2011届高考数学权威预测:16圆锥曲线的定义、性质和方程(1)
- 格式:doc
- 大小:194.00 KB
- 文档页数:6
卜人入州八九几市潮王学校数学概念、方法、题型、易误点技巧总结——圆锥曲线1.圆锥曲线的两个定义:〔1〕第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F,F的间隔的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的间隔的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值〞与<|F F|不可无视。
假设=|F F|,那么轨迹是以F,F为端点的两条射线,假设﹥|F F|,那么轨迹不存在。
假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。
比方:①定点,在满足以下条件的平面上动点P的轨迹中是椭圆的是A.B.C.D.〔答:C〕;②方程表示的曲线是_____〔答:双曲线的左支〕〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母〞,其商即是离心率。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点间隔与此点到相应准线间隔间的关系,要擅长运用第二定义对它们进展互相转化。
如点及抛物线上一动点P〔x,y〕,那么y+|PQ|的最小值是_____〔答:2〕2.圆锥曲线的HY方程〔HY方程是指中心〔顶点〕在原点,坐标轴为对称轴时的HY位置的方程〕:〔1〕椭圆:焦点在轴上时〔〕〔参数方程,其中为参数〕,焦点在轴上时=1〔〕。
方程表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。
比方:①方程表示椭圆,那么的取值范围为____〔答:〕;②假设,且,那么的最大值是____,的最小值是___〔答:〕〔2〕双曲线:焦点在轴上:=1,焦点在轴上:=1〔〕。
方程表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。
比方:①双曲线的离心率等于,且与椭圆有公一共焦点,那么该双曲线的方程_______〔答:〕;②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,那么C的方程为_______〔答:〕〔3〕抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
2011年北京市高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•北京)已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.(﹣∞,﹣1]B.[1,+∞)C.[﹣1,1]D.(﹣∞,﹣1)∪(1,+∞)【考点】补集及其运算.【专题】集合.【分析】先求出集合P中的不等式的解集,然后由全集U=R,根据补集的定义可知,在全集R中不属于集合P的元素构成的集合为集合A的补集,求出集合P的补集即可.【解答】解:由集合P中的不等式x2≤1,解得﹣1≤x≤1,所以集合P=[﹣1,1],由全集U=R,得到C U P=(﹣∞,1)∪(1,+∞).故选D【点评】此题属于以不等式的解集为平台,考查了补集的运算,是一道基础题.2.(5分)(2011•北京)复数=()A.i B.﹣i C.D.【考点】复数代数形式的混合运算.【专题】数系的扩充和复数.【分析】将分子、分母同乘以1﹣2i,再按多项式的乘法法则展开,将i2用﹣1代替即可.【解答】解:==i故选A【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数;再按多项式的乘法法则展开即可.3.(5分)(2011•北京)如果那么()A.y<x<1 B.x<y<1 C.1<x<y D.1<y<x【考点】对数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】本题所给的不等式是一个对数不等式,我们要先将不等式的三项均化为同底根据对数函数的单调性,即可得到答案.【解答】解:不等式可化为:又∵函数的底数0<<1故函数为减函数∴x>y>1故选D【点评】本题考查的知识点是对数函数的单调性与特殊点,其中根据对数函数的性质将对数不等式转化为一个整式不等式是解答本题的关键.4.(5分)(2011•北京)若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.﹁p是真命题D.﹁q是真命题【考点】复合命题的真假.【专题】简易逻辑.【分析】根据题意,由复合命题真假表,依次分析选项即可作出判断.【解答】解:∵p是真命题,q是假命题,∴p∧q是假命题,选项A错误;p∨q是真命题,选项B错误;¬p是假命题,选项C错误;¬q是真命题,选项D正确.故选D.【点评】本题考查复合命题的真假情况.5.(5分)(2011•北京)某四棱锥的三视图如图所示,该四棱锥的表面积是()A.32 B.16+16 C.48 D.16+32【考点】由三视图求面积、体积.【专题】立体几何.【分析】根据所给的三视图得到四棱锥的高和底面的长和宽,首先根据高做出斜高,做出对应的侧面的面积,再加上底面的面积,得到四棱锥的表面积.【解答】解:由题意知本题是一个高为2,底面是一个长度为4的正方形的四棱锥,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,∴四个侧面积是,底面面积是4×4=16,∴四棱锥的表面积是16+16,故选:B.【点评】本题考查有三视图求表面积和体积,考查由三视图得到几何图形,考查简单几何体的体积和表面积的做法,本题是一个基础题.6.(5分)(2011•北京)执行如图所示的程序框图,若输入A的值为2,则输入的P值为()A.2 B.3 C.4 D.5【考点】循环结构.【专题】算法和程序框图.【分析】根据输入A的值,然后根据S进行判定是否满足条件S≤2,若满足条件执行循环体,依此类推,一旦不满足条件S≤2,退出循环体,求出此时的P值即可.【解答】解:S=1,满足条件S≤2,则P=2,S=1+=满足条件S≤2,则P=3,S=1++=满足条件S≤2,则P=4,S=1+++=不满足条件S≤2,退出循环体,此时P=4故选:C【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断.7.(5分)(2011•北京)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件【考点】函数模型的选择与应用.【专题】函数的性质及应用.【分析】若每批生产x件,则平均仓储时间为天,可得仓储总费用为,再加上生产准备费用为800元,可得生产x件产品的生产准备费用与仓储费用之和是=元,由此求出平均每件的生产准备费用与仓储费用之和,再用基本不等式求出最小值对应的x值【解答】解:根据题意,该生产x件产品的生产准备费用与仓储费用之和是=这样平均每件的生产准备费用与仓储费用之和为(x为正整数)由基本不等式,得当且仅当时,f(x)取得最小值、可得x=80时,每件产品的生产准备费用与仓储费用之和最小故答案为B【点评】本题结合了函数与基本不等式两个知识点,属于中档题,运用基本不等式时应该注意取等号的条件,才能准确给出答案.8.(5分)(2011•北京)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1【考点】抛物线的应用.【专题】函数的性质及应用.【分析】本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.【解答】解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A【点评】本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2011•北京)在△ABC中.若b=5,,sinA=,则a=.【考点】正弦定理.【专题】解三角形.【分析】直接利用正弦定理,求出a 的值即可.【解答】解:在△ABC中.若b=5,,sinA=,所以,a===.故答案为:.【点评】本题是基础题,考查正弦定理解三角形,考查计算能力,常考题型.10.(5分)(2011•北京)已知双曲线(b>0)的一条渐近线的方程为y=2x,则b=2.【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用双曲线的标准方程写出其渐近线方程是解决本题的关键,根据已知给出的一条渐近线方程对比求出b的值.【解答】解:该双曲线的渐近线方程为,即y=±bx,由题意该双曲线的一条渐近线的方程为y=2x,又b>0,可以得出b=2.故答案为:2.【点评】本题考查根据双曲线方程求解其渐近线方程的方法,考查学生对双曲线标准方程和渐近线方程的认识和互相转化,考查学生的比较思想,属于基本题型.11.(5分)(2011•北京)已知向量=(,1),=(0,﹣1),=(k,).若与共线,则k=1.【考点】平面向量共线(平行)的坐标表示.【专题】平面向量及应用.【分析】利用向量的坐标运算求出的坐标;利用向量共线的坐标形式的充要条件列出方程,求出k的值.【解答】解:∵与共线,∴解得k=1.故答案为1.【点评】本题考查向量的坐标运算、考查向量共线的坐标形式的充要条件:坐标交叉相乘相等.12.(5分)(2011•北京)在等比数列{a n}中,a1=,a4=﹣4,则公比q=﹣2;a1+a2+…+a n=.【考点】等比数列的性质;等比数列.【专题】等差数列与等比数列.【分析】根据等比数列的性质可知,第4项比第1项得到公比q的立方等于﹣8,开立方即可得到q的值,然后根据首项和公比,根据等比数列的前n项和的公式写出此等比数列的前n项和S n的通项公式,化简后即可得到a1+a2+…+a n的值.【解答】解:q3==﹣8∴q=﹣2;由a1=,q=﹣2,得到:等比数列的前n项和S n=a1+a2+…+a n==.故答案为:﹣2;【点评】此题考查学生掌握等比数列的性质,灵活运用等比数列的前n项和公式化简求值,是一道基础题.13.(5分)(2011•北京)已知函数若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是(0,1).【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】要求程f(x)=k有两个不同的实根是数k的取值范围,根据方程的根与对应函数零点的关系,我们可以转化为求函数y=f(x)与函数y=k交点的个数,我们画出函数的图象,数形结合即可求出答案.【解答】解:函数的图象如下图所示:由函数图象可得当k∈(0,1)时方程f(x)=k有两个不同的实根,故答案为:(0,1)【点评】本题考查的知识点是根的存在性及根的个数判断,其中根据方程的根与对应函数零点的关系,将方程问题转化为函数问题是解答的关键.14.(5分)(2011•北京)设A(0,0),B(4,0),C(t+4,3),D(t,3)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)=6,N(t)的所有可能取值为6、7、8.【考点】二元一次不等式(组)与平面区域.【专题】不等式的解法及应用.【分析】作出平行四边形,结合图象得到平行四边形中的整数点的个数.【解答】解:当t=0时,平行四边形ABCD内部的整点有(1,1);(1,2);(2,1);(2,2);(3,1);(3,2)共6个点,所以N(0)=6作出平行四边形ABCD将边OD,BC变动起来,结合图象得到N(t)的所有可能取值为6,7,8故答案为:6;6,7,8【点评】本题考查画可行域、考查数形结合的数学思想方法.三、解答题(共6小题,满分80分)15.(13分)(2011•北京)已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.【考点】三角函数的周期性及其求法;两角和与差的余弦函数;三角函数的最值.【专题】三角函数的图像与性质.【分析】(Ⅰ)利用两角和公式和二倍角公式对函数的解析式进行化简整理后,利用正弦函数的性质求得函数的最小正周期.(Ⅱ)利用x的范围确定2x+的范围,进而利用正弦函数的单调性求得函数的最大和最小值.【解答】解:(Ⅰ)∵,=4cosx()﹣1=sin2x+2cos2x﹣1=sin2x+cos2x=2sin(2x+),所以函数的最小正周期为π;(Ⅱ)∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=,即x=时,f(x)取最大值2,当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的最值.解题的关键是对函数解析式的化简整理.16.(13分)(2011•北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(注:方差,其中的平均数)(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.【考点】茎叶图;众数、中位数、平均数;极差、方差与标准差.【专题】概率与统计.【分析】(1)根据所给的这组数据,利用求平均数的公式,把所有的数据都相加,再除以4,得到平均数,代入求方差的公式,做出方差.(2)本题是一个等可能事件的概率.分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,可以列举出共有4种结果,根据等可能事件的概率公式得到结果.【解答】解:(1)当X=8时,由茎叶图可知乙组同学的植树棵树是8,8,9,10,∴平均数是,方差是+=.(2)由题意知本题是一个等可能事件的概率.若X=9,分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,包括:(9,10),(11,8),(11,8),(9,10)共有4种结果,∴根据等可能事件的概率公式得到P=.【点评】本题考查一组数据的平均数和方差,考查等可能事件的概率,考查利用列举法来列举出符合条件的事件数和满足条件的事件数,本题是一个文科的考试题目.17.(14分)(2011•北京)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G 分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【专题】空间位置关系与距离;立体几何.【分析】(Ⅰ)根据两个点是两条边的中点,得到这条线是两条边的中位线,得到这条线平行于PC,根据线面平行的判定定理,得到线面平行.(Ⅱ)根据四个点是四条边的中点,得到中位线,根据中位线定理得到四边形是一个平行四边形,根据两条对角线垂直,得到平行四边形是一个矩形.(Ⅲ)做出辅助线,证明存在点Q到四面体PABC六条棱的中点的距离相等,根据第二问证出的四边形是矩形,根据矩形的两条对角线互相平分,又可以证出另一个矩形,得到结论.【解答】证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE⊄平面BCP,∴DE∥平面BCP.(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG=EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN,与(Ⅱ)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN=EG,∴Q为满足条件的点.【点评】本题考查直线与平面平行的判定,考查三角形中位线定理,考查平行四边形和矩形的判定及性质,本题是一个基础题.18.(13分)(2011•北京)已知函数f(x)=(x﹣k)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(I)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)根据(I),对k﹣1是否在区间[0,1]内进行讨论,从而求得f(x)在区间[0,1]上的最小值.【解答】解:(Ⅰ)f′(x)=(x﹣k+1)e x,令f′(x)=0,得x=k﹣1,f′(x)f(x)随x的变化情况如下:x (﹣∞,k﹣1)k﹣1 (k﹣1,+∞)f′(x)﹣0 +f(x)↓﹣e k﹣1↑∴f(x)的单调递减区间是(﹣∞,k﹣1),f(x)的单调递增区间(k﹣1,+∞);(Ⅱ)当k﹣1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(0)=﹣k;当0<k﹣1<1,即1<k<2时,由(I)知,f(x)在区间[0,k﹣1]上单调递减,f(x)在区间(k﹣1,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(k﹣1)=﹣e k﹣1;当k﹣1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减,∴f(x)在区间[0,1]上的最小值为f(1)=(1﹣k)e;综上所述f(x)min=.【点评】此题是个中档题.考查利用导数研究函数的单调性和在闭区间上的最值问题,对方程f'(x)=0根是否在区间[0,1]内进行讨论,体现了分类讨论的思想方法,增加了题目的难度.19.(14分)(2011•北京)已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)根据椭圆离心率为,右焦点为(,0),可知c=,可求出a的值,再根据b2=a2﹣c2求出b的值,即可求出椭圆G的方程;(Ⅱ)设出直线l的方程和点A,B的坐标,联立方程,消去y,根据等腰△PAB,求出直线l方程和点A,B的坐标,从而求出|AB|和点到直线的距离,求出三角形的高,进一步可求出△PAB的面积.【解答】解:(Ⅰ)由已知得,c=,,解得a=,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0==﹣,y0=x0+m=,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k=,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d=,所以△PAB的面积s=|AB|d=.【点评】此题是个中档题.考查待定系数法求椭圆的方程和椭圆简单的几何性质,以及直线与椭圆的位置关系,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.20.(13分)(2011•北京)若数列A n:a1,a2,…,a n(n≥2)满足|a k+1﹣a k|=1(k=1,2,…,n﹣1),则称A n为E数列,记S(A n)=a1+a2+…+a n.(Ⅰ)写出一个E数列A5满足a1=a3=0;(Ⅱ)若a1=12,n=2000,证明:E数列A n是递增数列的充要条件是a n=2011;(Ⅲ)在a1=4的E数列A n中,求使得S(A n)=0成立得n的最小值.【考点】数列的应用.【专题】点列、递归数列与数学归纳法.【分析】(Ⅰ)根据题意,a2=±1,a4=±1,再根据|a k+1﹣a k|=1给出a5的值,可以得出符合题的E数列A5;(Ⅱ)从必要性入手,由单调性可以去掉绝对值符号,可得是A n公差为1的等差数列,再证充分性,由递增数列的性质得出不等式,再利用同向不等式的累加,可得a k+1﹣a k=1>0,A n是递增数列;(Ⅲ)由|a k+1﹣a k|=1,可得a k+1≥a k﹣1,再结合已知条件a1=4,可得n的最小值.【解答】解:(Ⅰ)0,1,0,1,0是一个满足条件的E数列A5(答案不唯一,0,﹣1,0,﹣1,0或0,±1,0,1,2或0,±1,0,﹣1,﹣2或0,±1,0,﹣1,0都满足条件的E数列A5)(Ⅱ)必要性:因为E数列A n是递增数列所以a k+1﹣a k=1(k=1,2, (1999)所以A n是首项为12,公差为1的等差数列.所以a2000=12+(2000﹣1)×1=2011充分性:由于a2000﹣a1999≤1a1999﹣a1998≤1…a2﹣a1≤1,所以a2000﹣a1≤1999,即a2000≤a1+1999又因为a1=12,a2000=2011所以a2000≤a1+1999故a k+1﹣a k=1>0(k=1,2,…,1999),即A n是递增数列.综上所述,结论成立.(Ⅲ)对首项为4的E数列A n,由于a2≥a1﹣1=3a3≥a2﹣1≥2…a8≥a7﹣1≥﹣3…所以a1+a2+…+a k>0(k=2,3,…,8),所以对任意的首项为4的E数列A n,若S(A n)=0,则必有n≥9,又a1=4的E数列A9:4,3,2,1,0,﹣1,﹣2,﹣3,﹣4满足S(A9)=0,所以n的最小值是9.【点评】本题以数列为载体,考查了不等式的运用技巧,属于难题,将题中含有绝对值的等式转化为不等式是解决此题的关键.。
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =, 其中S 为底面积, h 为高. 一、填空题:本大题共14小题, 每小题5分, 共计70分.请把答案填写在答题卡相应位置.......上.. 1.已知集合{124}A =,,, {246}B =,,, 则A B = ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本, 则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,, 117ii 12ia b -+=-(i 为虚数单位), 则a b +的值 为 ▲ .4.右图是一个算法流程图, 则输出的k 的值是 ▲ . 5.函数6()12log f x x =-的定义域为 ▲ .6.现有10个数, 它们能构成一个以1为首项, 3-为公比的 等比数列, 若从这10个数中随机抽取一个数, 则它小于8 的概率是 ▲ .7.如图, 在长方体1111ABCD A B C D -中, 3cm AB AD ==, 12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中, 若双曲线22214x y m m -=+的离心率5 则m 的值为 ▲ .9.如图, 在矩形ABCD 中, 22AB BC ==,点E 为BC 的中点, 点F 在边CD 上, 若2AB AF =, 则AE BF 的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数, 在区间[11]-,上,开始 结束k ←1k 2-5k +4>0输出k k ←k +1NY (第4题)FD DABC 1 1D 1A1B(第7题)0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角, 若4cos 65απ⎛⎫+= ⎪⎝⎭, 则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中, 圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点, 使得以该点为圆心,1为半径的圆与圆C 有公共点, 则k 的最大值是 ▲ . 13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,, 则实数c 的值为 ▲ . 14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题, 共计90分.请在答题卡指定区域.......内作答, 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中, 已知3AB AC BA BC =. (1)求证:tan 3tan B A =;(2)若5cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中, 1111A B AC =,D E,分别是棱1BC CC ,上的点(点D 不同于点C ), 且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .(第9题)1A1C FDCAE1B17.(本小题满分14分) 如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小), 其飞行高度为3.2千米,试问它的横坐标a 不超过多少时, 炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点 已知a , b 是实数, 1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+, 求()g x 的极值点;(3)设()(())h x f f x c =-, 其中[22]c ∈-,, 求函数()y h x =的零点个数.19.(本小题满分16分)如图, 在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和3e ⎛ ⎝⎭,都在椭圆上, 其中e(第16题)x (千米y (千米)O(第17题)(1)求椭圆的离心率;(2)设A , B 是椭圆上位于x 轴上方的两点, 且直线1AF与直线2BF 平行, 2AF 与1BF 交于点P .(i )若126AF BF -=, 求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:122n n n n n a n a b *+=∈+N .(1)设11n n nb b n a *+=+∈N ,, 求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设12nn nb b n a *+=∈N ,, 且{}n a 是等比数列, 求1a 和1b 的值.绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题, 请选定其中两题.......,. 并在相应的答题区域内作...........答...若多做, 则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图, AB 是圆O 的直径, D , E 为圆上位于AB 异侧的两点, 连结BD 并延长至点C , 使BD= DC , 连结AC , AE , DE . 求证:E C ∠=∠.B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A , 求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分)(第21-A 题)AED CO在极坐标中,已知圆C 经过点()24Pπ,,圆心为直线()3sin 32ρθπ-=-与极轴的交点, 求圆C 的极坐标方程. D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x , y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题, 每题10分, 共计20分.请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量, 从棱长为1的正方体的12条棱中任取两条, 当两条棱相交时, 0ξ=;当两条棱平行时, ξ的值为两条棱之间的距离;当两条棱异面时, 1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列, 并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…, n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈, 则2x A ∉;③若nP x A ∈, 则2nP x A ∉.(1)求(4)f ;(2)求()f n 的解析式(用n 表示).江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则 A∪B= {1,2,4,6} .考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是 5 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为 6 cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为 2 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10 .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中,令y=0,得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在 k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.:(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx,得 f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根 x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:( i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5个零点.( i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考点:直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.点评本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.:20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.数列递推式;等差关系的确定;等比数列的性质.考点:等差数列与等比数列.专题:分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4)(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k为奇数,可求解答:解(1)当n=4时,P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4}故f(4)=4(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,于是x=m•2k,其中m为奇数,k∈N*由条件可知,若m∈A,则x∈A,⇔k为偶数若m∉A,则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定,设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数,当n为偶数时(或奇数时),P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,。
圆锥曲线的定义与性质曲线名称圆(Circle)椭圆(Ellipse)双曲线(Hyperbola)抛物线(Parabola)标准方程x2+y2=r2(r>0)x y22221+=(a>b>0)a bx y22221-=(a,b>0)y2=2px(p>0)a bP P A抛物线的切点弦性质PF1+PF2=2a P PF1-PF2=2a抛物线的切点弦中点与极定义AF1BF2F1F2(2a>F F)12F1F2(0<2a<F F)12P M2M1B点连线的中点在抛物线上;特别地,若切点弦过抛物线体系PF1PF2=l( l>0且 l¹1)焦点三角形面积qS=b2tan△PF F122焦点三角形面积qS=b2cot△PF F122焦点 F,则ÐAPB为直角且PF^AB一P光学性质O切线方程x x+y y=r200F1F2切线方程x x y y002+2=1a bF1F2F切线方程x x y y02021-=a b切线方程y y=p x+x()00从一个焦点射出的光线的反射光线过另一个从一个焦点射出的光线的反射光线的反向延从圆心射出的光线的反射光线仍经过从焦点射出的光线的反射光线与对称轴平行焦点长线经过另一个焦点圆心P等张角线极坐标方程r=ep1-ecosq体系二对线段 AB张角相同的点的轨迹HlP PFPH=e PlHPFPH=eHlPA B PF=PH通径长F FF通径长通径长d=2p 2b2d==2epa2b2d==2epa体系BO定义1k×k=-PAPBAPAOPBk×k=-PAPBb2a2AOPBk×k=PAPBb2a2直线与圆锥曲线弦长公式!l=1+k x-x=1+m y-y=n×t-t22121212面积公式三垂径定理AMOBk×k=-1OMABAMOBba22k×k=-OM AB1AOM Bk×k=OMABb2a211212S=底×高 =水平宽×铅直高=l lsinq212位置关系椭圆的等效判别式 D=a2A2+b2B2-C2双曲线的等效判别式2(2222)D=C-a A-b B圆锥曲线的解题常见思路关键词一般情况过定点的直线弦长面积点与曲线的位置关系★引入参数控制运动,以交点坐标★弦长公式★利用共线或平行条件进行等积★将点代入圆锥曲线方程中再将定点在y轴上时用斜截式表示定点在x轴上时用倒斜横截式表示为中间变量表示其他所有几何量★两点间距离公式变换方程改写为不等式定点不在轴上时用参数方程表示★利用直线方程消去纵(横)坐标★三角形面积公式★若方程Px2+Qx+R=0的两根提示→将直线方程代入曲线方程(联立)→通过韦达定理消去另一坐标时,两根之差为x-x=12DP★四边形的面积公式12l l sinq12★四边形的对角线往往是相关的有时也直接求解坐标★注意参数的取值范围,需要保证★面积比往往转化为共线线段比直线与圆锥曲线相交关键词直线与圆锥曲线的位置关系焦点中点定比分点共线、平行、垂直★联立直线与曲线方程后通过判★两个焦点→体系一★注意取中点构造中位线★弦所在直线过焦点时,可补对应★利用斜率或向量表示别式判断★一个焦点★中点坐标公式★共线也可以利用点在另外两点准线后构造相似三角形提示★直接利用等效判别式判断→补焦点→体系一→补准线→体系二xx+x y+y=12,12y=22★利用定比分点坐标公式或利用直线的参数方程转化.所确定的直线上表示★注意利用极坐标方程★“x=a x(a¹-1)”21Û2æx+xöx x a.=ç12÷121èøa+关键词以AB为直径的圆过C垂直平分线关于直线…对称关于原点对称的两点与原点连线相互垂直★以AB为直径的圆过C★P在AB的垂直平分线上★A、B关于l对称★有关斜率的问题→体系三★利用相关直线设直线斜率ÛÐACB=90°ÛPA=PBÛl是AB的垂直平分线★注意取中点构造中位线★化齐次联立ÛMC=MA(M为AB中点)ÛPM^AB(M为AB中点)★注意对称变换下的几何不变量提示★斜率的比值计算可以平方后用★注意“姐妹圆”圆锥曲线的方程进行整理111=+r a b222R=a+b 222关键词与定点的两连线垂直向量的运算成锐角(直角、钝角)过…与…交点的曲线其他★利用相关直线设直线斜率★向量数乘→共线★转化为向量夹角★利用交点曲线系得到曲线方程★当运动由圆锥曲线上的单点驱向量和差→平行四边形法则借助向量数量积的符号判断动时注意利用圆锥曲线的参数方程★平移坐标系转化为与原点的连向量相等→形成平行四边形★极限思想,利用切线方程得到定线相互垂直的问题向量数量积→投影长度提示点或定值的具体数据★利用仿射变换★在求形如()()x-t x-t的值时,12可以将方程整理为形如改造椭圆为圆改造斜交直线为垂直直线20A(x-t)+B(x-t)+C=的形式2。
2011年高考试题数学圆锥曲线(理科)解析数学一、选择题:1. (2011年高考山东卷理科8)已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=3. (2011年高考全国新课标卷理科7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3 答案:B解析:由题意知,AB 为双曲线的通径,所以,AB a a b 422==,222=∴ab又3122=+=ab e ,故选B.点评:本题考查双曲线标准方程和简单几何性质,通过通经与长轴的4倍的关系可以计算出离心率的关键22ab 的值,从而的离心率。
4.(2011年高考浙江卷理科8)已知椭圆22122:1(0)x y C a b a b+=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则 (A )2132a =(B )213a = (C )212b = (D )22b = 【答案】 C【解析】由1C 恰好将线段AB 三等分得133A A x x x x =⇒=,由222A y x x x y=⎧⇒=⎨+⎩,x ∴=y=) 在椭圆上,1=2211a b ⇒=又225,a b -=212b ∴=,故选C 5.(2011年高考安徽卷理科2)双曲线x y 222-=8的实轴长是(A )2 (B)【答案】A【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C.6. (2011年高考湖南卷理科5)设双曲线()019222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为A.4B. 3C. 2D. 18.(2011年高考陕西卷理科2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是(A )28y x =- (B )28y x = (C )24y x =- (D )24y x = 【答案】B【解析】:设抛物线方程为2y ax =,则准线方程为4a x =-于是24a-=-8a ⇒= 9. (2011年高考四川卷理科10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-10. (2011年高考全国卷理科10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45- 【答案】D【解析】:24(1,0)y x F = 得,准线方程为1x =-,由24(1,2),(4,4)24y xA B y x ⎧=-⎨=-⎩得=,由抛物线的定义得2,5AF BF ==由余弦定理得4cos 5AFB ∠==- 故选D11.(2011年高考福建卷理科7)设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2D .2332或 【答案】A二、填空题:1.(2011年高考辽宁卷理科13)已知点(2,3)在双曲线C :1by -a x 2222=(a >0,b >0)上,C 的焦距为4,则它的离心率为_____________.3. (2011年高考江西卷理科14)若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y +=【解析】因为一条切线为x=1,且直线AB 恰好经过椭圆的右焦点和上顶点,所以椭圆的右焦点为(1,0),即1c =,设点P (1,12),连结OP,则OP ⊥AB,因为12OP k =,所以2AB k =-,又因为直线AB 过点(1,0),所以直线AB 的方程为220x y +-=,因为点(0,)b 在直线AB 上,所以2b =,又因为1c =,所以25a =,故椭圆方程是22154x y +=.4. (2011年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上,。
第十六讲 圆锥曲线的定义、性质和方程(一)★★★高考在考什么【考题回放】1.已知AB 为过抛物线y 2=2px 焦点F 的弦, 则以AB 为直径的圆与抛物线的准线(B)A .相交B .相切C .相离D .与p 的取值有关2.(江苏理)在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为x -2y =0,则它的离心率为 ( A )A.2 3.点P(a ,b )是双曲线x 2-y 2=1右支上一点,且Pa+b =(B ) A 、- B 、C 、-2D 、24.(湖南)设F 1 、F 2分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在P 使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( D )A.0⎛ ⎝⎦B.0⎛ ⎝⎦C.1⎫⎪⎪⎣⎭D.1⎫⎪⎪⎣⎭5.(湖北理)双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为F 1 、F 2;抛物线C 2的准线为l ,焦点为F 2;C 1与C 2的一个交点为M ,则12112F F MF MF MF -等于( A )A .1-B .1C .12-D .126.(全国一)抛物线y 2=4x 的焦点为F ,准线为l ,经过F在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( C)A .4 B...87.(福建理)以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆方程是 ( A )A .x 2+y 2-10x +9=0 B .x 2+y 2-10x +16=0 C .x 2+y 2+10x +16=0D .x 2+y 2+10x +9=08.(辽宁)设椭圆2212516x y +=上一点P 到左准线的距离为10,F 是该椭圆的左焦点,若点M 满足1()2OM OP OF =+ ,则||OM =2★★★高考要考什么【热点透析】一、圆锥曲线的定义1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
即:{P| |PF 1|+|PF 2|=2a, (2a>|F 1F 2|)}。
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。
即{P| ||PF 1|-|PF 2||=2a, (2a<|F 1F 2|)}。
3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
二、圆锥曲线的方程。
1.椭圆:22221x y a b +=(a>b>0)或22221y x a b +=(a>b>0)(其中,a 2=b 2+c 2)2.双曲线:22221x y a b -=(a>0, b>0)或22221y x a b-=(a>0, b>0)(其中,c 2=a 2+b 2)3.抛物线:y 2=±2px (p>0),x 2=±2py (p>0)三、圆锥曲线的性质 知识要点:1.椭圆:22221x y a b+=(a>b>0)(1)范围:|x|≤a ,|y|≤b (2)顶点:(±a,0),(0,±b) (3)焦点:(±c,0)(4)离心率:e=∈(0,1) (5)准线:2a x c=±2.双曲线:22221x y a b-=(a>0, b>0)(1)范围:|x|≥a, y ∈R (2)顶点:(±a,0) (3)焦点:(±c,0)(4)离心率:c e a =∈(1,+∞) (5)准线:2a x c=± (6)渐近线:by x a =±3.抛物线:y 2=2px(p>0)(1)范围:x ≥0, y ∈R (2)顶点:(0,0) (3)焦点:(2p,0) (4)离心率:e=1 (5)准线:x=-2p 主要题型:(1)定义及简单几何性质的灵活运用;(2)求曲线方程(含指定圆锥曲线方程及轨迹方程)。
★★★突破重难点【例1】若F 1、F 2为双曲线12222=-by a x 的左、右焦点,O 为坐标原点,点P 在双曲线的左支上,点M 在双曲线的右准线上,且满足:,1OM OF F +==λ)0(>λ,则该双曲线的离心率为( ) A .2B .3C .2D .3 解:由F =1知四边形F 1OMP是平行四边形,又λ=知OP 平分∠F 1OM ,即F 1OMP 是菱形,设|OF 1|=c ,则|PF 1|=c .又|PF 2|-|PF 1|=2a , ∴|PF 2|=2a+c , 由双曲线的第二定义知122+=+=ec c a e ,且e >1,∴e=2,故选C . 【例2】学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:航天器运行(按顺时针方向)的轨迹方程为12510022=+y x ,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y 轴为对称轴、⎪⎭⎫ ⎝⎛764,0M 为顶点的抛物线的实线部分,降落点为)0,8(D . 观测点)0,6()0,4(B A 、同时跟踪航天器.(1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在x 轴上方时,观测点B A 、测得离航天器的距离分别为多少时,应向航天器发出变轨指令?解:(1)设曲线方程为7642+=ax y , 由题意可知,764640+⋅=a . 71-=∴a .∴ 曲线方程为764712+-=x y .(2)设变轨点为),(y x C ,根据题意可知⎪⎪⎩⎪⎪⎨⎧+-==+)2(,76471)1(,125100222x y y x得 036742=--y y ,4=y 或49-=y (不合题意,舍去).4=∴y .得 6=x 或6-=x (不合题意,舍去).∴C 点的坐标为)4,6(,4||,52||==BC AC .答:当观测点B A 、测得BC AC 、距离分别为452、时,应向航天器发出指令. 【例3】如图1,已知A 、B 、C 是长轴为4的椭圆上三点,点A 是长轴的一个顶点,BC过椭圆中心O ,且0AC BC ∙= ,2BC AC =。
(1)建立适当的坐标系,求椭圆方程;(2)如果椭圆上两点P 、Q 使直线CP 、CQ 与x 轴围成底边在x 轴上的等腰三角形,是否总存在实数λ使PQ AB λ=?请给出证明。
解:(1)以O 为原点,OA 所在的直线为x 轴建立如图直角坐标系,则A (2,0),椭圆方程可设为2221(02)4x y b b+=<<。
而O 为椭圆中心,由对称性知|OC|=|OB|又0AC BC ∙=,所以AC ⊥BC 又2BC AC =,所以|OC|=|AC|,所以△AOC 为等腰直角三角形,所以点C 坐标为(1,1)。
将(1,1)代入椭圆方程得243b =,则椭圆方程为223144x y +=。
(2)由直线CP 、CQ 与x 轴围成底边在x 轴上的等腰三角形,设直线CP 的斜率为k ,则直线CQ 的斜率为-k ,直线CP 的方程为y -1=k (x -1),直线CQ 的方程为y -1=-k (x -1)。
由椭圆方程与直线CP 的方程联立,消去y 得(1+3k 2)x 2-6k (k -1)x +3k 2-6k -1=0①因为C (1,1)在椭圆上,所以x =1是方程①的一个根,于是2236113P k k x k --=+ 同理2236113Q k k x k+-=+ 这样,13P Q PQ P Q y y k x x -==-, 又B (-1,-1),所以13AB k =,即k AB =k PQ 。
所以PQ ∥AB ,存在实数λ使PQ AB λ=。
【例4】如图,直线l 1和l 2相交于点M ,l 1 ⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM |=17,|AN |=3,且|BN |=6.建立适当的坐标系,求曲线C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛线段的一段,其中A 、B 分别为C 的端点.设曲线段C 的方程为y 2=2px (p >0),(x A ≤x ≤x B ,y >0),其中x A ,x B 分别为A ,B 的横坐标,P =|MN |.所以 M (-2P ,0),N (2P,0). 由 |AM |=17,|AN |=3得(x A +2P )2+2Px A =17, ① (x A -2P )2+2Px A =9. ②由①、②两式联立解得x A =P4,再将其代入①式并由p >0解得⎩⎨⎧==14A x p 或⎩⎨⎧==22A x p . 因为△AMN 是锐角三角形,所以2P>x A ,故舍去⎩⎨⎧==22Ax p .∴ P =4,x A =1.由点B 在曲线段C 上,得x B =|BN |-2P=4. 综上得曲线段C 的方程为y 2=8x (1≤x ≤4,y >0).解法二:如图建立坐标系,分别以l 1、l 2为x 、y 轴,M 为坐标原点.作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2,垂足分别为E 、D 、F . 设 A (x A ,y A )、B (x B ,y B )、N (x N ,0). 依题意有x A =|ME|=|DA|=|AN|=3, y A =|DM |=22DA AM -=22,由于△AMN 为锐角三角形,故有x N =|AE |+|EN |=4.=|ME |+22AE AN -=4X B =|BF |=|BN |=6.设点P (x ,y )是曲线段C 上任一点,则由题意知P 属于集合 {(x ,y )|(x -x N )2+y 2=x 2,x A ≤x ≤x B ,y >0}. 故曲线段C 的方程y 2=8(x -2)(3≤x ≤6,y >0).。