大学物理辅导-磁场磁力磁介质等总结
- 格式:pdf
- 大小:837.13 KB
- 文档页数:42
磁学知识点总结大学1. 磁场的基本概念磁场是指周围空间中存在磁力的区域。
磁场具有方向和大小,通常用磁感应强度表示。
磁场由磁性物质产生,其作用范围称为磁场区域。
磁场的方向可以用磁力线表示,磁力线是磁场中任意点的切线方向。
在磁场中,物体会受到磁力的作用。
磁场通常由磁铁或电流产生,磁场的强弱取决于磁体的大小和形状,以及电流的大小和方向。
2. 磁场的性质磁场具有一些特殊的性质,主要包括磁场的方向性、磁场的非平衡性和磁场的相互作用性。
磁场的方向性指的是磁场具有方向性,即具有南北极之分,磁场线从磁北极指向磁南极。
磁场的非平衡性指的是磁场能够将磁性物质排列成不同的磁态,表现出磁性。
磁性物质在外磁场的作用下会受到磁化,形成磁矩,具有磁性。
磁场的相互作用性指的是磁场可以相互作用,并对相互作用的物体产生一定影响。
3. 电磁感应电磁感应是指磁场和电场相互作用产生电流的现象。
电磁感应根据磁场的变化形式可以分为恒定磁场中的电磁感应和变化磁场中的电磁感应。
恒定磁场中的电磁感应主要是指在磁场中运动的导体上会感应出感应电动势,从而产生感应电流。
变化磁场中的电磁感应是指当磁场的磁感应强度发生变化时,也会感应出感应电动势,从而产生感应电流。
4. 电磁感应现象的应用电磁感应现象在现实生活和工业生产中有着广泛的应用。
例如,变压器就是利用电磁感应现象实现电能的传输和功率的调整。
电磁感应现象还用于发电机的工作原理中,通过电磁感应产生电流,从而实现能量的转化。
电磁感应现象还广泛应用于感应炉、电磁制动器、电磁铁等工业设备中。
5. 磁性材料的特性磁性材料是指在外磁场的作用下,能够形成磁化和显示磁性的物质。
根据磁性材料的不同性质,可以将其分为铁磁材料、铁氧体材料和顺磁材料三类。
铁磁材料是指在外磁场的作用下,能够产生较强的磁化和显示出较强的磁性,例如铁、镍、钴等。
铁氧体材料是指在外磁场的作用下,可以产生磁化和显示出磁性,但磁性较弱,如铁氧体、铁氧氧石、铁氧氢石等。
大学物理磁学总结磁学是物理学的一个重要分支,研究磁力以及与磁感应有关的现象和规律。
在大学物理学习中,磁学是必修的内容之一。
下面是一篇关于大学物理磁学的总结,希望对你有所帮助。
大学物理磁学主要包括磁场的产生、磁场对物质的作用以及电磁感应等内容。
首先,我们先来看一下磁场的产生。
磁场是由电流所产生的。
根据安培定律,当电流通过一段导线时,会在周围产生一个磁场。
在直导线产生的磁场中,磁力线由导线的方向出来,呈现环绕导线的环状。
根据右手定则,可以确定磁力的方向。
磁体也可以产生磁场。
可党是指各种物质通过一定的加工方法获得的物质的磁性。
磁体通常由铁磁体和非铁磁体两种材料组成。
铁磁体在外磁场的作用下,会被磁化,形成自己的磁场。
而非铁磁体在外磁场的作用下也会被磁化,但磁化程度较小。
接下来,我们来看一下磁场对物质的作用。
磁场对物质的作用主要表现在磁力和磁偶极矩的作用上。
磁力是磁场对带电粒子运动轨迹的影响力。
根据洛伦兹力定律,当带电粒子在磁场中运动时,会受到一个与速度和磁场方向垂直的力,即洛伦兹力。
磁力的大小与电荷、速度、磁场强度以及二者之间的夹角有关。
可以通过右手定则来确定洛伦兹力的方向。
磁偶极矩是磁体在外磁场作用下表现出的特性。
磁偶极矩包括电流元的磁偶极矩和磁体的磁化强度。
磁场对磁偶极子的作用力与磁场梯度有关,可以通过磁势能的定义来计算。
电磁感应是磁学中的一个重要现象。
根据法拉第电磁感应定律,当导体回路中的磁通量发生变化时,导体中就会产生感应电动势。
根据楞次定律,感应电动势的方向总是使得磁通量变化的效果减少。
电磁感应可以应用于发电和变压器等实际应用中。
此外,大学物理磁学还包括角动量磁矩以及磁场中的运动带电粒子等内容。
角动量磁矩是电子围绕原子核运动形成的磁偶极矩。
根据经典物理理论,电子的角动量磁矩与角动量呈正比。
而在磁场中运动的带电粒子会受到洛伦兹力的作用,改变其受力方向。
总的来说,大学物理磁学是一个广泛且复杂的领域,涵盖了磁场的产生、磁场对物质的作用以及电磁感应等内容。
大学物理电磁学部分总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN电磁学部分总结 静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动,电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。
电场强度电势2、反映静电场基本性质的两条定理是高斯定理和环路定理要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用。
3、应用(1)、电场强度的计算q FE =⎰∞⋅==a a a rd E q W U0∑⎰⎰=⋅=ΦiSe qS d E 01ε ⎰=⋅0r d E L 021r q E =a)、由点电荷场强公式 及场强叠加原理 计算场强一、离散分布的点电荷系的场强二、连续分布带电体的场强其中,重点掌握电荷呈线分布的带电体问题b)、由静电场中的高斯 定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。
还有可能结合电势的计算一起进行。
c)、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算iiE E∑=02041i ii i i i r r q E Eπε∑=∑=⎰⎰π==0204d r rq E d EεUgradU E -∇=-=)(k zU j y U i x U ∂∂+∂∂+∂∂-=a)、均匀电场中S 与电场强度方向垂直b)、均匀电场,S 法线方向与电场强度方向成θ角c)、由高斯定理求某些电通量(3)、电势的计算a)、场强积分法(定义法)——根据已知的场强分布,按定义计算b)、电势叠加法——已知电荷分布,由点电荷电势公式,利用电势叠加原理计算第二部分:静电场中的导体和电介质 一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。
稳恒电流1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们又涉及到了场的概念)2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。
3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电导率、电阻率、电阻温度系数、理解超导现象4.电阻的计算(这是重点)。
5.金属导电的经典微观解释(了解)。
6.焦耳定律两种形式(积分、微分)。
(这里要明白一点:微分型方程是精确的,是强解。
而积分方程是近似的,是弱解。
)7.电动势、电源的作用、电源做功。
、8.含源电路欧姆定律。
9.基尔霍夫定律(节点电流定律、环路电压定律。
明白两者的物理基础。
)习题:13.19;13.20真空中的稳恒磁场电磁学里面极为重要的一章1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用)3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律)4. 毕奥-萨伐尔定律的应用(重点)。
5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本)6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比)7. 安培环路定理的应用(重要——求磁场强度)8. 磁场对电流的作用(安培力、安培定律积分、微分形式)9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功)10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。
11. 三场作用叠加(霍尔效应、质谱仪、例14.4)习题:14.20,14.22,14.27,14.32,14.46,14.47磁介质(与电解质对比)1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁质、弱磁质、强磁质。
(请自己阅读并绘制磁场和电场相关概念和公式的对照表)2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗磁质的形成原理。
物理磁场知识点总结物理磁场是研究物体间相互作用的力场。
以下是关于物理磁场的一些重要知识点总结:1. 磁性物质:铁、镍、钴等某些物质具有磁性。
这些物质内部存在微小的磁偶极子,可以产生磁场。
在外磁场的作用下,磁性物质可以被磁化,形成磁铁等。
2. 磁场的来源与表示:磁场可以通过电流在导线中产生,也可以通过磁体产生。
磁场是一个矢量场,可以使用磁感应强度(B)来表示,单位为特斯拉(T)。
3. 磁场的性质:磁场具有磁力线、磁通量和磁力的性质。
磁力线指示磁场的方向和强度,是垂直于磁场方向的连续曲线。
磁通量是磁力线的数量,用Φ来表示,单位为韦伯(Wb)。
4. 磁场的力学效应:根据洛伦兹力定律,磁场和运动带电粒子之间存在相互作用力。
运动带电粒子在磁场中会受到力的作用,并且力与速度方向垂直。
被称为洛伦兹力,用F表示。
5. 磁感应强度:磁感应强度(B)是表示磁场强度的物理量,与磁力线的密度成正比。
它可以通过洛伦兹力计算得到。
6. 磁场的磁场与电流的相互作用:电流在磁场中会受到力的作用。
如果电流和磁场方向相同,则出现吸引力;如果方向相反,则出现斥力。
根据安培定律,电流元所产生的磁感应强度在距离电流元位置的空间中受到电流元法向位置的矢量与距离的乘积的影响。
7. 磁场中的电磁感应定律:磁场变化会产生电场。
根据法拉第电磁感应定律,当电磁感应变化时,会在导体中产生感应电流。
感应电流的大小与导体的速度和磁场的变化率有关。
8. 磁场的磁感线:磁感线是表示磁场方向和强度的曲线。
磁感线是闭合曲线,无始无终。
磁感线通过磁场中的所有点,磁场的强弱通过磁感线的曲线的密集程度体现。
9. 磁感应强度的计算:根据比奥-萨伐尔定律,磁感应强度的大小与电流和距离之间的乘积成正比。
B(磁感应强度)=μ0(真空中的磁导率) × I(电流量)/ 2πr(距离)。
10. 磁场的高斯定理:磁场的高斯定理表明,在任何闭合曲面上,磁感应强度的散度等于零。