高中数学第一章导数及其应用1.5定积分的概念1.5.3定积分的概念课时达标训练新人教A版选修2_2
- 格式:doc
- 大小:165.00 KB
- 文档页数:2
课时素养评价十定积分的概念(15分钟30分)1.定积分xdx等于()A. B.-1 C.0 D.1【解析】选 C.如图所示,定积分为图中阴影部分面积A减去 B.因为S A=S B=,所以xdx=-=0.2.已知f(x)dx=6,则6f(x)dx= ( )A.6B.6(b-a)C.36D.不确定【解析】选C.6f(x)dx=6f(x)dx=6×6=36.【补偿训练】已知f(x)dx=4,则 ( )A.2f(x)dx=1B.f(x)dx+f(x)dx=4C.f(x)dx=1D.f(x)dx=1【解析】选B.利用定积分的性质知f(x)dx=f(x)dx+f(x)dx=4.3.已知和式S=(p>0),当n趋向于∞时,S无限趋向于一个常数A,则A可用定积分表示为( )A.dxB.x p dxC.dxD.dx【思路导引】把和式转向定积分的定义式的形式整理,为S=,根据定积分的定义很容易得出结果. 【解析】选B.S==·,所以·=x p dx.4.计算: 2 020dx=________.【解析】根据定积分的几何意义, 2 020dx表示直线x=2 018,x=2 019,y=0,y=2 020围成矩形的面积,故 2 020dx=2 020.答案:2 0205.已知[f(x)+g(x)]dx=12,g(x)dx=6,求3f(x)dx.【解析】因为[f(x)+g(x)]dx=f(x)dx+g(x)dx=12,g(x)dx=6,所以f(x)dx=12-6=6.所以3f(x)dx=3f(x)dx=18.(30分钟60分)一、选择题(每小题5分,共25分)1.若函数y=2cos x(0≤x≤2π)的图象和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积为( )A.4B.8C.2πD.4π【思路导引】掌握正余弦函数图象的对称性,对应面积相等的问题.如本题求不规则的图形面积,利用函数图形性质转化到特殊的规则的面积问题.【解析】选D.如图所示.由图可知,S1=S2,S3=S4,因此函数y=2cos x(0≤x≤2π)的图象与直线y=2所围成的图形面积即为矩形OABC的面积.因为|OA|=2,|OC|=2π,所以S矩形=2×2π=4π.2.已知t>0,若(2x-2)dx=8,则t= ( )A.1B.-2C.-2或4D.4【解析】选D.作出函数f(x)=2x-2的图象与x轴交于点A(1,0),与y轴交于点B(0,-2),易求得S△OAB=1,因为(2x-2)dx=8,且(2x-2)dx=-1,所以t>1,所以S△AEF=AE·EF=×(t-1)(2t-2)=(t-1)2=9,所以t=4.3.下列命题不正确的是( )A.若f(x)是连续的奇函数,则f(x)dx=0B.若f(x)是连续的偶函数,则f(x)dx=2f(x)dxC.若f(x)在[a,b]上连续且恒正,则f(x)dx>0D.若f(x)在[a,b]上连续且f(x)dx>0,则f(x)在[a,b]上恒正【解析】选D.对于选项A,因为f(x)是奇函数,所以图象关于原点对称,所以x轴上方的面积和x轴下方的面积相等,故积分是0,所以A正确;对于选项B,因为f(x)是偶函数,所以图象关于y 轴对称,故图象都在x轴下方(或上方)且面积相等,故B正确;C显然正确;D选项中f(x)也可以小于0,但必须有大于0的部分,且f(x)>0的曲线围成的面积比f(x)<0的曲线围成的面积大.4.设f(x)=则f(x)dx的值是( )A.x2dxB.2x dxC.x2dx+2x dxD.2x dx+x2dx【解析】选D.由定积分性质(3)求f(x)在区间[-1,1]上的定积分,可以通过求f(x)在区间[-1,0]与[0,1]上的定积分来实现,显然D正确.5.设a=dx,b=x2dx,c=x3dx,则a,b,c的大小关系是( )A.c>a>bB.a>b>cC.a=b>cD.a>c>b【解析】选B.根据定积分的几何意义,易知x3dx<x2dx<dx,即a>b>c.二、填空题(每小题5分,共15分)6.曲线y=与直线y=x,x=2所围成的图形面积用定积分可表示为________.【解析】如图所示,阴影部分的面积可表示为xdx-dx=dx.答案:dx7.计算:(1-cos x)dx=________.【解析】方法一:根据定积分的几何意义,得1dx=2π,cos xdx=cos xdx+cos xdx+cos xdx+cos xdx=cos xdx-cos xdx-cos xdx+cos xdx=0,所以(1-cos x)dx=1dx-cos xdx=2π-0=2π.方法二:在公共积分区间[0,2π]上,(1-cos x)dx表示直线y=1与余弦曲线y=cos x在[0,2π]上围成封闭图形的面积,如图,由于余弦曲线y=cos x在[0,π]上关于点中心对称,在[π,2π]上关于点中心对称,所以区域①与②的面积相等,所求平面图形的面积等于边长分别为1,2π的矩形的面积,其值为2π.所以(1-cos x)dx=2π.答案:2π8.计算dx=________.【解析】由定积分的几何意义知,所求积分是图中阴影部分的面积.易知AB=,∠AOB=,故S=×4π-×1×=-.阴影答案:-三、解答题(每小题10分,共20分)9.已知f(x)为偶函数且f(x)dx=3,计算定积分3f(x)dx. 【解析】因为函数f(x)为偶函数,所以在y轴两侧的图象对称,所以对应的面积相等,即f(x)dx=f(x)dx=3,所以3f(x)dx=3f(x)dx+3f(x)dx=3=18.【拓展提升】利用定积分的几何意义求定积分的方法步骤(1)确定被积函数和积分区间.(2)准确画出图形.(3)求出各阴影部分的面积.(4)写出定积分,注意当f(x)≥0时,S=f(x)dx,而当f(x)≤0时,S=-f(x)dx.10.已知函数f(x)=求f(x)在区间[-1,3π]上的定积分. 【解析】由定积分的几何意义知:因为f(x)=x5是奇函数,故x5dx=0;sin xdx=0(如图(1)所示);xdx=(1+π)(π-1)=(π2-1)(如图(2)所示).所以f(x)dx=x5dx+xdx+sin xdx=xdx=(π2-1).计算定积分:[-x]dx.【解析】[-x]dx=dx-xdx,令S1=dx,S2=xdx.S1,S2的几何意义如图1,2所示.对S1=dx,令y=≥0,则(x-1)2+y2=1(0≤x≤1,y≥0),由定积分几何意义知S1=dx=π×12=, 对于S2=xdx,由其几何意义知S2=×1×1=,故[-x]dx=S1-S2=-=.。
高中数学第一章导数及其应用1.5定积分的概念1.5.3定积分的概念讲义新人教A 版选修221.定积分的概念一般地,设函数f (x )在区间[a ,b ]上□01连续,用分点a =x 0<x 1<x 2<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式□02∑ni =1f (ξi )Δx =∑ni =1b -a nf (ξi ). 当n →∞时,上述和式无限接近某个常数,那么这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作:□03⎠⎛ab fx d x ,即⎠⎛ab f (x )d x =□04lim n →∞∑ni =1 b -a n f (ξi ).2.定积分的相关名称3.定积分的几何意义(1)前提条件:函数f (x )在区间[a ,b]上连续,f (x )≥0.(2)定积分⎠⎛ab f (x )d x 的几何意义:由y =0,曲线f (x )以及直线x =a ,x =b 围成的曲边梯形的□12面积. 4.定积分的基本性质(1)⎠⎛a b kf (x )d x =□13k ⎠⎛ab f (x )d x (k 为常数). (2)⎠⎛a b [f (x )±g(x )]d x =□14⎠⎛a b f (x )d x ±⎠⎛ab g(x )d x . (3)⎠⎛ab f (x )d x =□15⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c<b).用定积分求曲边图形面积时,不判断曲边图形位于x 轴上方、还是下方,直接求解而出现错误.避免出错的措施为:(1)当对应的曲边图形位于x 轴上方时(图①),定积分的值取正值,且等于曲边图形的面积;(2)当对应的曲边图形位于x 轴下方时(图②),定积分的值取负值,且等于曲边图形面积的相反数;(3)当位于x 轴上方的曲边图形面积等于位于x 轴下方的曲边图形面积时,定积分的值为0(图③),且等于位于x 轴上方的曲边图形面积减去位于x 轴下方的曲边图形面积.1.判一判(正确的打“√”,错误的打“×”) (1)⎠⎛a b f (x )d x =⎠⎛ab f (t)d t .( )(2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛ab (x 2+2x )d x =⎠⎛a b x 2d x +⎠⎛ab 2xd x .( )答案 (1)√ (2)× (3)√探究1 利用定义计算定积分例1 利用定积分的定义,计算⎠⎛12(3x +2)d x 的值.[解] 令f (x )=3x +2. (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n . (2)近似代替、求和 取ξi =n +i -1n (i =1,2,…,n ), 则S n =∑ni =1f (n +i -1n)·Δx =∑ni =1⎣⎢⎡⎦⎥⎤3n +i -1n +2·1n=∑i =1n⎣⎢⎡⎦⎥⎤3i -1n 2+5n =3n2[0+1+2+…+(n -1)]+5=32×n 2-n n 2+5=132-32n . (3)取极限⎠⎛12(3x +2)d x =lim n→∞S n =lim n→∞ ⎝ ⎛⎭⎪⎫132-32n =132. 拓展提升利用定义求定积分的关键仍然是“分割、近似代替、求和、取极限”这一过程.其中: (1)在近似代替时,可以选取每个小区间的左端点、右端点、区间中点、区间端点的几何平均数等相应的函数值来代替该区间的函数值;(2)将“近似代替、求和”作为一个步骤来处理,其条理性更强.【跟踪训练1】 求由直线x =0,x =1,y =0与曲线f (x )=x 2+2x +1围成曲边梯形的面积.解 将区间[0,1]等分成n 个小区间,则第i 个小区间为⎣⎢⎡⎦⎥⎤i -1n ,i n ,等i 个小区间的面积为ΔS i =f ⎝ ⎛⎭⎪⎫i n ·1n =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2⎝ ⎛⎭⎪⎫i n +1·1n,S n =∑ni =1⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2⎝ ⎛⎭⎪⎫i n +1·1n=1n 3(12+22+32+…+n 2)+2n2(1+2+3+…+n )+1=1n3·n n +12n +16+2n2·n n +12+1=⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n 6+1n+2,S =lim n→∞S n =lim n→∞ ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n 6+1n +2=73, 所以所求的曲边梯形的面积为73.拓展提升b f(x)d x的值的关键是确定由曲线y=f(x),直线x=a,利用定积分所表示的几何意义求⎠⎛a直线x=b及x轴所围成的平面图形的形状.常见形状是三角形、直角梯形、矩形、圆等可求面积的平面图形.解 (1)如图1,阴影部分面积为2+5×12=72,从而 ⎠⎛01(3x +2)d x =72.图1 图2探究3 利用定积分的性质求定积分例3 已知⎠⎛01x 3d x =14,⎠⎛12x 3d x =154,⎠⎛12x 2d x =73,⎠⎛24x 2d x =563,求:(1)⎠⎛02(3x 3)d x ;(2)⎠⎛14(6x 2)d x ; (3)⎠⎛12(3x 2-2x 3)d x .[解] (1)⎠⎛02(3x 3)d x =3⎠⎛02x 3d x=3⎝⎛⎭⎫⎠⎛01x 3d x +⎠⎛12x 3d x =3×⎝ ⎛⎭⎪⎫14+154=12.(2)⎠⎛14(6x 2)d x =6⎠⎛14x 2d x =6⎝⎛⎭⎫⎠⎛12x 2d x +⎠⎛24x 2d x =6×⎝ ⎛⎭⎪⎫73+563=126. (3)⎠⎛12(3x 2-2x 3)d x =⎠⎛12(3x 2)d x -⎠⎛12(2x 3)d x=3⎠⎛12x 2d x -2⎠⎛12x 3d x =3×73-2×154=7-152=-12.拓展提升【跟踪训练3】 已知f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,2,4-x ,x ∈[2,3,52-x 2,x ∈[3,5],求f (x )在区间[0,5]上的定积分.1.求阴影部分面积可分两类:(1)规则图形:按照面积的相关公式直接计算;(2)不规则图形:转化为规则图形或曲边梯形,再求面积的和或差,曲边梯形面积利用定积分来计算;改变积分变量,使问题简化.2.可以利用“分割、近似代替、求和、取极限”求定积分;对于一些特殊函数,也可以利用几何意义求定积分.3.定积分的几何性质可以帮助简化定积分运算.1.若函数f(x)在区间[a,b]上的图象在x轴上方,且图象从左至右上升,则求由曲线y =f(x),直线x=a,x=b(a≠b)及x轴围成的平面图形的面积S时,将区间[a,b]n等分,用每个小区间的左端点的函数值计算出面积为S1,用每个小区间的右端点的函数值计算出面积为S2,则有( )A.S1<S<S2B.S1≤S<S2C.S1≤S2≤S D.S1≤S≤S2答案 A解析 由题意知,在区间⎣⎢⎡⎦⎥⎤i-1n ,i n 上,f ⎝ ⎛⎭⎪⎫i -1n <f ⎝ ⎛⎭⎪⎫i n,所以S 1=∑i =1nf ⎝ ⎛⎭⎪⎫i -1n ·1n <∑i =1nf ⎝ ⎛⎭⎪⎫i n ·1n =S 2,则S 1<S <S 2.答案 D3.⎠⎛06(2x -4)d x =________.答案 12解析 如图A(0,-4),B(6,8),M(2,0),S △AOM =12×2×4=4,S △MBC =12×4×8=16,所以⎠⎛06(2x -4)d x =16-4=12.4.曲线y =1x与直线y =x ,x =2所围成的图形面积用定积分可表示为 ________.答案 ⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x解析 如图所示,阴影部分的面积可表示为⎠⎛12x d x -⎠⎛121xd x =⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x . 5.根据定积分的几何意义求定积分⎠⎛13(x -2)d x ,⎠⎛13|x -2|d x .解 根据定积分的几何意义,所求定积分表示直线x =3,x =1,y =0分别与函数y =x -2,y =|x -2|的图象所围成的图形的面积,即如图的阴影部分的面积.∴⎠⎛13(x -2)d x =-12×1×1+12×1×1=0. ⎠⎛13|x -2|d x =12×1×1+12×1×1=1.。
1.5.3定积分的概念【学习目标】1.理解曲边梯形面积的求解思想,掌握其方法步骤;2.了解定积分的定义、性质及函数在上可积的充分条件;3.明确定积分的几何意义和物理意义; 4.无限细分和无穷累积的思维方法. 【学习重难点】重点:定积分的概念、用定义求简单的定积分、定积分的几何意义.难点:定积分的概念、定积分的几何意义. 【使用说明与学法指导】1.课前用20分钟预习课本P45-47内容.并完成书本上练、习题及导学案上的问题导学.2.独立思考,认真限时完成,规范书写.课上小组合作探究,答疑解惑. 【问题导学】 1.定积分的概念一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()nnn i i i i b aS f x f n ξξ==-=∆=∑∑.如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()baS f x dx=⎰,即1()lim ()nbi ax i b af x dx f nζ→∞=-=∑⎰. 2.定积分的相关名称3.定积分的几何意义(1)前提条件:函数()f x 在区间[,]a b 上连续,()0f x ≥.(2)定积分()baf x dx ⎰的几何意义:由直线,x a x b ==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积. 4.定积分的基本性质(1)()()b baakf x dx k f x dx =⎰⎰ (k 为常数)(2)1212[()()]()()b b baaaf x f x dx f x dx f x dx ±=±⎰⎰⎰(3)()()()b c baacf x dx f x dx f x dx =+⎰⎰⎰(其中a cb <<)【合作探究】 (利用定义求定积分) 问题1:(1)将111lim()122n n n n→∞+++++表示为定积分为111dx x +⎰.(2)利用积分定义求2badx ⎰的值.答案:2()b a -(利用定积分的几何意义求定积分) 问题2:(1)131(3)x x dx -+⎰=0 (2)31(31)x dx -+⎰= 16 (3)1-⎰=2π(定积分性质的应用) 问题3:(1)计算232)x dx -⎰的值;答案:2π(2)已知[)[)[],0,2()4,2,35,3,522x x f x x x xx ⎧⎪∈⎪=-∈⎨⎪⎪-∈⎩,求()f x 的区间[]0,5上的定积分.答案:92【深化提高】利用定积分的几何意义求2222()sin f x dx xdx ππ--+⎰⎰的值,其中21,0()31,0x x f x x x -≥⎧=⎨-<⎩. 答案:-6●当堂检测A 组(你一定行): 1.定积分()baf x dx ⎰的大小 ( A )A .与()y f x =和积分区间[,]a b 有关,与i ζ的取法无关B. 与()y f x =有关,与积分区间[,]a b 和iζ的取法无关C. 与()y f x =和i ζ的取法有关,与积分区间[,]a b 无关D. 与()y f x =、积分区间[,]a b 、i ζ的取法均无关 2. 定积分31(3)dx -⎰等于 ( A )A.-6B.6C.-3D.3 B 组(你坚信你能行): 3.已知12013x d x=⎰,22173x dx =⎰,则22(1)x d x+=⎰143. 4. 求由曲线xy e =,直线2,1x y ==围成的图形的面积时,若选择x 为积分变量,则积分区间为 []0,2 .C 组(我对你很有吸引力哟): 5.计算322(25sin )x dx ππ-⎰的值.答案:2π【小结与反思】。
1.5.3 定积分的概念学习目标 1.了解定积分的概念,会用定义求定积分.2.理解定积分的几何意义.3.掌握定积分的基本性质.知识点一 定积分的概念思考 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点.答案 两个问题均可以通过“分割、近似代替、求和、取极限”解决,都可以归结为一个特定形式和的极限.梳理 一般地,如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξi )Δx =∑i =1nb -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃbaf (x )d x ,即ʃb af (x )d x =lim n →∞∑i =1nb -anf (ξi ),这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x叫做积分变量,f (x )d x 叫做被积式. 知识点二 定积分的几何意义思考1 根据定积分的定义求得ʃ21(x +1)d x 的值是多少? 答案 ʃ21(x +1)d x =52.思考2 ʃ21(x +1)d x 的值与直线x =1,x =2,y =0,f (x )=x +1围成的梯形面积有何关系? 答案 相等.梳理 从几何上看,如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么定积分ʃba f (x )d x 表示由直线x =a ,x =b ,y =0和曲线y =f (x )所围成的曲边梯形的面积.这就是定积分ʃb a f (x )d x 的几何意义.注意:f (x )<0(图象在x 轴的下方)时,ʃba f (x )d x <0,-ʃba f (x )d x 等于曲边梯形的面积. 知识点三 定积分的性质思考 你能根据定积分的几何意义解释ʃba f (x )d x =ʃca f (x )d x +ʃbc f (x )d x (其中a <c <b )吗? 答案 直线x =c 把一个大的曲边梯形分成了两个小曲边梯形,因此大曲边梯形的面积S 是两个小曲边梯形的面积S 1,S 2之和,即S =S 1+S 2.梳理 (1)ʃb a kf (x )d x =k ʃba f (x )d x (k 为常数). (2)ʃba [f 1(x )±f 2(x )]d x =ʃba f 1(x )d x ±ʃba f 2(x )d x . (3)ʃba f (x )d x =ʃca f (x )d x +ʃbc f (x )d x (其中a <c <b ).1.ʃba f (x )d x =ʃba f (t )d t .( √ )2.ʃb a f (x )d x 的值一定是一个正数.( × )3.ʃb a ⎣⎢⎡⎦⎥⎤x 3+⎝ ⎛⎭⎪⎫12x d x =ʃb a x 3d x +ʃb a ⎝ ⎛⎭⎪⎫12x d x .( √)类型一 利用定积分的定义求定积分例1 利用定积分的定义,计算ʃ21(3x +2)d x 的值. 考点 定积分的概念 题点 定积分的概念 解 令f (x )=3x +2. (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i=1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n. (2)近似代替、求和 取ξi =n +i -1n(i =1,2,…,n ),则 S n =∑i =1nf ⎝⎛⎭⎪⎫n +i -1n ·Δx=∑i =1n⎣⎢⎡⎦⎥⎤3(n +i -1)n +2·1n=∑i =1n⎣⎢⎡⎦⎥⎤3(i -1)n2+5n =3n2[0+1+2+…+(n -1)]+5=32×n 2-n n 2+5=132-32n.(3)取极限ʃ21(3x +2)d x =lim n →∞ S n =lim n →∞ ⎝ ⎛⎭⎪⎫132-32n =132. 反思与感悟 利用定义求定积分的步骤跟踪训练1 利用定积分的定义计算ʃ32(x +2)d x . 考点 定积分的概念 题点 定积分的概念 解 令f (x )=x +2.将区间[2,3]平均分为n 个小区间,每个小区间的长度为Δx i =1n,[x i -1,x i ]=⎣⎢⎡⎦⎥⎤2+i -1n ,2+in ,i =1,2,…,n . 取ξi =x i =2+i n,则f (ξi )=2+in+2=4+i n.则∑ni =1f (ξi )Δx i =∑ni =1⎝ ⎛⎭⎪⎫4+i n ·1n =∑ni =1⎝ ⎛⎭⎪⎫4n +i n 2=n ·4n+1+2+…+n n2=4+n +12n. ∴ʃ32(x +2)d x =lim n →∞⎝⎛⎭⎪⎫4+n +12n =92. 类型二 利用定积分的性质求定积分例2 已知ʃ10x 3d x =14,ʃ21x 3d x =154,ʃ21x 2d x =73,ʃ42x 2d x =563,求下列各式的值. (1)ʃ20(3x 3)d x ; (2)ʃ41(6x 2)d x ; (3)ʃ21(3x 2-2x 3)d x . 考点 定积分性质的应用 题点 定积分性质的应用 解 (1)ʃ20(3x 3)d x =3ʃ20x 3d x=3()ʃ10x 3d x +ʃ21x 3d x =3×⎝ ⎛⎭⎪⎫14+154=12. (2)ʃ41(6x 2)d x =6ʃ41x 2d x=6()ʃ21x 2d x +ʃ42x 2d x =6×⎝ ⎛⎭⎪⎫73+563=126.(3)ʃ21(3x 2-2x 3)d x =ʃ21(3x 2)d x -ʃ21(2x 3)d x =3ʃ21x 2d x -2ʃ21x 3d x =3×73-2×154=-12. 反思与感悟 若函数f (x )的奇偶性已经明确,且f (x )在[-a ,a ]上连续,则 (1)若函数f (x )为奇函数,则ʃa-a f (x )d x =0. (2)若函数f (x )为偶函数,则ʃa -a f (x )d x =2ʃa0f (x )d x .跟踪训练2 若f (x )=⎩⎪⎨⎪⎧2x -1,-1≤x <0,e -x,0≤x ≤1,且ʃ0-1(2x -1)d x =-2,ʃ10e -xd x =1-e -1,求ʃ1-1f (x )d x . 考点 定积分性质的应用 题点 定积分性质的应用解 ʃ1-1f (x )d x =ʃ0-1f (x )d x +ʃ10f (x )d x =ʃ0-1(2x -1)d x +ʃ10e -xd x =-2+1-e -1=-(e -1+1).类型三 利用定积分的几何意义求定积分 例3 用定积分的几何意义求下列各式的值. (1)ʃ1-14-x 2d x ; (2)π2π-2sin d x x ⎰.考点 定积分几何意义的应用 题点 定积分几何意义的应用解 (1)由y =4-x 2得x 2+y 2=4(y ≥0),其图象如图所示.ʃ1-14-x 2d x 等于圆心角为60°的弓形CED 的面积与矩形ABCD 的面积之和,S 弓形CED =12×π3×22-12×2×3=2π3-3, S 矩形ABCD =AB ·BC =23,∴ʃ1-14-x 2d x =23+2π3-3=2π3+ 3. (2)∵函数y =sin x 在x ∈⎣⎢⎡⎦⎥⎤-π2,π2上是奇函数, ∴π2π-2sin d x x ⎰=0.跟踪训练3 求定积分:ʃ20(4-(x -2)2-x )d x . 考点 定积分几何意义的应用 题点 定积分几何意义的应用解 ʃ204-(x -2)2d x 表示圆心在(2,0),半径等于2的圆的面积的14,即ʃ204-(x -2)2d x =14×π×22=π.ʃ20x d x 表示底和高都为2的直角三角形的面积, 即ʃ20x d x =12×22=2.∴原式=ʃ204-(x -2)2d x -ʃ20x d x=π-2.1.下列结论中成立的个数是( )①ʃ10x 3d x =∑i =1ni 3n 3·1n ;②ʃ10x 3d x =lim n →∞∑i =1n(i -1)3n 3·1n ; ③ʃ10x 3d x =lim n →∞ ∑i =1ni 3n 3·1n . A .0 B .1 C .2 D .3 考点 定积分的概念 题点 定积分的概念 答案 C解析 ②③成立.2.关于定积分a =ʃ2-1(-2)d x 的叙述正确的是( ) A .被积函数为y =2,a =6 B .被积函数为y =-2,a =6 C .被积函数为y =-2,a =-6D.被积函数为y=2,a=-6考点定积分的几何意义及性质题点定积分的几何意义答案 C解析由定积分的概念可知,ʃ2-1(-2)d x中的被积函数为y=-2,由定积分的几何意义知,ʃ2-1(-2)d x等于由直线x=-1,x=2,y=0,y=-2所围成的图形的面积的相反数,∴ʃ2-1(-2)d x=-2×3=-6.3.已知定积分ʃ60f(x)d x=8,且f(x)为偶函数,则ʃ6-6f(x)d x等于( )A.0 B.16C.12 D.8考点定积分的几何意义及性质题点定积分性质答案 B解析ʃ6-6f(x)d x=2ʃ60f(x)d x=16.4.由函数y=-x的图象,直线x=1,x=0,y=0所围成的图形的面积可表示为( ) A.ʃ10(-x)d x B.ʃ10|-x|d xC.ʃ0-1x d x D.-ʃ10x d x考点定积分的几何意义及性质题点定积分的几何意义答案 B解析由定积分的几何意义可知,所求图形的面积为S=ʃ10|-x|d x.5.计算ʃ3-3(9-x2-x3)d x.考点定积分几何意义的应用题点定积分几何意义的应用解如图所示,由定积分的几何意义得ʃ3-39-x 2d x =π×322=9π2,ʃ3-3x 3d x =0,由定积分性质得ʃ3-3(9-x 2-x 3)d x =ʃ3-39-x 2d x -ʃ3-3x 3d x =9π2.1.定积分ʃb af (x )d x 是一个和式∑i =1nb -anf (ξi )的极限,是一个常数. 2.可以利用“分割、近似代替、求和、取极限”求定积分.对于一些特殊函数,也可以利用几何意义求定积分.3.定积分的几何性质可以帮助简化定积分运算.一、选择题1.根据定积分的定义,ʃ20x 2d x 等于( )A.∑i =1n⎝⎛⎭⎪⎫i -1n 2·1n B .lim n →∞∑i =1n⎝ ⎛⎭⎪⎫i -1n 2·1nC.∑i =1n⎝⎛⎭⎪⎫2i n 2·2nD .lim n →∞∑i =1n⎝ ⎛⎭⎪⎫2i n 2·2n考点 定积分的概念 题点 定积分的概念 答案 D解析 根据定积分的定义,ʃ20x 2d x =lim n →∞∑i =1n⎝ ⎛⎭⎪⎫2i n 2·2n.2.下列定积分的值等于1的是( ) A .ʃ101d xB .ʃ10(x +1)d x C .ʃ1012d xD .ʃ10x d x考点 定积分的几何意义及性质 题点 定积分性质 答案 A解析 D 项,ʃ10x d x =12,C 项,ʃ1012d x =12,B 项,ʃ10(x +1)d x =32,A 项,ʃ101d x =1,故选A.3.下列命题不正确的是( )A .若f (x )是连续的奇函数,则ʃa-a f (x )d x =0 B .若f (x )是连续的偶函数,则ʃa-a f (x )d x =2ʃa0f (x )d x C .若f (x )在[a ,b ]上连续且恒正,则ʃba f (x )d x >0D .若f (x )在[a ,b ]上连续且ʃba f (x )d x >0,则f (x )在[a ,b ]上恒正 考点 定积分的几何意义及性质 题点 定积分性质 答案 D解析 A 项,因为f (x )是奇函数,图象关于原点对称,所以x 轴上方的面积和x 轴下方的面积相等,故积分是0,所以A 项正确;B 项,因为f (x )是偶函数,图象关于y 轴对称,故y 轴两侧的图象都在x 轴上方或下方且面积相等,故B 项正确;由定积分的几何意义知,C 项显然正确;D 项,f (x )也可以小于0,但必须有大于0的部分,且f (x )>0的曲线围成的面积比f (x )<0的曲线围成的面积大. 4.与定积分3π2x ⎰相等的是( )A.3π20sin d x x ⎰B.3π2sin d x x ⎰C .ʃπ0sin x d x -3π2πsin d x x ⎰D.π3π22π02sin d sin d x x x x +⎰⎰考点 定积分的几何意义及性质 题点 定积分性质 答案 C解析 当x ∈[0,π]时,sin x ≥0; 当x ∈⎝ ⎛⎦⎥⎤π,3π2时,sin x <0. ∴由定积分的性质可得,3π2sin d x x ⎰=ʃπ0|sin x |d x +3π2πsin d x x ⎰=ʃπ0sin x d x +()3π2πsin d x x -⎰=ʃπ0sin x d x -3π2πsin d x x ⎰.5.下列各阴影部分的面积S 不可以用S =ʃba [f (x )-g (x )]d x 求出的是( )考点 定积分的几何意义及性质 题点 定积分的几何意义 答案 B解析 定积分S =ʃba [f (x )-g (x )]d x 的几何意义是求函数f (x )与g (x )之间的阴影部分的面积,必须注意f (x )的图象要在g (x )的图象上方.对照各选项可知,B 项中f (x )的图象不全在g (x )的图象上方,故选B.6.由直线y =x ,y =-x +1及x 轴围成的平面图形的面积为( ) A .ʃ10[(1-y )-y ]d y B .()121d x x x -+-⎡⎤⎣⎦⎰ C .()112102d 1d x x x x +-+⎰⎰D .ʃ10[x -(-x +1)]d x考点 定积分的几何意义及性质 题点 定积分的几何意义 答案 C 解析 联立⎩⎪⎨⎪⎧y =x ,y =-x +1,解得⎩⎪⎨⎪⎧x =12,y =12,故A ⎝ ⎛⎭⎪⎫12,12. 由图知阴影部分的面积可表示为()112102d 1d x x x x +-+⎰⎰.7.设a =ʃ113x d x ,b =ʃ10x 2d x ,c =ʃ10x 3d x ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a =b >cD .c >a >b考点 定积分几何意义的应用 题点 定积分几何意义的应用 答案 A解析 根据定积分的几何意义,易知ʃ10x 3d x <ʃ10x 2d x <ʃ1013x d x ,即a >b >c ,故选A.8.若ʃa-a |56x |d x ≤2 016,则正数a 的最大值为( ) A .6 B .56 C .36D .2 016考点 定积分几何意义的应用 题点 定积分几何意义的应用 答案 A解析 由ʃa -a |56x |d x =56ʃa-a |x |d x ≤2 016,得ʃa-a |x |d x ≤36,∵ʃa -a |x |d x =a 2,∴a 2≤36,即0<a ≤6. 故正数a 的最大值为6. 二、填空题9.若ʃ1012f (x )d x =1,ʃ0-13f (x )d x =2,则ʃ1-1f (x )d x =________.考点 定积分性质的应用 题点 定积分性质的应用答案 83解析 ∵ʃ1012 f (x )d x =12ʃ10f (x )d x =1, ∴ʃ10 f (x )d x =2.又ʃ0-13f (x )d x =3ʃ0-1 f (x )d x =2,∴ʃ0-1f (x )d x =23. ∴ʃ1-1 f (x )d x =ʃ0-1 f (x )d x +ʃ10 f (x )d x=23+2=83. 10.如图所示的阴影部分的面积用定积分表示为________.考点 定积分的几何意义及性质题点 定积分的几何意义答案 ʃ2-4x 22d x11.定积分ʃ10(2+1-x 2)d x =________.考点 定积分几何意义的应用题点 定积分几何意义的应用答案 2+π4解析 原式=ʃ102d x +ʃ101-x 2d x . 因为ʃ102d x =2,ʃ101-x 2d x =π4, 所以ʃ10(2+1-x 2)d x =2+π4. 12.已知f (x )是一次函数,其图象过点(3,4)且ʃ10f (x )d x =1,则f (x )的解析式为________. 考点 定积分几何意义的应用题点 定积分几何意义的应用答案 f (x )=65x +25解析 设f (x )=ax +b (a ≠0),∵f (x )图象过(3,4)点,∴3a +b =4.又ʃ10f (x )d x =ʃ10(ax +b )d x =a ʃ10x d x +ʃ10b d x =12a +b =1. 解方程组⎩⎪⎨⎪⎧ 3a +b =4,12a +b =1, 得⎩⎪⎨⎪⎧ a =65,b =25.∴f (x )=65x +25.三、解答题13.已知f (x )=⎩⎪⎨⎪⎧ x ,x ∈[0,2),4-x ,x ∈[2,3),52-x 2,x ∈[3,5],求f (x )在区间[0,5]上的定积分.考点 定积分几何意义的应用题点 定积分几何意义的应用解 如图画出函数f (x )的图象.由定积分的几何意义得ʃ20x d x =12×2×2=2, ʃ32(4-x )d x =12×(1+2)×1=32, ʃ53⎝ ⎛⎭⎪⎫52-x 2d x =12×2×1=1. 所以ʃ50f (x )d x =ʃ20x d x +ʃ32(4-x )d x + ʃ53⎝ ⎛⎭⎪⎫52-x 2d x =2+32+1=92. 四、探究与拓展14.若定积分ʃm -2-x 2-2x d x =π4,则m 等于( ) A .-1B .0C .1D .2 考点 定积分几何意义的应用题点 定积分几何意义的应用答案 A解析 根据定积分的几何意义知,定积分ʃm -2-x 2-2x d x 的值就是函数y =-x 2-2x 的图象与x 轴及直线x =-2,x =m 所围成的图形的面积.y =-x 2-2x 是一个以(-1,0)为圆心,1为半径的半圆,其面积等于π2,而ʃm -2-x 2-2x d x =π4,所以m =-1. 15.如图所示,抛物线y =12x 2将圆x 2+y 2≤8分成两部分,现在向圆上均匀投点,这些点落在圆中阴影部分的概率为14+16π,求ʃ20⎝ ⎛⎭⎪⎫8-x 2-12x 2d x .考点 定积分几何意义的应用 题点 定积分几何意义的应用解 解方程组⎩⎪⎨⎪⎧ x 2+y 2=8,y =12x 2,得x =±2.∴阴影部分的面积为ʃ2-2⎝ ⎛⎭⎪⎫8-x 2-12x 2d x .∵圆的面积为8π,∴由几何概型可得阴影部分的面积是 8π·⎝ ⎛⎭⎪⎫14+16π=2π+43.由定积分的几何意义得, ʃ20⎝ ⎛⎭⎪⎫8-x 2-12x 2d x=12ʃ2-2⎝ ⎛⎭⎪⎫8-x 2-12x 2d x =π+23.。
1.5.3 定积分的概念
课时达标训练
1.定积分xdx等于( )
A.1
2
B.-1
C.0
D.1
【解析】选C.如图所示,定积分为图中阴影部分面积A减去B.
因为S A=S B=1
2
,所以
2.设f(x)是[a,b]上的连续函数,则的值( )
A.小于零
B.等于零
C.大于零
D.不能确定
【解析】选B. 都表示曲线y=f(x)与x=a,x=b及y=0围成的图形的面积,不因曲线中变量字母不同而改变曲线的形状和位置.所以其值为0.
3.已知f(x)dx=4,则( )
【解析】选B.利用定积分的性质知f(x)dx=f(x)dx+f(x)dx=4.
4.利用定积分的性质和定义表示下列曲线y=0,x=2围成的平面区域的面积为 .
【解析】曲线所围成的区域如图所示.
设此面积为S,则S=
答案:
5.用定积分表示抛物线y=x2-2x+3与直线y=x+3所围成的图形面积.
【解析】解方程组得交点横坐标为x=0和x=3.作图如下
曲边梯形面积为:(x2-2x+3)dx.
梯形面积为:(x+3)dx.
所以阴影面积为:(x+3)dx-(x2-2x+3)dx
=(-x2+3x)dx.。