平曲线加宽及其要求
- 格式:pptx
- 大小:856.74 KB
- 文档页数:13
平曲线、超高、竖曲线、超高在线形设计时,各级公路(高速公路和一级公路除外)的视距应不小于两倍停车视距;并应根据需要,结合地形设置保证超车视距的路段。
平曲线半径:当汽车在平曲线上行驶时,所产生的横向力应不超过轮胎与路面摩阻力所允许的界限,并使驾驶员无不顺适感觉。
平曲线半径、行车速度、路面超高和横向摩阻系数[kg2]的关系式为[147-01],[kg2]其中(+) 直接关系到汽车在平曲线上行驶时的安全和顺适感。
极限最小半径:是公路受到地形或地物等限制所允许采用的最小半径。
其计算的条件是:为0.10(=120公里/小时)~0.15(=40公里/小时),这时驾驶员仍感顺适;是路面超高允许最大值,一般用6%,个别用8%,特殊情况下用10%。
一般最小半径:为使公路平面线型在整体组合上不致不协调,驾驶员感到较为顺适的常用的最小半径。
这时,为0.05~0.06;为6%~8%,不用10%。
不设超高的最小半径公路的平曲线保持直线上的路拱(即不设超高),驾驶员不感到有弯道的最小半径,这时,为0.035;为-2%或-1.5%。
回头曲线:当公路需要展线以争取高程,而又受地形限制不能继续前进而须折返展线时,在折返处设转角一般大于180°的平曲线,称为回头曲线。
回头曲线因受地形限制,常采用极限甚至小于极限的最小半径。
超高:汽车在平曲线上行驶时产生离心力,设置超高,可抵消其部分离心力,使汽车不致向外倾覆。
超高值过大不利于驾驶操作和行车安全,也不利于公路养护、施工;过小则不利于排水。
专供汽车行驶的高速公路,一级公路的超高横坡度不超过10%,其他各级公路不超过8%。
在积雪寒冷地区,最大超高横坡度不超过6%。
平曲线加宽:汽车在平曲线上行驶时,后轮的轨迹在前轮的内侧,其车轮所占有宽度比在直线上的要宽,因此车道内侧应予加宽。
加宽值视车型和平曲线半径()而定,[kg2]一般可按/2计算。
式中为汽车前后轴距;如为半挂车时,可分别按牵引车和挂车的前后轴距[kg2],计算。
高速公路平曲线加宽的方法
高速公路平曲线加宽的方法有以下几种:
1. 扩大路面宽度:可以通过扩大车道的宽度来增加平曲线的宽度。
这样可以提供更多的空间,使车辆在曲线处保持安全距离,减少侧向冲击的风险。
2. 利用硬肩或超宽路肩:在平曲线的外侧设置硬肩或超宽路肩,使车辆在转弯时有更多的横向空间。
这样不仅能够增加平曲线的宽度,还能够提供更好的排水功能。
3. 增加侧向磨耗区域:在曲线内侧设置较宽的侧向磨耗区域,使车辆在曲线行驶时可以更好地控制方向,减少转向阻力和侧向冲击。
4. 采用辅助设施:在平曲线的内侧设置护栏或护墙,使车辆在曲线处保持在安全区域内行驶,减少侧翻的风险。
5. 提高标线和标志的可见性:在平曲线处加大对标线和标志的设置密度,使驾驶员能够提前预知转弯的开始和结束点,有助于安全驶入和驶出曲线。
需要注意的是,在进行高速公路平曲线加宽时,应考虑到土地、交通流量、安全等多种因素,确保改造后的道路符合安全规范,并与周围环境相协调。
最重要的是,进行改造前应进行详细的规划和设计,并充分评估改造方案的可行性和效果。
桥梁、涵洞1 桥梁设计原则1.1 桥梁设计的一般规定1. 桥梁应根据公路功能、等级、通行能力及抗洪防灾要求,结合水文、地质、通航、环境等条件进行综合设计。
特大桥、大桥桥位应选择在河道顺直稳定、河床地质良好、河槽能通过大部分设计流量的河段。
中桥桥位的选择原则上应服从路线的总方向,路桥应综合考虑。
一方面从整个路线或路线网的观点上看,要避免或减少因车辆绕道而增加的运输费用;另一方面从桥梁本身的经济性和稳定性出发,应尽量选择在河道顺直、水流稳定、河面较窄、地质良好、冲刷较少的河段上,以降低造价和养护费用,并防止因冲刷过大而发生桥梁倒塌的危险。
此外,一般应尽量避免桥梁与河流斜交,以避免增加桥梁长度而提高造价。
小桥涵的桥位的选择原则上应服从路线走向,当遇到不利的地形、地质和水文条件时,应采取适当的措施,不应因此而改变线路。
桥位不宜选择在河汊、沙洲、古河道、急弯、汇合口、港口作业区及易形成流冰、流木阻塞的河段以及断层、岩溶、滑坡、泥石流等不良地质的河段。
2. 桥梁纵轴线宜与洪水位主流流向正交。
对通航河流上的桥梁,其墩台沿水流方向的轴线应与最高通航水位时的水流方向一致。
当斜交不可避免时,交角不宜大于5°;当交角大于5°时,宜增加通航孔净宽。
3. 为保证桥位附近水流顺畅,河槽、河岸不发生严重变形,必要时可在桥梁上下游修建调治构造物。
调治构造物形式及其布置应根据河流性质、地形、地质、河滩水流情况以及通航要求、桥头引道、水利设施等因素综合考虑确定。
非淹没式调治构造物的顶面,应高出桥涵设计洪水频率的水位至少0.25m,必要时尚应考虑雍水高度、波浪爬高、斜水流局部冲高、河床淤积等影响。
允许淹没的调治构造物的顶面应高出常水位。
单边河滩流量不超过总流量的15%或双边河滩流量不超过25%时,可不设导流堤。
二级公路的特大桥及三四级公路的大桥在水势猛急、河床一遇冲刷的情况下,可提高一级洪水频率验算基础冲刷深度。
公路工程技术规范标准1 总则1.0。
1 适用范围本标准适用于新建和改建公路。
新建公路,必须按本标准执行.改建公路,当利用现有公路的局部路段受条件限制时,对本标准规定的个别技术指标,经过技术经济比较,可作合理变动;对于改线路段,应符合本标准的规定。
1。
0。
2 公路分级公路根据使用任务、功能和适用的交通量分为高速公路、一级公路、二级公路、三级公路、四级公路五个等级。
高速公路为专供汽车分向、分车道行驶并全部控制出入的干线公路。
四车道高速公路一般能适应按各种汽车折合成小客车的远景设计年限年平均昼夜交通量为25000~55000辆;六车道高速公路一般能适应按各种汽车折合成小客车的远景设计年限年平均昼夜交通量为45000~80000辆;八车道高速公路一般能适应按各种汽车折合成小客车的远景设计年限年平均昼夜交通量为60000~100000辆。
其它公路为除高速公路以外的干线公路、集散公路、地方公路,分四个等级。
一级公路为供汽车分向、分车道行驶的公路,一般能适应按各种汽车折合成小客车的远景设计年限年平均昼夜交通量为15000~30000辆。
二级公路一般能适应按各种车辆折合成中型载重汽车的远景设计年限年平均昼夜交通量为3000~7500辆。
三级公路一般能适应按各种车辆折合成中型载重汽车的远景设计年限年平均昼夜交通量为1000~4000辆。
四级公路一般能适应按各种车辆折合成中型载重汽车的远景设计年限年平均昼夜交通量为:双车道1500车以下;单车道200辆以下。
1.0.3 公路等级的选用公路等级应根据公路网的规划,从全局出发,按照公路的使用任务、功能和远景交通量综合确定。
一条公路,可根据交通量等情况分段采用不同的车道数或不同的公路等级.各级公路远景设计年限:高速公路和一级公路为20年;二级公路为15年;三级公路为10年;四级公路一般为10年,也可根据实际情况适当调整。
对于不符合本标准规定的已有公路,应根据需要与可能的原则,按照公路网发展规划,有计划地进行改建,提高通行能力及使用质量,以达到相关等级公路标准的规定。
平曲线、超高、竖曲线、超高在线形设计时,各级公路(高速公路和一级公路除外)的视距应不小于两倍停车视距;并应根据需要,结合地形设置保证超车视距的路段。
平曲线半径:当汽车在平曲线上行驶时,所产生的横向力应不超过轮胎与路面摩阻力所允许的界限,并使驾驶员无不顺适感觉。
平曲线半径、行车速度、路面超高和横向摩阻系数[kg2]的关系式为[147-01],[kg2]其中(+) 直接关系到汽车在平曲线上行驶时的安全和顺适感。
极限最小半径:是公路受到地形或地物等限制所允许采用的最小半径。
其计算的条件是:为0.10(=120公里/小时)~0.15(=40公里/小时),这时驾驶员仍感顺适;是路面超高允许最大值,一般用6%,个别用8%,特殊情况下用10%。
一般最小半径:为使公路平面线型在整体组合上不致不协调,驾驶员感到较为顺适的常用的最小半径。
这时,为0.05~0.06;为6%~8%,不用10%。
不设超高的最小半径公路的平曲线保持直线上的路拱(即不设超高),驾驶员不感到有弯道的最小半径,这时,为0.035;为-2%或-1.5%。
回头曲线:当公路需要展线以争取高程,而又受地形限制不能继续前进而须折返展线时,在折返处设转角一般大于180°的平曲线,称为回头曲线。
回头曲线因受地形限制,常采用极限甚至小于极限的最小半径。
超高:汽车在平曲线上行驶时产生离心力,设置超高,可抵消其部分离心力,使汽车不致向外倾覆。
超高值过大不利于驾驶操作和行车安全,也不利于公路养护、施工;过小则不利于排水。
专供汽车行驶的高速公路,一级公路的超高横坡度不超过10%,其他各级公路不超过8%。
在积雪寒冷地区,最大超高横坡度不超过6%。
平曲线加宽:汽车在平曲线上行驶时,后轮的轨迹在前轮的内侧,其车轮所占有宽度比在直线上的要宽,因此车道内侧应予加宽。
加宽值视车型和平曲线半径()而定,[kg2]一般可按/2计算。
式中为汽车前后轴距;如为半挂车时,可分别按牵引车和挂车的前后轴距[kg2],计算。
桥梁、涵洞总体设计原则及相关规定4.1 桥梁设计原则4.1.1 桥梁设计的一般规定1.桥梁应根据公路功能、等级、通行能力及抗洪防灾要求,结合水文、地质、通航、环境等条件进行综合设计.特大桥、大桥桥位应选择在河道顺直稳定、河床地质良好、河槽能通过大部分设计流量的河段.中桥桥位的选择原则上应服从路线的总方向,路桥应综合考虑.一方面从整个路线或路线网的观点上看,要避免或减少因车辆绕道而增加的运输费用;另一方面从桥梁本身的经济性和稳定性出发,应尽量选择在河道顺直、水流稳定、河面较窄、地质良好、冲刷较少的河段上,以降低造价和养护费用,并防止因冲刷过大而发生桥梁倒塌的危险.此外,一般应尽量避免桥梁与河流斜交,以避免增加桥梁长度而提高造价.小桥涵的桥位的选择原则上应服从路线走向,当遇到不利的地形、地质和水文条件时,应采取适当的措施,不应因此而改变线路.桥位不宜选择在河汊、沙洲、古河道、急弯、汇合口、港口作业区及易形成流冰、流木阻塞的河段以及断层、岩溶、滑坡、泥石流等不良地质的河段.2. 桥梁纵轴线宜与洪水位主流流向正交.对通航河流上的桥梁,其墩台沿水流方向的轴线应与最高通航水位时的水流方向一致.当斜交不可避免时,交角不宜大于5°;当交角大于5°时,宜增加通航孔净宽.3. 为保证桥位附近水流顺畅,河槽、河岸不发生严重变形,必要时可在桥梁上下游修建调治构造物.调治构造物形式及其布置应根据河流性质、地形、地质、河滩水流情况以及通航要求、桥头引道、水利设施等因素综合考虑确定.非淹没式调治构造物的顶面,应高出桥涵设计洪水频率的水位至少0.25米,必要时尚应考虑雍水高度、波浪爬高、斜水流局部冲高、河床淤积等影响.允许淹没的调治构造物的顶面应高出常水位.单边河滩流量不超过总流量的15%或双边河滩流量不超过25%时,可不设导流堤.二级公路的特大桥及三四级公路的大桥在水势猛急、河床一遇冲刷的情况下,可提高一级洪水频率验算基础冲刷深度.4.2 桥梁总体设计4.2.1 桥梁平面设计桥梁平面设计包括平面线形布置及桥面宽度确定.4.2.1.1 平面线形二级及以下公路小桥涵平面布置应服从路线整体线形设计要求,桥梁平面线形必须与桥头引道平面线形相配合.通航河流上桥梁平面线形宜采用大半径曲线(一般宜采用极限最小平曲线半径的4~8倍),以便于桥上平纵组合,降低桥头引道的高度.且要求桥墩(台)沿水流方向的轴线与通航水位水流方向一致,必须斜交时,交角不宜大于5°.山区公路桥涵平面布置服从路线整体线形设计要求,可以减少展线长度、大大节省工程量.平原地区二级及以下公路特大桥、大桥、中桥平面线形原则上应服从路线走向,桥路综合考虑,尽量将桥轴线保持为直线.4.2.1.2 桥面宽度桥面净空:桥梁人行道、行车道上符合公路建筑限界,保证行车安全的最小空间.桥面净宽:是指桥梁建筑限界的横向宽度,它包括行车道宽度和侧向宽度(二级及以下公路为土路肩宽度减去0.25米)之和.上承式桥梁桥面净空的净高没有限制,故桥面净空即指桥面净宽.桥面宽度:是指桥面宽度与护栏(栏杆、缘石、安全带等)宽度及护栏外侧宽度之和平微区二级路上的特大桥及大桥等造价较高的桥梁,其侧向宽度可适当减小.城镇附件桥梁桥面宽度可适当加宽,必须设置人行道或非机动车道时,应计入建筑限界范围内.人行道宽度一般为0.75米或1.0米,大于1.0米时按0.5米的倍数递增.非机动车道宽度为1~2.5米.4.2.2 桥梁纵断面设计桥梁纵断面设计包括桥梁长度和孔径的确定、桥梁配跨、桥下净空及桥面中心线标高的确定、桥梁及引道纵坡设计等内容.4.2.2.1 桥梁长度和孔径的确定1. 桥梁长度和孔径的影响因素很多,需要结合各种因素进行综合分析,并经过多方面协商后确定.现将各影响因素影响情况简述列于表4.2.1.表4.2.1 桥梁长度和孔径影响因素注:①基础冲刷深度验算设计洪水频率提高:对于二级公路特大桥采用1/300;三、四级公路工程艰巨、修复困难的大桥采用1/100.②岩性河床桥梁墩、台基底最小安全值如表1-2.③提高设计洪水频率,验算基础冲刷深度不超过基底埋深即可.表4.2.2 埋深最小安全值2. 桥梁配跨在已定桥长和满足上述确定孔径基本要求的基础上,需要进一步明确桥孔划分和布置,其影响因素简述列于表4.2.3.表4.2.3 桥孔划分和布置影响因素4.2.2.2 桥梁纵断面线形、桥下净空及桥面最低高程1. 纵断面线形小桥和涵洞处的纵坡应按路线规定进行设计.大中桥桥上纵坡宜不大于4%,桥头引道纵坡宜不大于5%,;位于市镇混合交通繁忙处,桥上纵坡和桥头引道纵坡均应不大于3%,桥头两端引道纵断面线形应与桥上线形相配合.如果桥梁平面线形为曲线,则宜采用大半径曲线(表4.2.4),处理好桥上平纵组合,以利于降低桥头引道填土高度,其基本要求是:平曲线与竖曲线相重合,且平曲线稍长于竖曲线.表4.2.4 桥上竖曲线(凸、凹)最小半径2. 桥下净空及桥面最低高程桥下净空是在设计水位及设计通航水位的基础上保证漂浮物及航船顺畅通过的最小空间.桥面最低高程是指全桥满足桥下净空要求的最低处桥面的高程.(1) 不通航河流桥下最小净空:梁底—0.5米;支座垫石顶面—0.25米;无铰拱—拱顶底不小于1.0米,可淹没拱矢高的2/3;(2) 不通航河流梁底最低高程:H1=设计水位+桥下最小净空+雍水、浪高等影响水位的诸多因素(米).(3) 不通航河流桥面最低高程:HP=H1+桥梁上部结构建筑高度(包括桥面铺装厚度)(米).(4) 通航河流梁底最低高程:H2=设计最高通航水位+通航净空高度(米).(5) 通航河流桥面最低高程:Ht=H2+桥梁上部结构建筑高度(包括桥面铺装厚度)(米).(6) 大、中桥桥头引道(在洪水泛滥范围内)的路基设计标高,一般应高于该设计水位(包括雍水和浪高)至少0.5米;小桥涵附近的路基设计标高应高于桥涵前雍水位至少0.5米(不计浪高).4.2.3 桥梁横断面设计在桥梁宽度和梁底最低高程基本情况确定的情况下,上部结构高度以便根据其计算跨度和路线纵断面设计高程限制情况来确定.桥梁横断面设计还要初步选定栏杆形式,确定弯桥实现超高、加宽的方式等.1. 超高与加宽平曲线设置超高与加宽的条件:(1) 加宽:平曲线半径等于或小于250米时,应在平曲线内侧加宽.(2) 各级公路设置超高的条件如表4.2.5表4.2.5 各级公路设置超高的条件2. 超高和加宽值(1) 加宽:一般采用第三类加宽值,按平曲线半径大小选用,其值在0.8~2.5米之间.(2) 超高:根据各级公路等级、计算行车速度,按平曲线半径大小确定超高值,其值在2%~10%之间.3. 超高设置的方式所谓设置超高就是调整路面横坡,逐渐使其外侧高于内侧一定值,路面横坡有三种状态:(1) 直线段断面为单向横坡;(2) 圆曲线段断面为单向横坡;(3) 超高加宽缓和段为由双向横坡逐渐变成单向横坡的过渡段,其设置方式如表4.2.6表4.2.6 超高加宽缓和段设置注: 表中LC---超高缓和段长度(米)ß---旋转轴至行车道(设路缘带时为路缘带)外侧边缘的宽度(米)△I---超高坡度与路拱横坡的代数差(%);P---超高渐变率,即旋转轴与行车道(设路缘带时为路缘带)外侧边缘之间的相对坡度(其数值据计算行车速度变化,超高旋转轴为中心线时:1/100~1/250;,超高旋转轴为边线时:1/50~1/200)4. 桥梁实现加宽、超高的方法(1) 加宽:加宽设置如表4.2.7表4.2.7 加宽设置(2) 超高:桥面在由双向坡变为单向坡的缓和段是复杂的几何形状,若再有竖曲线的影响,将更加复杂,常需结合采用以下措施,方可使桥面成为光滑曲面.并注意每孔桥两端外侧超高抬高值不能过大,且要保证桥面铺装层最小厚度不小于5厘米,必要时注意相应调整缘石高度和泄水孔位置. 4.3 桥型选择及上部结构4.3.1 桥梁结构形式选择目前一般公路常用上部结构形式有梁式体系——钢筋混凝土及预应力混凝土空心板、T梁、连续箱梁、钢筋混凝土连续整体板等;拱式体系——主要为石拱桥和钢筋混凝土拱桥等圬工结构;刚架桥——主要为斜腿刚构及门式刚架;悬索桥——即传统意义上的吊桥;组合体系——主要为钢—混凝土组合连续箱梁,梁拱组合的桁架拱,多孔拱梁结构等.4.3.2 方案比选过程1. 拟定桥梁图式编制设计方案,通常是从桥梁分孔和拟定桥梁图式开始.在作出分孔规划后,就可对所设计的桥梁拟出一系列各具特点而可能实现的桥梁图式.在拟定图式时,思路要宽广,宁可多画几个图式,也不要遗漏可能的桥型与布置方式.每一图式可在跨度、高度、矢度等方面大致按比例在同样大小的桥址断面图上.下一步工作就是经过综合分析和判断,剔除一些在技术经济上有明显不足的图式,并从中筛选出2~4个构思好,各具优点,但是一时还难以判断孰优孰劣的图式,以此进行下一步的比较.2. 编制方案编制方案的目的在于提供各个中选图式的技术经济指标,以便经过相互比较,科学地从中选定最佳方案.这些指标包括:主要材料用量、劳动力(包括专业技术工种)数量、全桥总造价(分上、下部结构列出)、工期、养护费用、运营条件、有无困难工程、是否特种机具、是否美观等.为了获得上述的前三项指标,通常可充分利用已有资料或通过一些简便的近似验算,对每一方案拟定结构主要尺寸.并计算主要工程量.有了工程数量,乘以相应的材料和劳动定额以及扩大单价,就不难得出每个方案的所需材料和劳动力数量,并进而估算全桥造价.其他的一些问题,虽难以得到数量指标,也应进行适当的概略评价.每一方案应绘出总体布置图.3. 经济技术比较和最优方案的选定设计方案的评价和比较,是要全面考虑上述各项指标,综合分析每一方案的优缺点,最后选定一个符合当前条件的最佳推荐方案.有时,占优势的方案还可吸取其他方案的优点进一步加以改善,如果改动较多时,甚至最后中选的方案可能是集聚各方案长处的另一个新方案.一般来说,造价低、材料省、劳动力少的应是优秀方案,但实际上并不尽然,因为有时但其他技术因素或使用要求上升成为设计的主要矛盾时,就不得不放弃较为经济的方案.所以在比较时必须从任务书提出的要求、所绘的原始资料以及施工等条件中,找出所面临问题的关键所在,分清主次,才能探索出适合于各具体情况的最佳方案.4.3.3公路桥梁常用上部结构形式比较4.3.3.1 钢筋混凝土或预应力混凝土板桥1. 常用跨径: 钢筋混凝土板桥一般用于跨径小于等于8米以下的桥梁中,预应力混凝土板则多用于跨径为8~20米的桥梁中,一般情况下,简支板桥跨径不超过25米.2. 建筑高度: 建筑高度一般为跨径的1/20~1/25.3. 特点: 构造简单,建筑高度小,施工方便.能有效地降低路基平均高度;容易适应路线各种线形要求‘与T梁相比,材料更经济.4. 适用范围: 最常用的桥型,可广泛地用于城市立交、高架桥,软土地基桥梁;在建筑高度受到严格限制时为首选桥型.5. 有部颁标准图: 根据经验,先张法预制1000块以上才具有经济优势.4.3.3.2 预应力混凝土T梁1. 常用跨径: 20~40米.2. 建筑高度: 建筑高度一般为跨径的1/15.3. 特点: 外形简单,制造方便.4. 适用范围: 在建筑高度不受限制时,采用该形式比较经济,标准图最大跨径40米.5. 应用情况: 有部颁标准图4.3.3.3 预应力混凝土矮箱1. 常用跨径: 20~40米.2. 建筑高度: 建筑高度一般为跨径的1/20.3. 特点: 建筑高度相对较低,横向整体性好,为部分预应力,反拱度小,较T经济性好.4. 适用范围: 路线桥梁可与空心板、T梁比较选用.4.3.3.4 钢筋混凝土或预应力混凝土连续箱梁1. 常用跨径: 40~160米,世界上最大跨径为160米.2. 建筑高度: 建筑高度一般跨径较小时可采用等截面,梁高为跨径的1/18~1/20.跨径较大时采用变截面,支点高跨比为1/16~1/20.跨中高跨比为1/30~1/503. 特点: 挖空率高,用量省,自重小;截面抗扭刚度大,动力特性好,应力分布合理.4. 适用范围: 适用于各种中大桥梁及弯桥、斜梁桥;通常要求基础较为良好.5. 应用情况: 立交桥、高架桥、跨河桥应用十分普遍;支架现浇、悬浇、顶推、纵向移动模架等施工方法.4.3.3.5 预应力混凝土连续刚构1. 常用跨径: 大于60米,中国目前上最大跨径为270米,世界最大跨径为301米.2. 建筑高度: 建筑高度一般跨径较小时可采用等截面,梁高为跨径的1/18~1/20.跨径较大时采用变截面,支点高跨比为1/16~1/20.跨中高跨比为1/30~1/503. 特点: 墩梁固结,保持了连续梁的优点;节省了支座;减少下部工程数量;改善水平荷载受力性能.4. 适用范围: 大跨径高墩比较适用.5. 应用情况: 目前我省高速公路上高墩及大跨径桥中应用较多.4.3.3.6 钢筋混凝土及预应力混凝土系杆拱1. 常用跨径: 大于60米.2. 建筑高度: 建筑高度一般为跨径的1/55~1/100.3. 特点: 梁高仅有同等跨径连续梁的一半,混凝土及钢筋用量也优于连续梁,但施工复杂.4. 适用范围: 建筑高度有严格限制或要求曲线形优美的桥梁.4.3.3.7 钢管混凝土拱桥1. 常用跨径: 大于60米,世界最大跨径已超过460米.2. 建筑高度: 建筑高度一般为跨径的1/55~1/60.3. 特点: 采用钢—混凝土复合材料,有高强度、支架、模板三大作用,自架能力强,具有经济、省料、安装方便、后期承载力高的特点.4. 适用范围: 大跨径桥中应用较多.5. 应用情况: 该桥型在我国发展较快,20世纪90年代以来,已建成跨径大于120米的钢管混凝土拱桥80余座,跨径大于200米的有20余座.4.4 桥梁墩台桥梁墩台主要由墩台帽、墩台身和基础三部分组成.墩台除了要承受上部结构的荷载外,还要承受流水压力、水面以上的风力及可能出现的船只或漂流物的撞击力,对于桥台还需承受土压力,因此一般来说受力相对复杂;同时由于经常需要水下施工,墩台的施工也是桥梁施工的难点.桥梁不仅上部结构形式多样,下部结构的形式也不断的发展,目前主要向美观及轻型合理的方向发展.桥梁墩台的类型复杂多样,本章主要介绍最基本、最常用的墩台形式.公路上使用的桥梁墩台大体可以分为两大类.一类是重力式墩台,其主要特点是依靠自身重力来平衡外力保持其稳定,此类墩、台身比较厚实.第二类是轻型墩台,这类墩台形式较多,而且各自都有各自的特点和使用条件.4.4.1 桥墩台设置桥墩台设置见表4.4.1表4.4.1 桥墩台设置以及考虑的因素表4.4.2 桥墩类型及特点、使用范围表4.4.3 桥台类型及特点、使用范围4.4.2 桥梁墩台选择原则桥梁墩台形式选择应注意以下问题:1. 符合因地制宜、就地取材和便于施工、养护的原则,达到适用、安全、经济、与周围环境协调、造型美观的目的:2. 注意结构受力;3. 注意土质构造、地质条件;4. 注意水文、水利及河床性质桥梁上下部结构共同作用、互相影响.故应重视上下部结构的合理组合.桥梁上下部结构在某种情况下很难截然分开,特别是墩梁固结的预应力混凝土连续刚构桥,这就要求下部结构造型与上部构造与周围环境密切配合,使桥梁构造达到和谐、匀称.墩台的施工方法与构造形式有关,高桥墩、薄壁直墩和无横隔板的空心墩采用滑动模板连续浇筑、具有较高的经济效益,而装配式桥墩常在带有横隔板的空心墩、V型吨、Y型墩等形式中采用.因此,选择墩台形式时还应从实际出发,尽量采用标准化、自动化的施工工艺,以提高工程质量,加快施工速度,节约投资.4.4.3 墩台一般规定1. 墩台帽尺寸设置(1) 墩台帽: 梁式桥的实体墩台帽厚度一般不小于40厘米,中小桥也不应小于30厘米,并应有5~10厘米的檐口.(2) 墩台帽平面尺寸: 墩台帽平面尺寸应根据上部结构形式、支座布置情况,架设上部结构施工方法的要求决定.表4.4.4 支座边缘到台、墩身边缘的最小距离(厘米)注:①采用钢筋混凝土悬臂式墩台帽时,上述最小距离为支座至墩台帽边缘的距离;②跨径100米以上的桥梁,应按实际桥跨决定.2. 实体墩台顶帽在支座下面应设置钢筋网实体墩台顶帽在支座下面应设置钢筋网,顶帽的其余部分,大中桥应设构造钢筋.不设支座的桥梁顶帽厚度适当增加后可不设构造钢筋网.但在地震地区及冬季月平均气温在0°以下地区的小跨径桥梁,墩台顶帽也应设置钢筋网.大跨径墩台帽厚度不小于40厘米,小跨径墩台帽厚度不小于30厘米,墩台帽出檐宽度一般为5~10厘米.悬臂(挑臂)式墩台及桩、柱、排架式墩台帽(盖梁)有关尺寸的拟定及钢筋的布置,除按上述原则外,还应按设计的悬臂长度,桩、柱、排架与盖梁连系的结构方法,桥跨结构的布置,施工和使用阶段的情况,通过结构计算决定.4.4.4 支承垫石设有支座的钢筋混凝土梁式小桥墩台,除按按前述原则设置构造钢筋外,在支座板下还应设置钢筋网,宽度约与墩帽同,长度约为支座板的两倍左右.而在钢筋混凝土梁式大中桥墩台顶帽上可设置钢筋混凝土支承垫石,其上安装支座(一般垫石用C25~C30以上混凝土,个别的也有用石料制成),已更好分布压力.活动支座的支承垫石通常埋入桥梁墩、台顶帽内,固定支座的支承垫石可以埋入墩、台顶帽或露在外面.当墩台上要按照不同高度支座时,也需由不同高度的支承垫石调整高度,4.4.5 其他构造要求4.4.5.1 砖石及混凝土墩台1. 实体式墩台基础的扩散角(刚性角):对于砖、片石、块石、料石砌体,当用米5及以下砂浆砌筑时,不大于30°;当用米5及以上砂浆砌筑时,不大于35°;当用混凝土砌筑时,不大于40°.2. 建在非岩石类地基上的带八字形翼墙的桥台,台身与翼墙之间宜设变形缝,以保证稳定和安全.各种墩台除满足构造和施工要求外,还应满足确定和稳定性要求,但对于高度小于20米的实体墩和U台,可不考虑稳定问题.3. 对于等跨拱桥实体式桥墩的顶宽(单向推力墩除外).混凝土墩可按拱跨的1/15~1/30.石砌墩可按拱跨的1/10~1/25(其比值随跨径增大而减小)估算;墩身两侧边坡可为20:1~30:1.软土地基修建拱桥时,可扩大桥台的台底面积和台背面积,以减小基底压力,并利用基底与地基的摩阻力和适当利用台背后土侧压力以平衡共的水平推力.台背填土长度应为台高的3~4倍以减少土的变形对上部结构的影响.填土要求应按《公路桥涵施工技术规范》(JTJ 041-2000)要求进行.4. 梁板式桥上部构造的梁端之间、梁端与桥台的伸缩缝宽度,中、小跨径桥梁一般为2~5厘米;大跨径桥梁则按温度变化、弹性变形以及施工放样、预制和安装构件的容许误差等因素确定.5. 实体式墩侧坡一般采用20:1~30:1,小跨径桥的桥墩也可采用直坡.墩身顶宽:小桥不宜小于80厘米(轻型桥台不宜小于60厘米);中桥不宜小于100厘米;大桥视上部构造类型及需要而定.U 型桥台的前墙:其任一水平截面的宽度不宜小于该截面至墙顶高度的0.4倍,对于块石、料石砌体或混凝土则不小于0.35倍,如桥台内填料为透水性良好的砂性土或砂砾,则上述两项可分别相应减为0.35和0.3倍.另外,U型桥台两侧墙顶宽不小于同一水平截面前墙全长的0.4时,可按U型整体截面验算截面强度.4.5.2.钢筋混凝土墩台1. 钢筋混凝土肋式桥台,其板和肋的厚度不宜小于20厘米.钢筋应按计算确定,并满足构造要求;钢筋至外表面的净距不小于3厘米.扶壁(肋)与墙板的连接处应设置箍筋,以防止前墙趾扶壁(肋)裂开,箍筋应按其相应的受力情况计算.桥台设计时应要求施工单位于土基达到基本稳定之后再进行桥台施工,以确保其安全.对于设有橡胶支座的墩台,设计时宜预留更换支座的位置及空间.2. 配有纵向受力钢筋与普通箍筋的轴心受压构件,纵向受力钢筋直径不小于12米米,钢筋截面积应不小于混凝土计算截面的0.4%;当大于3%时箍筋间距应不大于纵向受力钢筋直径的10倍;同一箍筋所箍纵向受力钢筋根数,在构件每边上应不多于3根,箍筋间距应不大于纵向受力钢筋直径的15倍或构件横截面的较小尺寸,并不大于40厘米.配有纵向受力钢筋和螺旋箍筋或焊接环形箍筋时的轴心受压构件,纵向受力钢筋截面积应不小于螺旋或环形箍筋圈内核心面积的0.4%;构件核心截面积应不小于构件整个面积的2/3;螺旋或环形箍筋距或间隔应不大于核心直径的1/5,亦不大于8厘米.4.4.6 桥墩台设计计算4.4.6.1 桥墩台设计荷载桥墩台设计时,荷载应根据设计规范《公路工程技术标准》(邢.B01—2003)和《公路桥涵设计通用规范》(JTG I)60—2004)的荷载级别、组合方法进行计算,确定墩台承受最不利的荷载.由于桥梁墩台所受荷载种类较多,荷载组合时应尤其注意其组合原则.4.4.6.2 墩台沉降及位移1.简支梁桥的墩台沉降和位移容许极限值简支梁桥的墩台沉降和位移的容许极限值,不宜超过下列规定:(1) 墩台均匀总沉降值(不包括施工的沉降):2.0 1/,J;(2) 相邻墩台均匀总沉降差值(不包括施工中的沉降):1.o/三;(3) 墩台顶面水平位移值:0.5√L.2.拱桥墩台的沉降和位移容许值拱桥墩台的沉降和位移的容许值由计算确定.3.水平位移4.桥墩台抗震设计地震是偶然荷载,属桥涵没计时荷载组合VI(结构重力、顸应力、土重及士侧压力中的一种或几种与地震力的组合)中的主要组成部分.地震力计算与结构设计应符合《公路工程抗震设计规范》(JTJ004-89)的规定.桥梁墩台没计考虑地震影响,通常比较复杂,以反应谱法计算结构的地震效应.设计准则按桥梁的重要性呵定为“小震不坏,中震町修,大震不倒”的原则.。
(2)超高横坡度大于路拱坡度时,可分别采用以下三种方式:图2—12 无中间分隔带公路的超高过渡绕内边缘线旋转先将外侧车道绕路面未加宽前的中心线旋转,待达到与内侧车道构成单向横坡后,整个断面绕路面未加宽前的内侧边缘线旋转,直至全超高横坡度值。
绕中线旋转先将外侧车道绕路面未加宽前的路中心线旋转,待达到与内侧构成单向横坡后,整个断面一同绕路面未加宽前的路中心线旋转,直至全超高横坡度值。
绕外边缘线旋转先将外侧车道绕路面外侧边缘旋转,与此同时,内侧车道随中线的降低而相应降低,待达到单向横坡后,整个断面仍绕外侧车道边缘旋转,直至超高横坡值。
一般新建公路多用绕内边缘线旋转方式;旧路改建工程多用绕中心线旋转方式;绕外侧边缘线旋转是一种比较特殊的设计,仅用于某些为改善路容的地点。
2.有中间分隔带公路的超高过渡(1)绕中央分隔带的中心线旋转先将外侧行车道绕中央分隔带的中心线旋转,待达到与内侧行车道构成单向横坡后,整个断面一同绕中央分隔带的中心线旋转,直至全超高横坡值。
(2)绕中央分隔带两侧边缘线旋转将两侧行车道分别绕中央分隔带两侧边缘线旋转,使之各自成为独立的单向超高断面。
此时中央分隔带维持原水平状态。
(3)绕各自行车道中线旋转将两侧行车道分别绕各自的行车道中心线旋转,使之各自成为独立的单向超高断面,此时中央分隔带两边缘分别升高与降低而成为倾斜断面。
三种超高过渡方式各有优缺点,中间带宽度较窄时可采用绕中央分隔带的中心线旋转;各种中间带宽度的都可以采用绕中央分隔带的两侧边缘旋转;对于车道数大于4条的公路可采用绕各自行车道中心线旋转;图2—13 有中间分隔带公路的超高过渡(三)超高缓和段长度为了行车的舒适、路容的美观和排水的通畅,必须设置一定长度的超高缓和段,超高的过渡则是在超高缓和段全长范围内进行的。
双车道公路超高缓和段长度按下式计算:(2—23)式中:Lc —超高缓和段长度; B —旋转轴至行车道外侧边缘的宽度(m);△i —超高旋转轴外侧的最大超高横坡度与原路拱横坡度的代数差;p —超高渐变率(由于逐渐超高而引起外侧边缘纵坡与路线原设计纵坡的差值)。