CP)制备了以氧化锆为载体的MnO x催化剂㊂表征结果显示,IM法制备的催化剂表面疏松多孔,这可能是导致其催化活性较好的原因之一㊂NO在催化剂晶格氧的作用下形成中间氧化态产物,进而分解为NO2㊂但NO2的脱附速率慢,制约了NO的吸附,进而影响催化效率㊂而高温使NO2易于脱附,这可能是高温催化活性高的原因㊂Zhon gy i An 等[16]将锰氧化物负载于3种不同形态的TiO2之上(P25㊁锐钛矿㊁金红石)㊂与锐钛矿㊁金红石相比,P25作为载体促进了Mn2O3(即Mn3+)的形成和分散㊂O2吸附后,Mn3+能与O2形成Mn3+-O键,之后脱附又形成O2-粒子,O2-促进了NO 的氧化㊂表1为一些负载型锰氧化物催化剂的性能㊂2.1.2㊀以锰为主要活性组分的复合氧化物近期发现以Mn为主掺杂一定量的其他过渡金属元素的复合氧化物催化剂与单独的锰氧化物催化剂相比有更高的活性㊂王访等[17]将Fe㊁Ce㊁La掺杂于MnO x之中,发现掺杂铁的样品活性大幅度提高;而将Ce㊁La掺杂于MnFeO x之后,催化效率却有所下降;当在混合气中添加了H2O之后反而促进了NO的转化㊂李小海等[18]将Ce掺杂于MnO x中,负载于TiO2之上㊂表征结果表明,掺杂后反应活化能降低,导致催化活性大幅度增高,且两种元素的掺杂促进了活性组分元素在载体上的分散㊂赵宁等[19]对Mn㊁Cu㊁Ce三种元素掺杂也进行了研究㊂实验发现单独将Cu㊁Ce氧化物负载于TiO2制备的催化剂对NO的催化氧化效果较差,后又合成了MnCuCe/TiO2型催化剂,催化效果较佳㊂徐文青等[20]制备了Mn-Co/TiO2催化剂,在270ħ以下MnCoO x的催化活性要大大高于MnO x㊂表征发现Mn的掺杂促进了催化剂表面O2-的脱附能力增强,促进氧的低温脱附,进而提高催化剂上NO的氧化性能㊂在NO催化氧化反应过程中,催化剂表面生成了桥式NO3-和多齿式NO3-两种形态的氮氧化物中间产物,表征发现效果最好的Mn(0.3)Co(0.7)/TiO2催化剂在反应过程中更多地是生成桥式NO3-的中间产物,NO3-更容易转换为NO2,进而表现出较好的NO氧化活性㊂表2为一些锰的复合氧化物催化剂的性能㊂2.2㊀过渡金属氧化物类催化剂(除锰之外)2.2.1㊀钴元素Dae Su Kim等[21]将Co3O4负载于SiO2㊁ZrO2㊁TiO2㊁CeO2之上,发现负载于CeO2之上的活性要远远高于其他载体,分别制备了两种9.5%(质量分数)Co3O4/CeO2催化剂,其中一种载体为购买的商品CeO2,比表面积较高㊂另一种为利用沉淀法自制的CeO2㊂表征发现利用商品CeO2制备的样品比表面积是沉淀法制备的样品3.5倍,TPD表征吸附NO的量前者也是后者的11倍㊂催化效率前者是后者的3倍,Co3O4/CeO2催化剂与制备的1%(质量分数)Pt/γ-Al2O3催化剂的活性相当,有很高的催化效率㊂在模拟SO2中毒实验中,9.5%(质量分数)Co3O4/CeO2与1%(质量分数)Pt/γ-Al2O3相比有更好的抗中毒性能㊂表征发现9.5%(质量分数)Co3O4/CeO2催化剂中的晶格氧并没有参与NO的催化氧化反应㊂Yan Huan g等[22]将Co3O4负载于MPS(Meso-p orous silica,介孔氧化硅)之上,在573K的条件下焙烧出的催化剂效果最好,表征发现573K焙烧后催化剂表面分散性最好,形成了最小的晶体颗粒㊂另外,介孔氧化硅与其他载体相比有更大的比表面积也是效果好的原因之一㊂Muham-mad Faisal Irfan等[23]考察了Co3O4催化剂的性能,发现300ħ低温焙烧的Co3O4与其他高于300ħ焙烧的Co3O4相比,有高的活性㊂分析发现低温焙烧的Co3O4有更大的比表面积,这是影响效果的主要原因㊂彭莉莉等[24]合成了CoO x-CeO x/ ZrO2型催化剂,与只负载了CoO x的催化剂相比,铈的添加提高了催化剂的储氧能力,有利于O2吸附并参与反应,并且在CoO x-CeO x/ZrO2中生成的Ce1-x Zr x O2固溶体有助于Co 元素在催化剂表面的分散,提高催化剂的低温氧化活性㊂催化剂中Co含量越高,其比表面积越大,低温活性越好㊂表3为一些钴氧化物催化剂的性能㊂表1㊀一些负载型锰氧化物催化剂的性能[13-16]Table1㊀The p ro p erties of the load t yp e catal y sts of man g anese oxide[13-16]负载型锰氧化物催化剂反应条件NO转化率15%MnO x/ZrO2500ˑ10-6NO,10%O2,GHSV=75000h-1,300ħ76% 15%MnO x/TiO2500ˑ10-6NO,10%O2,GHSV=75000h-1,270ħ56% MnO x(0.3)/TiO2(DP)600ˑ10-6NO,4%O2GHSV=25000h-1,250ħ89% MnO x(0.3)/TiO2(WI)600ˑ10-6NO,4%O2GHSV=25000h-1,350ħ70% Mn8/ZrO2/450-IM600ˑ10-6NO,10%O2,GHSV=15000h-1,300ħ84% Mn8/ZrO2/450-CP600ˑ10-6NO,10%O2,GHSV=15000h-1,300ħ74% 10%MnO x/TiO2(P)500ˑ10-6,6%O2,GHSV=20000h-1,300ħ83% 10%MnO x/TiO2(A)500ˑ10-6,6%O2,GHSV=20000h-1,300ħ75% 10%MnO x/TiO2(R)500ˑ10-6,6%O2,GHSV=20000h-1,350ħ49%表2㊀一些锰的复合氧化物催化剂的性能[17-20]Table2㊀The p ro p erties of the com p osite oxides catal y sts of man g anese[17-20]锰的复合氧化物反应条件NO转化率MnFeO x500ˑ10-6NO,3%O2,100ħ,GHSV=47770h-190% MnFeCeO x500ˑ10-6NO,3%O2,100ħ,GHSV=47770h-140% MnFeLaO x500ˑ10-6NO,3%O2,100ħ,GHSV=47770h-133% 10%Mn-Ce/TiO2300ˑ10-6NO,10%O2,GHSV=41000h-1,250ħ,[Ce]/[Mn]=1/390% 10%Mn/TiO2300ˑ10-6NO,10%O2,GHSV=41000h-1,250ħ48% MnCuCe/Ti500ˑ10-6NO,10%O2,GHSV=27000h-1,300ħ79% Mn(1)/TiO2200ˑ10-6NO,5%O2,GHSV=50000h-1,300ħ90% Mn(0.3)Co(0.7)/TiO2200ˑ10-6NO,5%O2,GHSV=50000h-1,300ħ88%表3㊀一些钴氧化物催化剂的性能[21-24]Table3㊀The p ro p erties of the catal y sts of CoO x[21-24]Co元素催化剂反应条件NO转化率9.5%Co/CeO2500ˑ10-6NO,5%O2,270ħ,200mL/(min㊃0.15g)70% 9.5%Co/CeO2500ˑ10-6NO,5%O2,270ħ,200mL/(min㊃0.15g)25% 25%Co3O4/MPS500ˑ10-6,10%O2,GHSV=12000h-1,300ħ82% Co3O4500ˑ10-6,10%O2,GHSV=12000h-1,300ħ74% Co0.2Ti400ˑ10-6NO,8%O2,GHSV=30000h-1,300ħ50%Co3O4150ˑ10-6NO,10%O2,GHSV=150000h-1,300ħ76% Co-Ce/ZrO2500ˑ10-6,10%O2,GHSV=20000h-1,250ħ80.9% CoO x/ZrO2500ˑ10-6,10%O2,GHSV=20000h-1,250ħ70%2.2.2㊀其他过渡金属元素夏斌等[25]对CuSO 4-CeO 2/TiO 2-SiO 2型催化剂进行了研究㊂CuSO 4在SCR 法中作为催化剂已有所研究,因为Cu -SO 4作催化剂不存在硫酸盐中毒的问题,CeO 2的添加可以增加吸附氧的能力提高催化剂活性㊂然而实验结果表明无论是载体TiO 2-SiO 2还是CuSO 4都没起到抗硫抗水的作用,效果低于预期㊂Muhammad Faisal Irfan 等[23]尝试将Cu 氧化物负载于TiO 2之上,但结果表明其催化效率不佳,活性较差㊂秦旭东等[26]尝试将常用于SCR 法中的V 2O 5-WO 3/TiO 2催化剂用于NO 的催化氧化中㊂实验结果表明,即使低空速条件下,效果也不出众,但对SO 2和H 2O 的抗性很好,能够自我恢复,这是其能广泛应用SCR 法中的主要原因㊂当停止加入SO 2和H 2O 时,在高于250ħ条件下,催化剂活性能够基本恢复㊂Wei Cai 等[27]利用Cr /Ce x Zr 1-x O 2固溶体纳米颗粒对NO 的催化氧化做了研究,发现Cr 6+在催化过程中起到了吸附NO 的作用,Ce 3+吸附O 2㊂最终,两者相互作用生成NO 2㊂Lei Zhon g 等[28]针对Cr 和Ce 的复合氧化物在NO 催化氧化中的协同作用开展了研究,发现吸附NO 的活性成分是CrO x ,吸附后在表面形成NO +,之后形成Cr 的硝酸盐㊂CeO x 倾向于激发O 2形成空缺位与前者形成硝酸盐,最终一同脱离催化剂表面生成NO 2㊂表4为一些过渡金属元素氧化催化剂的性能㊂表4㊀一些过渡金属元素氧化催化剂的性能[23,25-28]Table 4㊀The p ro p erties of the catal y sts of other transition metal oxides[23,25-28]其他过度金属元素催化剂反应条件NO 转化率CuSO 4-CeO 2/TiO 2-SiO 2500ˑ10-6,8%O 2,SV=10000h -1,350ħ67.5%CuO x /TiO 2150ˑ10-6,10%O 2,SV=100000h -1,8%H 2O ,350ħ35%V 2O 5-WO 3/TiO 2550ˑ10-6,10%O 2,GHSV=5000h -1,120ħ33%10Cr /Ce x Zr 1-x O 2390ˑ10-6NO ,8%O 2,GHSV=35400h -1,300ħ60%Cr0.8Ce0.2/TP400ˑ10-6NO ,8%O 2,流速=100mL /min ,320ħ67%2.3㊀稀土元素氧化物类催化剂2.3.1㊀镧元素钙钛矿结构催化剂的研究始于20世纪70年代,它的形式常以ABO 3表示㊂许多元素都可掺杂于这种形式的晶格中,且这种结构具有较好的热稳定性㊂部分的替换A 或B 金属元素的位置,可以调节晶格结构缺陷,改变掺杂金属的价态㊂这些性质使得钙钛矿结构的催化剂能广泛的应用㊂一系列文献报道了将钙钛矿应用在柴油机尾气污染控制的NO x 吸附还原催化系统中㊂与传统的催化剂相比,钙钛矿型催化剂不使用昂贵的金属Pt ㊂Yuxin Wen 等[29]将铈与La 元素替换,按照La 1-x Ce x CoO 3的替换形式做了实验㊂表征发现,在反应过程中氮氧化物能与催化剂以3种方式结合成硝酸盐㊂其中只有单原子螯合配位形式的硝酸盐能在300ħ时脱离催化剂表面生成NO 2,这是NO 催化氧化的主要形式㊂铈的加入能减少NO x 与催化剂生成其他两种硝酸盐的机会,让NO x 更多的以单原子螯合形式出现㊂综合多种因素实验发现当x =2时效果最佳㊂Chan g Hwan Kim 等[30]在Yuxin Wen 等实验的基础上,将Sr 掺杂于LaCoO 3㊁LaMnO 3中形成La 1-x Sr x CoO 3㊁La 1-x -Sr x MnO 3,其得到的La 0.9Sr 0.1CoO 3对NO 催化剂氧化的效果已经超越了商业生产的Pt 催化剂㊂实验先比较了La -CoO 3㊁LaMnO 3两种催化剂的活性,前者优于后者㊂他们又在LaCoO 3中加入锶形成La 0.9Sr 0.1CoO 3催化剂,在300ħ时La 0.9Sr 0.1CoO 3的催化效率与LaCoO 3相比提高了15%,而La 0.9Sr 0.1MnO 3却没什么变化㊂分析认为,二价的Sr 部分替换三价的La 后,使晶格中的电荷达到了不平衡的状态,生成了O 空穴促进了NO 的催化氧化㊂而在La 1-x Sr x MnO 3的结构中,三㊁四价态的Mn 元素中和了Sr 对晶格电荷的影响㊂Bo Shen 等[31]也制备了4.3%(质量分数)Pt /γ-Al 2O 3和La 0.8Sr 0.2MnO 3两种催化剂,并比较了两者的性能,结果表明后者的催化效果优于前者㊂Jiahao Chen 等[32]利用溶胶-凝胶法对Fe ㊁Co ㊁Mn 三种元素在钙钛矿中的掺杂做了研究,以LFO ㊁LCO ㊁LMO 表示掺杂3种不同元素的催化剂㊂结果表明,依然是Co 的掺杂效果最好㊂Kai Li 等[10]研究了LaO x 的催化效果,发现其与ABO 3结构的催化剂效果相差较远,证明单独的LaO x 并没有钙钛矿形式的催化剂效果好㊂2.3.2㊀铈元素单独的Ce 氧化物对NO 的催化氧化活性并不高,由于Ce 的高储氧能力,通过Ce 3+到Ce 4+的转变吸附氧气㊂一般都将Ce 作为一种助剂掺杂于与其他元素制备的催化剂中,Kai Li 等[10]㊁Suresh Kumar Me g ara j an 等[33]对CeO 2催化氧化NO 的活性都进行了尝试,效果与其他元素相比较差㊂表5为一些稀土元素氧化物催化剂的性能㊂2.4㊀贵金属类催化剂2.4.1㊀Pt (铂)以及Pt -Pd (铂-钯)贵金属Pt 广泛的应用于现有的汽车尾气催化剂中,用来控制尾气污染㊂一些研究表明当Pt 负载于Al 2O 3㊁SiO 2之上时,会出现催化效率的降低现象㊂表征发现,Pt 负载于在载体表面之后部分的接触氧化为PtO 或PtO 2,从而失活㊂Muhammad Faisal Irfan 等[34]将Pt 负载于锐钛矿和金红石两种TiO 2之上,结果发现负载于金红石上的催化剂活性较差㊂P.J.Schmitz 等[35]筛选了Pt 的两种载体:Al 2O 3和SiO 2,发现两种载体对Pt 活性的影响基本相同㊂Pt 的失效原因在于催化剂长期在高温条件下使用后,金属Pt 会由之前的纳米级颗粒团聚成更大的颗粒,比表面积降低从而影响催化效率㊂用Pt 与Pd 合成的合金催化剂,可以有效抑制催化剂长大㊁团聚为较大颗粒,并且能减少Pt 在高温条件下的挥发损失㊂合成的Pt -Pd 催化剂最初是以合金的形式存在,而随着长时间的使用,两种金属发生了分离,彼此形成各自的晶体,但并没有团聚成粒㊂这种Pt-Pd催化剂与Pt催化剂相比无疑能保持更持久的高催化效率㊂M. Kaneeda等[36]制备了Pt(0.94)/Al2O3和Pt(0.77)Pd(0.30)/ Al2O3两种催化剂,开始时这两种催化剂的催化效果相当,当在830ħ焙烧60h后,Pt(0.94)/Al2O3的催化效率下降了1/2,而Pt(0.77)Pd(0.30)/Al2O3的催化效率只下降了1/4㊂Pd的添加提高了催化剂的热稳定性㊂O.K.Ezeko y e等[37]分别制备了Pt100-Pd0和Pt50-Pd50两种催化剂㊂其结果与M.Kaneeda的实验结论相同㊂但Pd的掺杂与纯Pt的催化剂相比催化活性并没有提高或者降低㊂表6为一些铂和铂-钯催化剂的性能㊂表5㊀一些稀土元素氧化物催化剂的性能[10,29,30,32,33]Table5㊀The p ro p erties of the catal y sts of rare earth[10,29,30,32,33]镧掺杂其他元素的催化剂反应条件NO转化率La0.8Ce0.2CoO3800ˑ10-6NO,8%O2,GHSV=37500h-1,300ħ80% La0.9Sr0.1CoO3400ˑ10-6NO,8%O2,GHSV=30000h-1,300ħ86% La0.9Sr0.1MnO3400ˑ10-6NO,8%O2,GHSV=30000h-1,300ħ40% LFO(LaFeO3)100ˑ10-6NO,10%O2,GHSV=30000h-1,300ħ63% LMO(LaMnO3)100ˑ10-6NO,10%O2,GHSV=30000h-1,300ħ73% LCO(LaCoO3)100ˑ10-6NO,10%O2,GHSV=30000h-1,270ħ83%LaO x500ˑ10-6NO,3%O2,GHSV=35000h-1,250ħ21%CeO2500ˑ10-6NO,3%O2,GHSV=35000h-1,250ħ30%CeO2500ˑ10-6NO,5%O2,SV=150000h-1,400ħ40%表6㊀一些铂和铂-钯催化剂的性能[34,35,37]Table6㊀The p ro p erties of the catal y sts of Pt and Pt-Pd[34,35,37]铂及铂-钯催化剂反应条件NO转化率Pt/TiO2(A)150ˑ10-6NO,3%O2,8%H2O,GHSV=100000h-1,350ħ39% Pt/TiO2(R)150ˑ10-6NO,3%O2,8%H2O,GHSV=100000h-1,350ħ18% 0.75%Pt/SiO2500ˑ10-6NO,8%O2,GHSV=36000h-1,275ħ83% 0.75%Pt/Al2O3500ˑ10-6NO,8%O2,GHSV=36000h-1,275ħ85%Pt100-Pd0500ˑ10-6NO,8%O2,GHSV=20000h-1,230ħ93% Pt50-Pd50500ˑ10-6NO,8%O2,GHSV=20000h-1,230ħ95%2.4.2㊀其他贵金属将其他贵金属用于NO催化氧化的研究较少㊂阳鹏飞等[38]对金元素催化氧化NO做了尝试,在较低空速㊁较高氧含量的条件下,效果较好,但高空速㊁低氧含量的情况下Au 的催化效果还有待实验验证㊂曲玲玲等[39]将贵金属钌负载于氧化锆之上,催化活性甚至优于文献中报道的Pt催化剂㊂研究发现对Ru/ZrO2进行750ħ高温焙烧会致使Ru与ZrO2之间产生相互作用,与此同时也形成RuO2粒子,这是高温煅烧后催化剂降低的原因㊂同样Ru也存在着颗粒团聚的问题,进而可能影响催化活性㊂表7为一些其他贵金属催化剂的性能㊂2.5㊀活性炭类催化剂活性炭在室温㊁较低空速的条件下催化氧化NO活性很高㊂但是用于NO的催化氧化目前存在两个困难:(1)只能在室温下保证高活性,文献中报道当温度高于60ħ后活性降低很快,100ħ以上时已基本没有活性㊂(2)湿度对其的影响是强烈的,即使烟气中含有少量水分,也会导致大量的水与活性炭结合,抢占了活性位点,致使NO不能被催化氧化㊂Zhanchen Guo等[40]利用聚丙烯腈基(PAN-ACF)㊁沥青基(Pitch-ACF)㊁椰壳(Coconut-AC)3种活性炭,在室温㊁低空速(1500h-1)的条件下对NO催化氧化达到了较高的转化率㊂其中椰壳活性炭效果最高,但是由于活性炭对湿度和温度的变化敏感,随着湿度的增加效率急剧下降㊂当温度达到100ħ时,活性炭基本失去了催化活性㊂这表明活性炭对NO的催化氧化作用只能保持在低温㊁干燥的条件下㊂表7㊀一些其他贵金属催化剂的性能[38,39]Table7㊀The p ro p erties of the catal y sts ofother noble metals[38,39]其他贵金属反应条件NO转化率1%Au/TS-1500ˑ10-6,10%O2,GHSV=5000h-1,260ħ78%Ru/ZrO2400ˑ10-6,10%O2,GHSV=180000h-1,275ħ93%㊀㊀Juliana P.S.Sousa等[41]利用尿素对活性炭进行了N元素的掺杂改性,发现改性后活性炭的表面含氮成分促进了NO的催化氧化㊂在25ħ下NO的转化率达到了70%,并且做了尾气吸收装置,用水吸收了NO x尾气,吸收效果较好,去除率达90%㊂刘鹤年等[42]用4种(A5㊁A7㊁A10㊁A15为按照比表面积大小的顺序编号)沥青基活性炭纤维为材料,研究了常温下模拟空气气氛中体积分数为50ˑ10-6的NO 的催化氧化性能㊂结果表明,低比表面积的活性炭纤维因为其有较窄的孔径分布和较大的类石墨微晶而有利于NO 的催化氧化㊂表8为一些活性炭催化剂的性能㊂表8㊀一些活性炭催化剂的性能[40-42]Table 8㊀The p ro p erties of the catal y sts of modified activated carbons[40-42]活性炭反应条件NO 转化率PAN -ACF400ˑ10-6NO ,2%O 2,GHSV=1500h -1,30ħ25%Pitch -ACF 400ˑ10-6NO ,2%O 2,GHSV=1500h -1,30ħ43.8%Coconut -AC400ˑ10-6NO ,2%O 2,GHSV=1500h -1,30ħ83%AC -U 100N ㊃cm 3㊃min -1/0.2g ,1000ˑ10-6,20%O 2,25ħ70%A5(Pitch -ACF )30ħ,21%O 2,GHSV=39798h -1,50ˑ10-631%A7(Pitch -ACF )30ħ,21%O 2,GHSV=39798h -1,50ˑ10-630%A10(Pitch -ACF )30ħ,21%O 2,GHSV=39798h -1,50ˑ10-624.8%A15(Pitch -ACF )30ħ,21%O 2,GHSV=39798h -1,50ˑ10-620.1%3㊀展望目前对SCO 法的研究都是设想将NO 氧化成为NO 2后,采用湿法脱除工艺与SO 2一同脱除㊂因此,催化剂同样遇到SO 2和H 2O 中毒的问题㊂根据目前的文献报道来看,对中毒问题㊁催化剂再生问题的研究还较少㊂文献中报道了钴氧化物具有较好的抗中毒能力,且具有较高的活性㊂虽然SCR 法钒基催化剂在NO 的催化氧化中没有好的活性,但是其优异的抗SO 2中毒能力使其能够广泛应用在SCR 法中㊂钒与其他元素的复合氧化物应用于NO 的催化氧化还未见报道,该类催化剂是否会兼顾高活性和高抗中毒特性还有待尝试㊂锰氧化物催化剂和钙钛矿催化剂具有高活性而受到了关注,相对低廉的成本使它们具有潜在的应用价值,但目前对于这两类催化剂中毒㊁再生的问题研究还不够深入㊂燃煤电厂常规的除尘脱硫脱硝步骤是:省煤器-SCR-空预器-除尘-FGD (湿法脱硫),广泛通用的SCR 法因为烟气没有除尘脱硫,而使催化剂的寿命缩短㊂所以SCO 法催化剂的最佳布设区间应是在除尘后,催化剂的活性温度范围也应该考虑在烟气除尘后的温度区间范围内,以达到延长催化剂的寿命目的㊂参考文献1㊀王晓明.催化法去除氮氧化物的研究进展[J ].工业安全与环保,2009,35(1):212㊀Huan g X ,Qiu R ,Chan Chak K ,et al.Evidence of hi g hPM2.5stron g acidit y in ammonia -rich atmos p here of Guan -g zhou ,China :Transition in p athwa y s of ambient ammonia to form aerosol ammonium at [NH 4+]/[SO 42-]=1.5[J ].Atmos p heric Res ,2011,99:4883㊀刘杰云,况福虹,唐傲寒,等.不同排放源周边大气环境中NH 3浓度动态[J ].生态学报,2013,33(23):75374㊀Hu Min ,Wu Zhi j un ,Slanina J ,et al.Acidic g ases ,ammo -nia and water -soluble ions in PM2.5at a coastal site in the Pearl River Delta ,China [J ].Atmos p heric Environ ,2008,42:63105㊀彭应登,杨明珍,申立贤.北京氨源排放及其对二次粒子生成的影响[J ].环境科学,2000,21(6):1016㊀童志权,莫建红.催化氧化法去除烟气中NO 工的研究进展[J ].化工环保,2007,27(3):1937㊀童志权.工业废气净化与利用[M ].北京:化学工业出版社,2001:3018㊀袁从慧,刘华彦,卢晗峰,等.催化氧化一碱液吸收脱除硝酸工业NO x 废气[J ].化学反应工程与工艺,2008,24(5):4769㊀Jo ël Des p r és ,Martin Elsener ,Manfred Koebel ,et al.Cata -l y tic oxidation of nitro g en monoxide over Pt /SiO 2[J ].A pp l Catal y B :Environ ,2004,50:7310Li Kai ,Tan g Xiaolon g ,Yi Hon g hon g ,et al.Low -tem p era -ture catal y tic oxidation of NO over Mn -Co -Ce -O x catal y st[J ].Chem En g J ,2012,192:9911鲁文质,赵秀阁,王辉,等.NO 的催化氧化[J ].催化学报,2000,21(5):42312唐晓龙,李华,易红宏,等.过渡金属氧化物催化氧化NO 实验研究[J ].环境工程学报,2010,4(3):63913Zhao Baohuai ,Ran Rui ,Wu Xiaodon g ,et p arativestud y of Mn /TiO 2and Mn /ZrO 2catal y sts for NO oxidation [J ].Catal Commun ,2014,56:3614Wu Zhon g biao ,Tan g Nian ,Xiao Lin g ,et al.MnO x /TiO 2com p osite nanoxides s y nthesized b y de p osition -p reci p itationmethod as a su p erior catal y st for NO oxidation [J ].J ColloidInterf Sci ,2010,352:14315程俊楠,张先龙,杨保俊,等.催化氧化NO 催化剂Mn /ZrO 2的制备与性能研究[J ].环境科学学报,2014,34(3):62016An Zhon gy i ,Zhuo Yu q un ,Xu Chao ,et al.Influence of theTiO 2cr y stalline p hase of MnO x /TiO 2catal y sts for NO oxi -dation [J ].Chinese J Catal y ,2014,35:12017王访,唐晓龙,易红宏,等.MnFeO x 催化剂低温催化氧化一氧化氮[J ].城市环境与城市生态,2013,26(5):1918李小海,张舒乐,钟秦.铈掺杂Mn /TiO 2催化氧化NO 的性能[J ].化工进展,2011,30(7):150319赵宁,童华,吴丽莎.锰铜铈氧化物催化剂氧化NO性能及动力学研究[J].环境工程学报,2014,8(11):488020徐文青,赵俊,王海蕊,等.TiO2负载Mn-CO复合氧化物催化剂上NO催化氧化性能[J].物理化学学报,2013,29(2): 38521Dae Su Kim,Yun Ha Kim,Jae Eui Yie,et al.NO oxidation over su pp orted cobalt oxide catal y sts[J].Korean J Chem En g,2010,27(1):4922Yan Huan g,Gao Don g mei,Ton g Zhi q uan,et al.Oxidation of NO over cobalt oxide su pp orted on meso p orous silica[J]. J Natural Gas Chem,2009,18:42123Muhammad Faisal Irfan,Jeon g Hoi Goo,San g Done Kim. Co3O4based catal y sts for NO oxidation and NO x reduction in fast SCR p rocess[J].A pp l Catal y B,2008,78:26724彭莉莉,黄妍,李建光,等.CoO x-CeO x/ZrO2催化氧化NO 性能及抗SO2毒化研究[J].燃料化学学报,2012,40(11): 137725夏斌,童志权,黄妍,等.CuSO4-CeO2/TS催化氧化NO及其抗H2O和SO2毒化性能[J].过程工程学报,2010,10(1): 14226秦旭东,张俊丰,颜斌,等.H2O和SO2对V2O5-WO3/TiO2催化剂催化氧化NO的影响[J].环境工程学报,2011,5(5): 113727Cai Wei,Zhon g Qin,Zhan g Shule,et al.Fractional-h y drol-y sis-driven formation of nonuniform do p ant concentration catal y st nano p articles of Cr/Ce x Zr1-x O2and their catal y sis in oxidation of NO[J].Chem En g J,2014,236:22328Zhon g Lei,Cai Wei,Yu Yan g,et al.Insi g hts into s y ner g is-tic effect of chromium oxides and ceriasu pp orted on Ti-PILC for NO oxidation and their surface s p ecies stud y[J].A pp l Surf Sci,2015,325:5229Wen Yuxin,Zhan g Chan g bin,He Hon g,et al.Catal y tic oxidation of nitro g en monoxide over La1-x Ce x CoO3p erovs-kites[J].Catal Toda y,2007,126:40030Chan g Hwan Kim,et al.Strontium-do p ed p erovskites rival p latinum catal y sts for treatin g NO x in simulated diesel ex-haust[J].Science,2010,327:162431Shen Bo,Lin Xiao,Zhao Yin g xian.Catal y tic oxidation of NO with O2over Pt/c-Al2O3and La0.8Sr0.2MnO3[J].ChemEn g J,2013,222:932Chen Jiahao,Shen Mei q in g,Wan g Xin q uan,et al.Catal y tic p erformance of NO oxidation over LaMeO3(Me=Mn,Fe, Co)p erovskite p re p ared b y the sol-g el method[J].Catal Commun,2013,37:10533Suresh Kumar Me g ara j an,Ra y alua S,Teraoka Y,et al. Hi g h NO oxidation catal y tic activit y on non-noble metal-based cobalt-ceria catal y st for diesel soot oxidation[J].J Molecular Catal A:Chemical,2014,385:11234Muhammad Faisal Irfan,Jeon g Hoi Goo,San g Done Kim, et al.Effect of CO on NO oxidation over p latinum based ca-tal y sts for H y brid fast SCR p rocess[J].Chemos p here, 2007,66:5435Schmitz P J,Kudla R J,Drews A R,et al.NO oxidation over su pp orted Pt:Im p act of p recursor,su pp ort,loadin g, and p rocessin g conditions evaluated via hi g h throu g h p ut ex-p erimentation[J].A pp l Catal B:Environmental,2006,67: 24636Kaneeda M,Iizuka H,Hiratsuk T,et al.Im p rovement of thermal stabilit y of NO oxidation Pt/Al2O3catal y st b y addi-tion of Pd[J].A pp l Catal y B:Environmental,2009,90:564 37Ezeko y e O K,Drews A R,Jen H-W,et al.Characterization of alumina-su pp orted Pt and Pt-Pd NO oxidation catal y sts with advanced electron microsco py[J].J Catal,2011,280: 12538阳鹏飞,周继承,李德华,等.Au/TS-1选择性催化氧化NO 性能研究[J].燃料化学学报,2010,38(1):8039曲玲玲,周铁桥,解强,等.Ru/ZrO2催化剂高温焙烧对NO 催化氧化反应性能的影响[J].环境科学学报,2009,29(9): 189140Guo Zhanchen g,Xie Yushen g,Hon g Ik py o,et al.Catal y s-tic oxidation NO on activated carbon[J].Ener gy Conversion Mana g,2001,42:200541Juliana P S Sousa,Manuel F R Pereira,JoséL Fi g ueiredo. Catal y tic oxidation of NO to NO2on N-do p ed activated car-bons[J].Catal Toda y,2011,176:38342刘鹤年,黄正宏,王明玺.常温下沥青基活性炭纤维对NO的催化氧化性能[J].化工学报,2011,62(2):369(责任编辑㊀周媛媛)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。