数学例题,如何进行“变式”
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
例谈初中数学教学中变式题的应用技巧初中数学教学中,变式题是非常重要的一部分。
变式题能够帮助学生理解数学知识,并且提高他们的解决问题的能力。
本文将介绍一些关于初中数学教学中变式题的应用技巧,希望能够对教师和学生有所帮助。
一、培养学生的逻辑思维能力在教学过程中,教师应该注重培养学生的逻辑思维能力。
变式题往往需要学生进行逻辑推理,找出其中的规律。
教师可以通过分析变式题的解题思路,向学生展示逻辑推理的过程,引导学生学会从已知条件中推断出结果。
在课堂上,教师还可以设计一些有趣的逻辑推理游戏,帮助学生提高逻辑思维能力,从而更好地理解变式题的求解方法。
二、注重培养学生的解决问题能力变式题的求解过程往往需要学生进行灵活的思维和分析,教师在教学中应该注重培养学生的解决问题能力。
可以通过设计一些实际生活中的问题,让学生运用所学的知识去解决,帮助学生理解抽象的数学知识,并且提高他们的解决问题能力。
在课堂上,教师可以组织学生进行小组讨论,让学生通过交流和讨论,学会倾听他人的观点,发现问题的不同解决方法。
三、设计丰富多样的练习题目为了帮助学生更好地掌握变式题的求解方法,教师应该设计丰富多样的练习题目。
变式题的种类很多,包括代数式的变式、几何图形的变式等等,教师可以根据学生的实际情况,设计不同类型的练习题目。
教师还可以根据教材内容,设计一些拓展性的练习题目,帮助学生更加深入地理解变式题的求解方法。
四、注意引导学生发现问题的变化规律在变式题的教学中,教师应该注重引导学生发现问题的变化规律。
变式题的求解过程往往涉及到问题的变化规律,教师在引导学生解题的过程中,应该注重启发学生思维,帮助学生通过观察和分析,找出其中的规律。
在课堂上,教师可以通过举一反三的方式,设计一些相关的问题,让学生通过比较和分析,发现问题的变化规律。
五、关注学生的学习习惯和方法在变式题的教学过程中,教师还应该关注学生的学习习惯和方法。
变式题的学习需要学生有很好的思维习惯和解题方法,教师可以通过课堂讲解、作业布置等方式,引导学生建立正确的学习习惯和解题方法。
数学归纳法的七种变式及其应用1 引言数学归纳法是数学中关于自然数命题的主要证明方法.学会并熟练运用这种方法,不仅可以帮助我们学习有关自然数的命题,而且还可以使我们更有力地解决相关问题.一般地说,与正整数有关的恒等式、不等式、数的整除性、数列的通项及前n 项和等问题,都可以用数学归纳法解决.这种方法的难点在于由n k =时成立,去证1n k =+时成立.很多情形下用常规的方法由n k =成立时,去推1n k =+成立会走进死胡同,这时须另辟他径,完成证明.本文旨在通过对数学归纳法的主要七种变式加以剖析,以及一些证法技巧的介绍,使初学者提高对数学归纳法的认识和应用能力.2 数学归纳法的原理和定义 2.1 数学归纳法的原理[1](36)P假定对一切自然数n ,我们有一个命题,设为()M n .如果下面两条成立: (1) (1)M 是真命题;(2) 对于任意的k ,()M k 是真命题蕴含着(1)M k +是真命题,则对一切自然数n 命题()M n 为真命题.2.2 数学归纳法的定义当0n n =时某命题正确,若在n k =正确的情况下,能推出1n k =+也正确,便可递推下去.虽然我们没有对所有的自然数逐一的加以验证,但事实上这种递推就已经把所有自然数都验证了.这种方法就是数学归纳法.其步骤是: (1) 验证当0n n =时某命题正确(2) 假设n k =时,命题正确,从而推出当1n k =+时命题也正确.因此原命题正确.其中第一步是递推的基础,解决了特殊性;第二步是递推的依据,解决了从有限到无限的过度,这两步缺一不可,若只有第一步,则属于不完全归纳法;若只有第二步,则失去了假设的基础.对于1n k =+时的证明是整个数学归纳法的重点和难点.3 数学归纳法的七种变式和应用3.1 第一数学归纳法3.1.1 这种方法是我们运用最多的,也是应用最广泛的一种方法.其步骤为[2](18)P :(1) 奠基步骤:证明当n 取第一个允许值0n 时,结论正确 .注意0n 不一定是1,也可能是其他的自然数.(2) 递推步骤:假设当n k =(0,k N k n ∈>)时结论正确,并以此来证明1n k =+时结论也正确.由步骤(1)、(2)得出结论:命题对于从0n 开始的一切自然数均成立. 3.1.2 例题解析 例1 求证1111223(1)1nn n n ++⋅⋅⋅+=⨯⨯++ (n N ∈) 证明 (1) 当1n =时,111211=⨯+这显然是成立的. (2) 假设n k =时命题正确;即:1111223(1)1kk k k ++⋅⋅⋅+=⨯⨯++ 则当1n k =+时,11111223(1)(1)(2)k k k k ++⋅⋅⋅++⨯⨯+++ 11(1)(2)k k k k =++++ (2)11(1)(2)2k k k k k k +++==+++所以,对于所有的自然数n ,等式都成立.例2 求证 111111234212n n -+-+⋅⋅⋅+--111()122n N n n n=++⋅⋅⋅+∈++ 证明 (1) 当1n =时;左边11112211-===+右边. (2) 假设n k =时等式成立,即:111111234212k k -+-+⋅⋅⋅+--111122k k k=++⋅⋅⋅+++ 当1n k =+时,左边1111111(1)2342122122k k k k =-+-+⋅⋅⋅+-+--++11111()1222122k k k k k =++⋅⋅⋅++-++++ 111112322122k k k k k =++⋅⋅⋅+++++++=右边 即1n k =+时等式成立 .由(1)(2)得对于一切*n N ∈等式成立.例3 设n N ∈用数学归纳法证明:224621n n n +++⋅⋅⋅+=++ 证明 假设当n k =时等式成立,即 224621k k k +++⋅⋅⋅+=++ 那么,当1n k =+时,有24622(1)k k +++⋅⋅⋅+++ 212(1)k k k =++++ 2(1)(1)1k k =++++ 这就是说当 1n k =+时等式成立.所以,n N ∈时,224621n n n +++⋅⋅⋅+=++成立.剖析 这是一种错证,缺少第一步.实际上当1n =时等式不成立,题目本身是个错题.不要以为第一步“当1n =时等式成立”无关紧要,可有可无,缺少第一步相当于失去了归纳基础,缺少第一步也会导出荒谬的结论,例如可以证出所有自然数都相等的结论.事实上,假定1k k =+成立,两边各加1就会得出:12k k +=+由此可得出全体自然数相等!例4 1n <+ (*)n N ∈.证明 (1) 当1n =11<+,不等式成立.(2) 假设当n k =1k <+成立那么,当1n k =+2(1)1k k <=+=++这就是说,当1n k =+时成立.综合(1)(2)知原不等式对(*)n N ∈成立.剖析 这种证法是错误的,在数学归纳法的第二步中,在推证1n k =+时命题也成立的时候必须把归纳假设即n k =时的命题作为条件用上,否则就不是数学归纳法了.正解 (1) 当1n =11<+不等式成立.(2) 假设当n k =1k <+,也就是22(1)k k k +<+那么,当1n k =+<2(1)1k k <=+=++就是说,当1n k =+时不等式也成立. 综合(1)(2)知原不等式对n N ∈成立. 3.2 第二数学归纳法 3.2.1[2](58)P 通过仔细学习数学归纳法原理,不难发现,如果将归纳假设改写成“假设当n k≤时,命题成立”,那里的证明仍可通过,这就启发我们在必要的时候,可以将归纳假设中的“n k =”改写为“n k ≤”事实上在很多问题的证明中,我们就是这么做的.这种假设形式的数学归纳法称作第二数学归纳法.3.2.2 例题剖析 例5[2](60)P 证明每一个正整数都可以表示成互不相同的斐波那契数列之和.证明 首先来看一下关于斐波那契数列,所谓的斐波那契数列是按照法则:12211,(1)n n n M M M M M n ++===+≥所定义的数列.当1n =时,有11M =知原命题成立.假设当n k ≤时,命题成立,要证对1n k =+时命题成立,也就是要证明1k +可以表示成不同的斐波那契数列之和.观察斐波那契数列可发现从3M 开始斐波那契数列严格单调上升,故知存在m 使:11m m M k M +≤+<,如果1m k M +=则命题成立;如果1m k M +>,则有01m k M k <+-≤由于1m k M +-是一个不超过k 的自然数,所以由归纳假设知对其命题成立,即可将它表示成互不相同的斐波那契数列之和.又因为111m m m m k M M M M +-+-<-=所以用以表示(1)m k M +-的斐波那契数均小于1m M -,因此都不与m M 相同,当将1k +写成m M 与这些数的和之后,即得到了1n k =+时的命题,可见对1n k =+,命题也成立,所以对一切自然数n 命题都成立.在这里,由于我们是对(1)m k M +-使用归纳假设而(1)m k M +-并不一定就等于k ,而是有可能小于k .所以若采用“n k =”的归纳假设形式就会很麻烦了.例6 已知对一切,0,n n N a ∈>且3211()nnjj j j aa ===∑∑,证明 n a n =.证明 当1n =时由3211a a =及0n a >,知11a =,命题成立.假设当n k ≤时,命题已成立,即有,1,2,,j a j j k ==⋅⋅⋅.要证,也有11k a k +=+,此时,一方面有:3333121k k a a a a +++⋅⋅⋅++23121()k k a a a a +=++⋅⋅⋅++,另一方面有 3333121k k a a a a +++⋅⋅⋅++2121()k k a a a a +=++⋅⋅⋅++22121121()2()k k k k a a a a a a a a ++=++⋅⋅⋅++++⋅⋅⋅++ 比较上述两式:即得:32111212()k k k k a a a a a a +++=++⋅⋅⋅++将121,2,,k a a a k ==⋅⋅⋅=代入其中,得到32111(1)k k k a k k a a +++=++又因为1k a +0>故由上式可得211(1)0k k a a k k ++--+=解此方程,得到11k a k +=+或1k a k +=-.由于10k a +>知1k a k +=-(舍).因此:1k a k +=+1从而知1n k =+时,命题也成立,所以对一切自然数都有n a n =.本题采用“n k ≤”的假设,在通过方程求解1k a +的过程中我们首先遇到的化简方程的问题,而这里面首先就是一个对12k a a a ++⋅⋅⋅+求和的问题,为了求出这个和数,离开了“命题已对n k ≤全都成立”的假设,问题就不好解决了.3.3 逆向数学归纳法 3.3.1这种命题的表述为[3](185)P :如果: (1) 对任一自然数n ,总有0n n ≥使0()p n 真.(2) ()p k 真⇒(1)p k -真. 那么,()p n 对一切自然数n 真.这种方法也可以形象地称为“留空回填”第一步证明了有无数个自然数n x 使()n p x 真(1,2,3n =⋅⋅⋅)剩下的就是()1,n n x x -上的自然数尚未证明,再由第二步,有()n p x 真⇒ (1)n p x -真⇒ … ⇒ 1(1)n p x -+真,这就把“空”填上了,所以这里的逆向倒推暗藏着正向推进的一面.3.3.2 例题解析例7 求证n 个非负数的几何平均数不大于它们的算术平均数. 证明分析 n 个非负数的几何平均数是112()nn a a a ⋅⋅⋅ 算术平均数是12na a a n++⋅⋅⋅+本题就是证明:11212()nnn a a a a a a n++⋅⋅⋅+⋅⋅⋅≤(1)证明 当1n =是,(1)式显然是成立的,如果12,,,n a a a ⋅⋅⋅里面有一个等于0,(1)式也是成立的.当2n =时,(1)式是112212()2a a a a +≤ 这可以由112212()0a a -≥推出,现在我们来证明当2pn =,p 是任意自然数的时候,定理都是成立的.假设当2kn =的时候(1)式是成立的,那么1112122()k k a a a ++⋅⋅⋅111122212221222[()()]kkkkkk a a a a aa +++=⋅⋅⋅⋅⋅⋅11122122212221[()()]2k kk kkk a a a a aa +++≤⋅⋅⋅+⋅⋅⋅1122212221[]222k kkk k ka a a a a a +++++⋅⋅⋅+++⋅⋅⋅+≤+112212k k a a a ++++⋅⋅⋅+= 所以当12k n +=的时候(1)式也成立.因此当2pn =,p 是任何自然数的时候(1)式都是成立的.进一步在推到一般的n ,我们在假设当n k =的时候(1)式成立的前提,下面来证明:当1n k =-时,它也成立. 取1211k k a a a a k -++⋅⋅⋅+=-,因为当n k =的时候(1)式是成立的.所以1211k a a a k -++⋅⋅⋅+-121k ka a a a k-++⋅⋅⋅++=1121()k k k a a a a -≥⋅⋅⋅1121121[]1k k k a a a a a a k --++⋅⋅⋅+=⋅⋅⋅-两边同时除以1121[]1k k a a a k -++⋅⋅⋅+-得11121121[]()1k k k k k a a a a a a k ---++⋅⋅⋅+≥⋅⋅⋅- 由此得11211121()1k k k a a a a a a k ---++⋅⋅⋅+≥⋅⋅⋅- 即得所证. 至此命题已得到了完全的证明.3.4 有限项数学归纳法 3.4.1 这一证法的步骤是[3](183)P :设m 为一给定的自然数如果:(1) (1)p 真;(2) ()p k 真(1)k m ≤<(1)p k ⇒+真; 那么()p n 对不超过m 的自然数n 真. 3.4.2 例题解析例8 已知,m n N ∈且3n m ≥≥ 求证:(1)mmmn n ≥+.证明 对m 用数学归纳法.(1) 当3m =时,33332323326331(1)n n n n n n n n n =+≥+>+++=+命题成立. (2) 设m k n =<命题成立.即(1)k k kn n ≥+ 则1(1)(1)()()k k k k k n k nn kn n kn k n ++=+=+≥+1(1)(1)(1)(1)k k k n kn n n n +=+>++=+这表明1m k =+时命题成立.所以原不等式成立. 3.5 跳跃式数学归纳法 3.5.1这一变式的证法步骤是[3](184)P :如果:(1)p(1),(2),,()p p m ⋅⋅⋅真;(2)()p k 真()p k m ⇒+真,那么()p n 对一切自然数n 真.3.5.2 例题解析例9 设01a <<.定义 11a a =+;11n na a a +=+ (1)n ≥ 证明;对一切n 有1n a >. 证明 (1)当1n =时,11a a =+>1命题成立.当2n =时,2221111111a a a a a a a a++=+==+>++, 命题成立. (2)假设n k =时,命题成立,1k a > 则221111111111k k k a a a a a a a a a a a ++++=+=+>+=>+++这就表明2n k =+时命题成立. 所以原命题成立.剖析 这一方法的主要证明思路是:当1,2,,n l =⋅⋅⋅时,这个命题都是成立的,并且证明了“假设当n k =时,这个命题正确,那么当n k l =+时这个命题也正确”于是当n 是任何自然数时,这个命题都是正确的. 3.6 翘翘板归纳法3.6.1 这一变式的方法是[4](34)P :有两个命题,n n A B 如果“1A 是正确的”、“假设k A 是正确的,那么k B 也是正确的”、“假设k B 是正确的,那么1k A +也是正确的.”那么,对于任何自然数n ,命题,n n A B 都是正确的.3.6.2 例题解析 例10[4](34)P 在级数137121927374861+++++++++⋅⋅⋅里,如果n a 是它的第n 项,那么:223n a n =,213(1)1n a n n -=-+这里n 是大于或者等于1的整数.求证:2211(431)2n S n n n -=-+ 221(431)2n S n n n =++ 证明 令n A =2211(431)2n S n n n -=-+ n B =221(431)2n S n n n =++.显而易见1n =时. 11A =是正确的.假设2211(431)2k S k k k -=-+,那么222211(431)3(431)22k S k k k k k k k =-++=++ 这就是说,假设假设k A 是正确的,那k B 也是正确的.又假设221(431)2k S k k k =++,那么2211(431)3(1)12k S k k k k k +=+++++ 21(1)[4(1)3(1)1]2k k k =++-++因此对于任何自然数n ,命题,n n A B 都是正确的. 即原命题正确.3.7 超限归纳法这一变式是为了证明某些特殊命题的需要,将数学归纳法从正整数集推广至所有良序集而得到的.本文对这一变式只给出原理以便读者了解这种方法,就不再给出例题及证明了.超限归纳法原理:设(,)S ≤是一个良序集,()p x 是与元素x S ∈有关的一个命题:(1) 如果对于S 中的最小元0a ,0()p a 成立.(2) 假定对于任何x a <,()p x 成立,可证明()p a 也成立.则()p x 对于任何x S ∈都成立.4 数学归纳法的简单应用及证法技巧数学归纳法在数学上是很常用的方法,很多命题都可以用这种方法加以证明,请看下例: 例11 设{}n x 是由12x =,11(*)2n n nx x n N x +=+∈定义的数列.求证:1n x n<<成立. 分析由于112n n n x x x +=+>=n x >剩下的只要证1n x n<即可,考虑到其右边是一个与n 有关的代数式.故试用数学归纳法证之.证明 (1) 当1n =时,11x <,不等式成立.(2) 设(1)n k k =≥时,不等式成立,即1k x k<,那么,1n k =+时 由112k k k x x x +=+和归纳假设,知1k x k <,所以122k x k<+ ①111kx k>②,因①,②不为同向不等式,无法完成从k 到1k +的证明. 事实上,要证明1n k =+时命题成立,只有找到关系1kA x <才能推导下去,所以,寻觅出1k x A<中的A是此题的关键所在.如果我们注意到本题开头已证n x >了.k x >, 因为1k x <所以1111221k k k x x x k k +=+<<+ 即1k x +<11k +. 例12 已知n 个圆中每两个圆都相交于两点,且无三个圆过同一点,用数学归纳法证明:这n 个圆将平面分成22n n -+块区域.分析:用数学归纳法证明几何问题时,关键是要把n k =时和1n k =+时之间的关系弄清楚. 证明 (1)当1n =时,1个圆将平面分成2块区域,而22112=-+,所以命题正确. (2)假设n k =时命题正确,即满足条件的k 个圆将平面划分成22k k -+块区域.当1n k =+时,平面上增加了2k 个交点,而这2k 个点将1k +个圆分成2k 段弧,每块弧将原来的一块区域割成了两块区域,所以平面上增加2k 块区域,所以1k +圆将平面划分成222(2)22(1)(1)2k k k k k k k -++=++=+-++块区域.所以1n k =+时命题正确,由(1)(2),得命题对一切*n N ∈都正确.例13 设*n N ∈,用数学归纳法证明:23111112222n +++⋅⋅⋅+<. 证明 (1)当1n =时,不等式显然成立.(2)假设当n k =时不等式成立,即23111112222k +++⋅⋅⋅+< 那么,当1n k =+时,有231231111111111111()112222222222222k k k ++++⋅⋅⋅++=++++⋅⋅⋅+<+⨯= 这就是说,当1n k =+时不等式成立. 综合(1)(2)知原不等式成立.剖析 在将归纳假设“23111112222k +++⋅⋅⋅+<”作为条件证明, “23111111122222k k ++++⋅⋅⋅++<”时,应设法从2311111122222k k ++++⋅⋅⋅++中配凑出 2311112222k +++⋅⋅⋅+.但若按“23111111111222222k k k +++++⋅⋅⋅++<+”要其小于1则显然是不可能!至此,有的初学者会认为此题不能用数学归纳法,其实不然,只是配凑不恰当而已. 5 学好数学归纳法的几种方法5.1 学会从头看起在数学归纳法中,最原始而又不失去重要性的地方,便是从头做起.也就是1,2,3n =的 情形,向这些简单的情形讨教是最合算的,也是最可靠的.事实上,在很多问题上,如果真把这些最开头的几步看透了弄清了,想仔细了,那么解决的办法也就有了.在数学归纳法中更是如此.若失去了基础步骤也就是第一步,可能会得出荒谬的结论.所以说基础的也是最重要的. 5.2 在起点上下功夫起点的重要不仅仅表现在验证,而是其对后面归纳过度的启示.有时我们也会遇到一些问题,在其归纳的第一步上就很难,需要认真地下一番功夫,需要开阔思路,寻找合理的切入点.如:在第一步我们证明1n =成立.而第二步的证明中需要验证2n k =+这时我们的第一步就出问题了.第一步不仅要证1n =成立,还要证2n =时成立才能满足第二步的需要. 5.3 正确选择起点和跨度在数学归纳法的基本形式之下,第一步通常总是由验证0()p n 做起,这叫做“起步”, 0n 叫做“起点”,在通常情况下,起点一般只有一个.第二步则通常是由()p k 推出(1)p k +,或者说是由“n k =”跨到“1n k =+”,即每次跨一步.换句话说通常是以“跨度1”前进的,那么,这是不是说这种安排起点和跨度的方式一定不能改变的呢?显然不是的,人们可以根据问题的需要对起点和跨度作灵活而适当的安排.不过需要注意的是绝对不能造成逻辑上的漏洞.事实上,前面我们说到的跳跃式归纳法就是灵活而又恰当的安排了起点和跨度.5.4 选择适当的归纳假设形式在数学归纳法中,归纳假设总是以“假设当n k =时命题成立”的形式出现的.其实,这并不是归纳假设的唯一形式,前文我们所谈到的“有限项归纳法”和“第二数学归纳法”都是灵活地选取了归纳假设形式.5.5 非常规的归纳途径在数学归纳法的递推步骤中,无论是常规的一步一跨,由n k =到1n k =+;还是加大跨度数步一跨;甚至改变归纳假设形式,使得可由某个n k ≤跨至1n k =+;归纳中的进军路线都是一直-----WORD格式--可编辑--专业资料-----向前,只进不退的但有的时候,这种强硬方针导致一定的困难.这时,就应当采取较为灵活的态度,改变只进不退的进军路线,采用有进有退,进退结合的方式选取一条合适的归纳途径.这种方法就是我们前文说到的逆向归纳法,这种归纳途径往往是不甚规则的,在处理诸如此类的问题时,便要求我们在归纳途径的选择上持较为灵活的态度.5.6 合理选取归纳对象这种方法的运用上涉及的范围较广,只希望读者了解有这么一种方法而已.事实上,我们有时会遇到一些问题,其中的变量不止一个.甚至并不直接与自然数n有关,这时就要求我们对该问题合理的分析对归纳对象作出合理的安排与选择.总之,数学归纳法的应用比较广泛,方法也很多,可以讲凡是关系到自然数的结论都可以用它来验证.学习和应用数学归纳法能够培养学生的运算能力、观察能力、数学化能力、逻辑思维能力和解决综合问题能力.另外,数学归纳法也是初等数学与高等数学衔接的一个纽带.--完整版学习资料分享----。
初中数学例题变式教学的实践与认识林华香(福州市长乐区朝阳中学福建·福州350200)摘要目前,笔者正在组织实施“初中数学变式教学的应用研究”的课题研究,本文结合多年的教学实践和这两年对初中数学变式教学的深入研究,谈谈自己对初中数学例题变式教学的一些做法和看法。
关键词初中数学例题变式教学研究中图分类号:G633.6文献标识码:A0前言伴随着新课改的不断深化教学体制,使得初中数学中的一些例题面临着新的教学挑战,变式教学法的应用使课堂教学更具创造性和新颖性,可以有效引导学生对多变的问题进行思考,从而提高教师的教学质量以及学生的学习效率。
例题教学作为初中数学教学过程的重要环节,有的教师却认为教材中给出的题目过于简单,往往不讲或是一带而过,或照本宣科,导致学生没能真正的理解题目中所蕴含的数学知识以及解题思想,也没能让学生能够自己去经历知识的发生与发展过程,而只是就题讲题,就知识点讲述知识点,使学生的例题学习过程总停留在表层,一知半解,模仿式学习,甚至死记硬背,结果例题讲解完后一做练习,学生仍不会解题。
对于例题的教学,我们应该有自己的智慧,以立德树人为本,以培养学生数学核心素养为目标。
1变式原则从《认知心理学》我们可以知道,在变式的学习中,知识的本质是不应当改变的,以变式为核心的教学里,要求“万变不离其宗”,“宗”才是核心,围绕知识本质核心,所教学的概念、定义、公式都是外部的表现。
因此,在变式教学中,一定要有变式原则。
1.1系统性原则学生在进行初始学习时,了解的无非是概念和定义,而教师应以螺旋式的方法,通过向外的延拓与向上的发展,在教学过程中将所学的知识组织成网络,使学生能够将零散得到的知识形成脉络,掌握类似知识概念中具有的微妙变式。
1.2目的性原则在初中数学教学中,每一个概念的讲授都有其独特性,在例题变式过程,教师的目的需明确,克服变式教学中的盲目性。
如,在学习“勾股定理”时,我通过对各种不同直角三角形之间的变式,让学生对所获的“勾三股四”加以应用。
数学母题变式讲解在数学中,母题是指一些常见的基础问题,这些问题在各种不同的数学题目中经常出现,因此我们需要熟练掌握这些母题的解法,之后才能更好地应对其他题目的挑战。
但是,随着我们的数学知识的深入学习,这些母题有时也会出现各种不同的变式,因此我们需要掌握这些变式的解法,才能更好地应对该类数学问题的解决。
一、整除问题整除问题是数学中最基础的问题之一,也是各种题目中经常出现的问题。
在解决整除问题时,我们需要掌握以下三种基础方法:1. 因数分解法:对于一个整数n,我们可以将其进行因数分解,然后找到其中所有质数的幂次,将这些幂次加一后进行连乘,得到的结果就是n的因数个数。
2. 奇偶性判断法:对于一个整数n,我们可以通过判断n的末尾数字来判断它的奇偶性。
如果n的末尾数字是0、2、4、6、8中的任何一个,那么n就是偶数;否则,n就是奇数。
3. 质数判断法:对于一个整数n,如果n是质数,那么它只能被1和n整除。
因此,我们只需要判断n能否被它的所有小于n的正整数整除即可。
当然,这些方法在不同的情况下有时也会发生变化。
例如,在一些求两个数最大公约数的问题中,我们还可以使用欧几里得算法:设a>b,将a除以b,得到商q和余数r,则有a=bq+r,再将b除以r,得到商q1和余数r1,则有b=rq1+r1,如此重复进行,直到最后余数为0为止。
二、比例问题比例问题是在巩固整数和分数的各种运算基础之后,我们需要掌握的重要问题之一。
在解决比例问题时,我们需要掌握以下方法:1. 比例关系的转换:对于两个数,我们可以将它们的值写成比例关系的形式,例如a:b,则有a/b=常数k。
在解决比例问题时,我们通常需要将两个比例值进行有序关系的转换,以便进行后续计算。
2. 变量的代入:在一些比例问题中,我们需要将某些数值用变量代入,以便进行计算。
例如,如果已知a:b=2:3,且a=6,则我们可以用变量x来表示b,然后利用比例的性质求得等式2/3=6/x,解出x=9,即可求得b的值。
初中数学教材例题的变式教学策略探究1. 引言1.1 研究背景初中数学教材例题是学生学习数学知识的重要工具,通过解题能够帮助学生深入理解数学概念和方法。
在教学中,有时候教材中的例题可能显得单一和呆板,无法激发学生的学习兴趣,也无法帮助学生拓展思维和提高解题能力。
对初中数学教材例题进行变式教学策略探究显得尤为重要。
传统的数学教学模式往往只是单纯地讲解概念和公式,然后让学生通过例题进行机械式的练习。
这种教学方法在一定程度上限制了学生的发散性思维和创造力。
通过对例题进行变式教学,可以让学生在解题过程中灵活运用所学知识,提高解决问题的能力。
变式教学也能够激发学生的兴趣,增加学习的趣味性,促进学生成为主动学习者。
针对初中数学教材例题的变式教学策略探究具有重要的现实意义,能够提高教学质量,激发学生学习的热情,促进学生全面发展。
通过对例题的改编和创新,可以为学生提供更多元化的学习经验,帮助他们更好地理解和应用数学知识。
【研究背景】1.2 研究目的研究目的是为了探究初中数学教材例题的变式教学策略,帮助学生在学习数学的过程中更好地理解和掌握知识点。
通过分析教材中的例题特点,揭示变式教学策略的基本原理,提出基于例题的具体变式教学策略,并探讨实施步骤与方法,以及通过案例分析验证教学效果。
通过这项研究,旨在帮助教师更好地选择和设计例题,提升教学效果,激发学生学习数学的兴趣,促进他们的学习动力和数学素养的提升。
也为教育教学研究领域提供新的思路和方法,促进教育教学改革和提高教学质量。
通过此研究,希望能为未来的教学实践提供有益的参考和借鉴,推动数学教育的发展和进步。
1.3 意义初中数学教材例题的变式教学策略探究具有重要的意义。
通过对例题的变式教学,可以帮助学生更深入地理解数学知识,培养他们的解决问题的能力和创新思维。
变式教学能够激发学生学习数学的兴趣,提高他们的学习积极性,从而提升学习效果。
变式教学还可以帮助教师更好地发现学生的学习情况,及时调整教学方法,促进教学质量的提升。
数学变式习题的设计习题是训练学生的思维材料,是教师将自己的思想、方法以及分析问题和解决问题的技能技巧施达于学生的载体。
要想不被千变万化的表象所迷惑,抓住本质的东西,变式教学是一种有效的办法。
通常可以利用习题变式训练学生的思维,使学生在多变的问题中受到磨练,举一反三,加深理解。
如将练习中的条件或结论做等价性变换,变更练习的形式或内容,形成新的练习变式,可有助于学生对问题理解的逐步深化。
下面本人结合理论学习和数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。
一、利用变式来改变题目的条件或结论,培养学生转化、推理、归纳、探索的思维能力。
(一)、一题多问,通过变式培养学生的创新意识和探究、概括能力牛顿说过:“没有大胆的猜想就做不出伟大的发现。
”中学生的想象力丰富,因此,可以通过例题所提供的结构特点,鼓励、引导学生大胆地猜想,以培养学生的创造性思维和发散思维。
例题1.如图(1)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.求证:△ABD∽△AEC此题是很简单的证明题,将图形变式,添加切线BF,则可变为:[变式训练]1. 如图(2)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.过B作⊙O的切线交CE延长线与F点.求证:CE:BC=BF:CF本题需证△BEF∽△CBF,若将条件进一步发展,延长AD交BF于N,则有:2. 如图(3)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.过B作⊙O的切线交CE延长线于F点,交AE延长线于N点.求证:BN·DE=BD·EN本题需证BE平分∠FBC和△ABD∽△CDE,并借助中间比推证,若再将F为BF、CE交点改为F是由C点作切线BN垂线的垂足,则又变为:3. 如图(4)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.过B作⊙O的切线交AE延长线于N点,作EF⊥BN.求证:BN·DE=BD·EN本题关键是证BE 平分∠FBC (1) (2) (3) (4)这一组变式训练将问题的条件适当发展,或增添新的条件,不断推出新的结论,能引导学生层层递进,积极探索,深化认识。
高中数学教学变式设计初探 --以排列组合问题为例1.“变式”的具体含义所谓“变式”,一方面指变更事物非本质特征以突出事物的本质特征而保持本质特征不变。
另一方面指通过变更事物的本质特征以突出事物的非本质特征。
这些变换所得的不同表现形式称为原事物的变式.变式教学则是教师运用变式来进行教学的一种方式。
2.“变式”设计应遵循的原则2.1目的性原则目的性原则指在进行变式设置的时候要紧扣教学目标,要搞清楚为什么要变,不能为变而变,要克服变式教学中的随意性。
2.2主动性原则主动性原则是指教师有意识地引导学生认识原式和变式的结构特征,主动参与到变式的构造之中,从而发现原式与变式之间的内在联系,弄清这一类问题的本质,然后建构全面知识体系,加深对知识的理解。
2.3反思性原则反思主要抓住两个方面:一是变式和原式的在结构条件上的联系和区别;二是原式和变式在解决方法的联系和区别。
2.4适度性原则适度性原则主要体现在两个方面:一是变式的数量要适度,内容设计不宜过多,要求过繁;二是设计的变式题目难度上要有梯度,有一个螺旋上升的过程,做到积极前进,循环上升。
2.5针对性原则针对性原则是指设计的变式一定要切合学生的实际认知水平,做到因材施教。
3.中学数学中“合理设计变式”的1个案例3.1用捆绑法和插空法解决的一类排列问题命题1:7个人排成一排.问:(1)甲、乙、丙排在一起,共有多少种排法?(2)甲、乙相邻,且丙、丁相邻,有多少种排法?(3)甲、乙、丙排在一起,且都不在两端,有多少种排法?解析:(1)甲、乙、丙看成一个板块(种排法)与其余4人排列,共(种)排法.(2)甲、乙看成一个板块(种排法),丙、丁看成一个板块(种排法)与其他3人排列,共(种)排法.(3)甲、乙、丙看成一个板块(种排法),与其余4人排列,且板块不在两端,共(种)排法.变式:一排8个车位,停5辆不同的车,每车位至多停1车.问:(1)停车5位相邻有多少停法?(2)不停车的3个空位相邻有多少停法?解析:(1)5车形成一个板块(种停法),与其他三个空位排成一排,看作4个车位停1车,共(种)停法.(2)三个空位形成一个板块(空位不需要排列)只有一种排法,板块与5车排列,共(种)停法.评析:原命题与变式均可看成元素相邻的排列问题,排列的对象从人变成了车,其实质是一样的,其解决办法也是一致的。
数学例题,如何进行“变式”
摘要:本文结合笔者在数学课堂的经历,浅谈对数学例题进行“变式”的若干体会。
关键词:数学教学例题“变式”
数学“变式”就是在数学教学过程中对数学例题从不同角度、不同层次、不同背景做出有效的变化,而本质特征却不变。
一、从数学问题构成角度看,可得数学例题构成变式
1.条件变式
条件变式是将原题的一个或多个条件进行变动或延深。
在数学解题中所用知识不离开原题的范围。
它的作用可以让学生接触到同一类型数学题的不同情况,有利于全面地掌握数学知识点。
常见的条件变式如下。
(1)正负号变化。
如求解不等式x2-5x+6>0,可条件变式x2-5x-6>0或-x2-5x+6>0。
(2)范围变化。
如求函数y=x2-2x+3x∈R的值域。
可条件变式将x∈R变为x∈[2,4]或x∈[-2,3]或x∈[-2,0]。
(3)字母与常数变化。
如求解方程x2-x-8=0可条件变式求解方程:①x2-x-a=0;②ax2-x-8=0。
(4)同等元素变化。
它是指在条件变式中,将其中一个已知对象改变为另一个等价的对象,从而达到变通的效果。
例如已知直线y=kx+3与圆x2+y2=4相交于AB两点,以AB为直径的弦恰好经过原点,求k值。
可条件变式将圆更改为与椭圆2x2+y2=4或双曲线2x2-y2=4或抛物线y2=4x。
(5)情景变化。
它是指利用条件创设情景,将数学问题与日常生活中常见的问题联系起来,引起或指引学生进行联想,让学生知道数学与生活是紧密联系,生活中的实际问题都能抽象成数学模型来进行求解。
它的作用是通过创设情景,联系实际的“变式”数学教学来提高学生应用数学的意识和学习数学的兴趣。
如已知抛物线的焦点是F(0,-1),求抛物线的标准方程。
可条件变式为:桥洞是抛物线拱形,当水面宽1米时,桥洞高2米,当水面下降1米后,水面的宽是多少?
2.结论变式
所谓结论变式,是将数学问题中的结论进行变动或加深。
在数学解题中,所用数学知识仍然不离开原题的范围。
它起的作用是使学生数学学习能自觉地从数
学本质看问题,同时学会比较全面地看问题,从而可以更深刻地理解课堂数学教学的内容。
通常采取的结论变式方法为:
(1)一题多问。
如已知x>0,求函数y=x+的最值。
可结论变式为求函数y=-x-或y=的最值。
(2)一题多解。
如已知A(2,-1)、B(1,1)、C(3,2),求△ABC的外接圆方程。
学生常用待定系数法求解法,可结论变式能否用第二种方式求解(如直接求出圆心和半径)。
3.条件和结论互换变式
所谓条件和结论转互换变式即将原数学命题中的条件变为新命题的条件,结论变为新命题的结论。
作用主要是考察原命题的充分必要性,能使学生更好的理解概念或公式或定理等。
如判断命题真假ac2>bc2,则a>b可互换变式a>b,则ac2>bc2。
二、从数学问题所设数学题型的角度出发,可得数学例题题型变式
数学问题题型主要有选择题、填空题、解答题三种题型,解答题中又含化简题、求值题、证明题、探究题等。
它的作用是能更好地让学生明白各题型之间的转换,辨清它们间的联系与区别,在解决数学问题时有的放矢,更有效地解决数学问题。
常见数学题型变式有:
解答题与填空题题型的变式,如求证(x>0)可填空题型变式__。
解答题与解答题题型之间的题型变式,在正四面体ABCD中,E、F、G、H 分别是AB、BC、CD,DA各边的中点,求证:四边形EFGH是平行四边形。
可探究变式AC=BD,或AC⊥BD,试判断EFGH的形状。
解答题与选择题题型的变式,求解不等式≤0可选择题题型变式:不等式≤0的解集为()A.(1,2) B.[1,2) C.(-∞,1]∪[2,+∞) D.(-∞,1]∪[2,+∞)。
三、从解决数学问题所用数学思想的角度出发,可得数学例题数学思想变式
数学例题数学思想变式学生能提高学生学习的积极性,培养学生的观察、分析以及概括的思维能力,更好地辨认数学本质。
切实从题海中走出来,实现“减负增效”。
常见思想变式有:
换元思想变式:求函数y=tanx的定义域。
可思想变式为:求y=tan(2x+)的定义域。
演绎与归纳思想变式:判断a∥b,b∥c,则a∥c的真假,可思想变式为:
判断a⊥b,b⊥c则a⊥c的真假。
函数方程思想变式:已知函数y=3x-1,求y=0时x的取值范围。
可思想变式为:已知函数y=3x-1,求y>0(y<0)时的取值范围。
当然在数学变式教学中,老师也不能总是自己数学“变式”。
要鼓励学生,让学生主动进行数学“变式”。
过程如下图所示:。