全国各地中考数学解析版试卷分类汇编总汇:统计
- 格式:doc
- 大小:136.00 KB
- 文档页数:7
全国各地中考数学真题汇编:统计与概率(中南西南)(解析卷)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.5.(2019•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.6.(2019•河南)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A. B. C. D.解:令3张用A1,A2,A3,表示,用B表示,可得:一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.7.(2019•海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9解:根据题意得=,解得n=6,所以口袋中小球共有6个.故选:A.8.(2019•重庆)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工 B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工解:为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是:用企业人员名册,随机抽取三分之一的员工.故选:C.9.(2019•昆明)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2019年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件解:A、甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则乙组学生的身高较整齐,故此选项错误;B、为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为100,故此选项错误;C、在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数是9.6,故此选项错误;D、有13名同学出生于2019年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件,正确.故选:D.10.(2019•云南)2019年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2019一带一路数字科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项,错误的是()A.抽取的学生人数为50人 B.“非常了解”的人数占抽取的学生人数的12% C.a=72° D.全校“不了解”的人数估计有428人解:抽取的总人数为6+10+16+18=50(人),故A正确,“非常了解”的人数占抽取的学生人数的=12%,故B正确,α=360°×=72°,故正确,全校“不了解”的人数估计有1300×=468(人),故D错误,故选:D.二.填空题(共2小题)11.(2019•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.12.(2019•重庆)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市××局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4 .解:将这5天的人数从小到大排列为.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.三.解答题(共12小题)13.(2019•广州)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是16 ,众数是17 ;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案是16,17;(2)=14,答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.14.(2019•广东)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为800 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.15.(2019•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.16.(2019•河南)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2019 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.解:(1)本次接受调查的市民人数为300÷15%=2019人,故答案为:2019;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2019×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).17.(2019•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2019年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为830 亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m= 18 ,β=65 度(m、β均取整数).解:(1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:故答案为:830;(2)(市)属项目部分所占百分比为m%=×100%≈18%,即m=18,对应的圆心角为β=360°×≈65°,故答案为:18、65.18.(2019•云南)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数.解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.19.(2019•重庆)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.解:(1)调查的总人数为12÷30%=40(人),所以C项目的人数为40﹣12﹣14﹣4=10(人)条形统计图为:(2)画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率==.20.(2019•云南)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==..(2019•昆明)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为108 度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200﹣56﹣44﹣40=60(人),补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.22.(2019•曲靖)某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.解:(1)样本容量为6÷12%=50;(2)14岁的人数为50×28%=14、16岁的人数为50﹣(6+10+14+18)=2,则这组数据的平均数为=14(岁),中位数为=14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为1800×=720人.23.(2019•昆明)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动.现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.解:(1)列表如下:A B CA(B,A)(C,A)B(A,B)(C,B)C(A,C)(B,C)由表可知共有6种等可能的结果;(2)由表知共有6种等可能结果,其中抽到B队和C队参加交流活动的有2种结果,所以抽到B队和C队参加交流活动的概率为=.24.(2019•曲靖)数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或者列表表示所有可能出现的结果;(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.解:(1)由题意可得,共有12种等可能的结果;(2)∵共有12种等可能结果,其中抽取的两张卡片中每张卡片上的三条线段都能组成三角形有2种结果,∴抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率为=.。
全国各地中考数学解析版试卷分类汇编总汇:统计一、选择题1.(2014年天津市,第11题3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁考点:加权平均数.分析:根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答:解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.点评:此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.2.(2014•新疆,第7题5分)某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()360×=252南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60考点:众数;中位数分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(2014•温州,第2题4分)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()期每天的最高气温的中位数是()8,9,这5个数据的中位数是()统计图(如图),从图中可看出()统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是()15名运动员的成绩如表:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为()计图,则小芹这七天平均每天的自主学习时间是()则平均数为:10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10)5,这组数据的方差为()。
专题20 统计一.选择题1.(2022·浙江温州)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有()A.75人B.90人C.108人D.150人【答案】B【分析】根据信息技术的人数和所占的百分比可以计算出本次参加兴趣小组的总人数,然后根据劳动实践所占的百分比,即可计算出劳动实践小组的人数.【详解】解:本次参加课外兴趣小组的人数为:60÷20%=300,劳动实践小组有:300×30%=90(人),故选:B.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,求出本次参加兴趣小组的总人数.2.(2022·甘肃武威)2022年4月16日,神州十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神州十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是()A.完成航天医学领域实验项数最多B.完成空间应用领域实验有5项C.完成人因工程技术实验项数比空间应用领域实验项数多D.完成人因工程技术实验项数占空间科学实验总项数的24.3%【答案】B【分析】根据扇形统计图中的数据逐项分析即可.【详解】解:A.由扇形统计图可得,完成航天医学领域实验项数最多,所以A选项说法正确,故A选项不符合题意;B.由扇形统计图可得,完成空间应用领域实验占完成总实验数的5.4%,实验次项数为5.4%×37≈2项,所以B选项说法错误,故B选项符合题意;C.完成人因工程技术实验占完成总实验数的24.3%,完成空间应用领域实验占完成总实验数的5.4%,所以完成人因工程技术实验项数比空间应用领域实验项数多,说法正确,故C 选项不符合题意;D.完成人因工程技术实验项数占空间科学实验总项数的24.3%,所以D选项说法正确,故D选项不符合题意.故选:B.【点睛】本题主要考查了扇形统计图,熟练掌握扇形统计图的应用是解决本题的关键.3.(2022·浙江金华)观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为()A.5B.6C.7D.8【答案】D【分析】用总人数减去其他三组的人数即为所求频数.【详解】解:20-3-5-4=8,故组界为99.5~124.5这一组的频数为8,故选:D.【点睛】本题考查频数分布直方图,能够根据要求读出相应的数据是解决本题的关键.4.(2022·四川乐山)李老师参加本校青年数学教师优质课比赛,笔试得90分、微型课得92分、教学反思得88分.按照图所显示的笔试、微型课、教学反思的权重,李老师的综合成绩为()A.88B.90C.91D.92【答案】C【分析】根据统计图结合题意,根据加权平均数进行计算即可求解.【详解】解:9030%9260%8810%=故选Cx=⨯+⨯+⨯91【点睛】本题考查了加权平均数,正确的计算是解题的关键.5.(2022·湖南株洲)某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67、63、69、55、65,则该组数据的中位数为()A.63B.65C.66D.69【答案】B【分析】根据中位数的定义求解即可;【详解】解:将原数据排序为:55、63、65、67、69,所以中位数为:65,故选:B.【点睛】本题主要考查中位数的定义,掌握中位数的定义是解题的关键.6.(2022·浙江湖州)统计一名射击运动员在某次训练中10次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10.这组数据的众数是()A.7B.8C.9D.10【答案】C【分析】根据众数的定义求解.【详解】解:在这一组数据中9出现了4次,次数是最多的,故众数是9;故选:C.【点睛】本题考查了众数的意义.众数是一组数据中出现次数最多的数.7.(2022·浙江宁波)开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:这14天中,小宁体温的众数和中位数分别为()A.36.6℃,36.4℃B.36.5℃,36.5℃C.36.8℃,36.4℃D.36.8℃,36.5℃【答案】B【分析】应用众数和中位数的定义进行就算即可得出答案.【详解】解:由统计表可知,36.5℃出现了4次,次数最多,故众数为36.5,中位数为36.536.52+=36.5(℃).故选:B.【点睛】本题主要考查了众数和中位数,熟练掌握众数和中位数的计算方法进行求解是解决本题的关键.8.(2022·四川自贡)六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是()A.平均数是14B.中位数是14.5C.方差3D.众数是14【答案】D【分析】分别求出平均数、中位数、方差、众数后,进行判断即可.【详解】解:A.六位同学的年龄的平均数为1314141415158566+++++=,故选项错误,不符合题意;B.六位同学的年龄按照从小到大排列为:13、14、14、14、15、15,℃中位数为1414142+=,故选项错误,不符合题意;C.六位同学的年龄的方差为222858585(13)3(14)2(15)17666636-+-+-=,故选项错误,不符合题意;D.六位同学的年龄中出现次数最多的是14,共出现3次,故众数为14,故选项正确,符合题意.故选:D.【点睛】此题考查了平均数、中位数、方差、众数,熟练掌握平均数、中位数、方差、众数的求法是解题的关键.9.(2022·云南)为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:数据9.9,9.7,9.6,10,9.8的中位数是()A.9.6B.9.7C.9.8D.9.9【答案】C【分析】根据中位数的概念分析即可.【详解】解:将数据按照从小到大的顺序排列为:9.6,9.7,9.8,9.9,10,则中位数为9.8.选:C .【点睛】本题主要考查中位数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据个数是偶数,则最中间两个数的平均数就是这组数据的中位数.10.(2022·浙江嘉兴)A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A .AB x x >且22A B S S >. B .A B x x >且22B A S S <.C .A B x x <且22A B S S > D .A B x x <且22B A S S <. 【答案】B【分析】根据平均数、方差的定义,平均数越高成绩越好,方差越小成绩越稳定解答即可.【详解】根据平均数越高成绩越好,方差越小成绩越稳定.故选:B .【点睛】此题考查平均数、方差的定义,解答的关键是理解平均数、方差的定义,熟知方差是衡量一组数据波动大小的量,方差越小表明该组数据分布比较集中,即波动越小数据越稳定.11.(2022·四川南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是( )A .平均数B .中位数C .众数D .方差【答案】B【分析】根据题意可得,计算平均数、众数及方差需要全部数据,从统计图可得:前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26位的平均数,据此即可得出结果.【详解】解:根据题意可得,计算平均数、方差需要全部数据,故A 、D 不符合题意;℃50-5-11-16=18>16,℃无法确定众数分布在哪一组,故C 不符合题意;从统计图可得:前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26位的平均数,∴已知的数据中中位数确定,且不受后面数据的影响,故选:B .【点睛】题目主要考查条形统计图与中位数、平均数、众数及方差的关系,理解题意,掌握中位数、平均数、众数及方差的计算方法是解题关键.12.(2022·山东滨州)今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm )分别为8,8,6,7,9,9,7,8,10,8,那么这一组数据的方差为( )A .1.5B .1.4C .1.3D .1.2 【答案】D【分析】根据方差的计算方法求解即可. 【详解】解:这组数据的平均数为:88679978108810+++++++++=, 方差()()()()()22222288468782982108 1.210S -⨯+-+-⨯+-⨯+-==,故选:D . 【点睛】本题考查了方差的计算方法,熟练掌握求方差的公式是解题的关键.13.(2022·四川凉山)一组数据4、5、6、a 、b 的平均数为5,则a 、b 的平均数为( ) A .4B .5C .8D .10【答案】B【分析】先根据平均数的公式可得a b +的值,再根据平均数的公式即可得. 【详解】解:一组数据4、5、6、a 、b 的平均数为5,45655a b ++++∴=,解得10a b +=,则a 、b 的平均数为10522a b +==,故选:B . 【点睛】本题考查了求平均数,熟记平均数的计算公式是解题关键.14.(2022·山东泰安)某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,15【答案】D 【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人, 则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选:D . 15.(2022·浙江台州)从A ,B 两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是( )A .平均数B .中位数C .众数D .方差 【答案】D【分析】根据平均数、中位数、众数、方差的定义进行分析求解即可.【详解】计算A 、B 西瓜质量的平均数:()1 4.9 5.0 5.0 5.0 5.0 5.1 5.2 5.037A x =++++++≈, ()1 4.4 5.0 5.0 5.0 5.2 5.3 5.4 5.047B x =++++++≈,差距较小,无法反映两组数据的差异,故A 错误;可知A 、B 两种西瓜质量的中位数都为5.0,故B 错误;可知A 、B 两种西瓜质量的众数都为5.0,C 错误;由折线图可知A 种西瓜折线比较平缓,故方差较小,而B 种西瓜质量折线比较陡,故方差较大,则方差最能反映出两组数据的差异,D 正确,故选:D .【点睛】本题考查了平均数、中位数、众数、方差的定义,难度较小,熟练掌握其定义与计算方法是解题的关键.16.(2022·四川广元)如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是( )A .平均数是6B .众数是7C .中位数是11D .方差是8【答案】D【分析】根据题目要求算出平均数、众数、中位数、方差,再作出选择即可.【详解】解:A 、平均数为()57113957++++÷=,故选项错误,不符合题意;B 、众数为5、7、11、3、9,故选项错误,不符合题意;C 、从小到大排列为3,5,7,9,11,中位数是7,故选项错误,不符合题意;D 、方差()()()()()22222215777117379785s ⎡⎤=-+-+-+-+-=⎣⎦,故选项正确,符合题意;故选℃D .【点睛】本题考查平均数、众数、中位数、方差的算法,熟练掌握平均数、众数、中位数、方差的算法是解题的关键.17.(2022·湖北黄冈)下列调查中,适宜采用全面调查方式的是( )A .检测“神舟十四号”载人飞船零件的质量B .检测一批LED 灯的使用寿命C .检测黄冈、孝感、咸宁三市的空气质量D .检测一批家用汽车的抗撞击能力【答案】A【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【详解】解:A 、检测“神舟十四号”载人飞船零件的质量,适宜采用全面调查的方式,故A符合题意;B 、检测一批LED 灯的使用寿命,适宜采用抽样调查的方式,故B 不符合题意;C 、检测黄冈、孝感、咸宁三市的空气质量,适宜采用抽样调查的方式,故C 不符合题意;D 、检测一批家用汽车的抗撞击能力,适宜采用抽样调查的方式,故D 不符合题意.故选:A .【点睛】本题主要考查了全面调查和抽样调查,熟练掌握全面调查与抽样调查的特点是解题的关键.18.(2022·湖南常德)下列说法正确的是( )A .为了解近十年全国初中生的肥胖人数变化趋势,采用扇形统计图最合适B .“煮熟的鸭子飞了”是一个随机事件C .一组数据的中位数可能有两个D .为了解我省中学生的睡眠情况,应采用抽样调查的方式【答案】D【分析】根据统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查逐项分析判断即可求解.【详解】解:A. 为了解近十年全国初中生的肥胖人数变化趋势,采用折线统计图最合适,故该选项不正确,不符合题意;B. “煮熟的鸭子飞了”是一个不可能事件,故该选项不正确,不符合题意;C. 一组数据的中位数只有1个,故该选项不正确,不符合题意;D. 为了解我省中学生的睡眠情况,应采用抽样调查的方式,故该选项正确,符合题意;故选:D .【点睛】本题考查了统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查,掌握相关定义以及统计图知识是解题的关键.必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.19.(2022·湖南湘潭)依据“双减”政策要求,初中学生书面作业每天完成时间不超过90分钟.某中学为了解学生作业管理情况,抽查了七年级(一)班全体同学某天完成作业时长情况,绘制出如图所示的频数直方图:(数据分成3组:030x <≤,3060x <≤,6090x <≤).则下列说法正确的是( )(多选题)A .该班有40名学生B .该班学生当天完成作业时长在3060x <≤分钟的人数最多C .该班学生当天完成作业时长在030x <≤分钟的频数是5D .该班学生当天完成作业时长在060x <≤分钟的人数占全班人数的80%【答案】AB【分析】根据频数直方图逐一判断各个选项即可.【详解】解:因为10+25+5=40,故A 选项正确,符合题意;因为该班学生当天完成作业时长在3060x <≤分钟的人数是25人,最多,故B 选项正确,符合题意;该班学生当天完成作业时长在030x <≤分钟的频数是10,故C 选项错误,不符合题意; 该班学生当天完成作业时长在060x <≤分钟的人数为10+25=35,占全班人数的百分比为:35100%87.5%40⨯=,故D 选项错误,不符合题意;故选:AB . 【点睛】本题考查数据的整理与分析,涉及频数分布表、众数、用样本估计总体等知识,解题的关键是掌握相关知识.二、填空题20.(2022·四川遂宁)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是______.【答案】23【分析】将这5个数从小到大排列,第3个数就是这组数的中位数.【详解】将这5个数从小到大排列:20、22、23、24、25,第3个数为23,则这组数的中位数为:23,故答案为:23.【点睛】本题考查了中位数的定义,充分理解中位数的定义是解答本题的基础. 21.(2022·浙江丽水)在植树节当天,某班的四个绿化小组植树的棵数如下:10,8,9,9,则这组数据的平均数是___________. 【答案】9【分析】根据求平均数的公式求解即可. 【详解】解:由题意可知:平均数10899==94+++,故答案为:9 【点睛】本题考查平均数,解题的关键是掌握求一组数据的平均数的方法:一般地,对于n 个数12,,,n x x x ,我们把121()n x x x n+++叫做这n 个数的算术平均数,简称平均数.22.(2022·湖南常德)今年4月23日是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演讲内容”占40%、“语言表达”占40%、“形象风度”占10%、“整体效果”占10%进行计算,小芳这四项的得分依次为85,88,92,90,则她的最后得分是________分. 【答案】87.4【分析】根据加权平均数的计算公式列式计算可得. 【详解】解:根据题意得她的最后得分是为:8540%8840%9210%9010%87.4⨯+⨯+⨯+⨯= (分);故答案为:87.4. 【点睛】本题考查的是加权平均数的求法,熟练掌握加权平均数的计算公式是解题的关键. 23.(2022·江苏宿迁)已知一组数据:4,5,5,6,5,4,7,8,则这组数据的众数是___. 【答案】5【分析】根据众数的定义求解即可.【详解】解:这组数据中5出现3次,次数最多, 所以这组数据的众数是5,故答案为:5.【点睛】本题主要考查众数,一组数据中出现次数最多的数据叫做众数.熟练掌握众数的定义是解题的关键.24.(2022·浙江温州)某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树___________株.【答案】5【分析】根据加权平均数公式即可解决问题.【详解】解:观察图形可知:15x =(4+3+7+4+7)=5,℃平均每组植树5株.故答案为:5.【点睛】本题考查了加权平均数,解决本题的关键是掌握加权平均数公式.25.(2022·江苏扬州)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为22S S 乙甲、,则2S 甲________2S 乙.(填“>”“<”或“=”)【答案】>【分析】分别求出平均数,再利用方差的计算公式计算甲、乙的方差,进行比较即可.【详解】根据折线统计图中数据,()51093857x =++++÷=甲,()8686757x =++++÷=乙, ℃()()()()()222222157107973787 6.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦甲, ()()()()()222222187678767770.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦乙,℃22s s >乙甲,故答案为:>. 【点睛】本题主要考查平均数和方差的计算,掌握方差的计算公式是解答本题的关键. 26.(2022·湖北武汉)某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.【答案】25【分析】直接根据众数的定义:一组数据中出现次数最多的数即为众数即可得出结论. 【详解】由表格可知:尺码25的运动鞋销售量最多为10双,即众数为25. 故答案为:25.【点睛】本题考查了众数,解题的关键是熟练掌握众数的定义. 三、解答题27.(2022·湖北武汉)为庆祝中国共青团成立100周年,某校开展四项活动:A项参观学习,B项团史宣讲,C项经典诵读,D项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.(1)本次调查的样本容量是__________,B项活动所在扇形的圆心角的大小是_________,条形统计图中C项活动的人数是_________;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.【答案】(1)80,54︒,20(2)大约有800人【分析】(1)根据“总体=部分÷对应百分比”与“圆心角度数=360°×对应百分比”可求得样本容量及B项活动所在扇形的圆心角度数,从而求得C项活动的人数;(2)根据“部分=总体×对应百分比”,用总人数乘以样本中“参观学习”的人数所占比例可得答案.(1)解:样本容量:16÷20%=80(人),B项活动所在扇形的圆心角:123605480︒⨯=︒,C项活动的人数:80-32-12-16=20(人);故答案为:80,54°,20;(2)解:32200080080⨯=(人),答:该校意向参加“参观学习”活动的学生大约有800人.【点睛】本题主要考查了条形统计图,扇形统计图,用样本估计总体,读懂图,找出对应数据,熟练掌握总体、部分与百分比之间的关系是解题的关键.28.(2022·浙江台州)某中学为加强学生的劳动教育,需要制定学生每周劳动时间(单位:小时)的合格标准,为此随机调查了100名学生目前每周劳动时间,获得数据并整理成表格.学生目前每周劳动时间统计表(1)画扇形图描述数据时,1.5 2.5x ≤<这组数据对应的扇形圆心角是多少度? (2)估计该校学生目前每周劳动时间的平均数;(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用统计量说明其合理性.【答案】(1)108︒(2)2.7小时(3)制定标准的原则:既要让学生有努力的方向,又要有利于学生建立达标的信心;从平均数看,标准可以定为3小时,见解析【分析】(1)求出1.5 2.5x ≤<这组数据所占的比例,再利用比例乘上360︒即可得到; (2)分别求出每组人数乘上组中值再求和,再除总人数即可;(3)根据意义,既要让学生有努力的方向,又要有利于学生建立达标的信心.可以分别从从平均数,中位数来说明其合理性. (1)解:30100%30%100⨯=, 36030%108︒⨯=︒.(2)解:2113021931841252.7100x ⨯+⨯+⨯+⨯+⨯==(小时).答:由样本估计总体可知,该校学生目前每周劳动时间的平均数约为2.7小时. (3)解:制定标准的原则:既要让学生有努力的方向,又要有利于学生建立达标的信心. 从平均数看,标准可以定为3小时.理由:平均数为2.7小时,说明该校学生目前每周劳动时间平均水平为2.7小时,把标准定为3小时,至少有30%的学生目前每周劳动时间能达标,同时至少还有51%的学生未达标,这样使多数学生有更高的努力目标.从中位数的范围或频数看,标准可以定为2小时.理由:该校学生目前每周劳动时间的中位数落在1.5 2.5x ≤<范围内,把标准定为2小时,至少有49%的学生目前劳动时间能达标,同时至少还有21%的学生未达标,这样有利于学生建立达标的信心,促进未达标学生努力达标,提高该校学生的劳动积极性.【点睛】本题考查了频数表,扇形圆心角、中位数、平均数等,解题的关键是从表中获取相应的信息及理解平均数及中位数的意义.29.(2022·湖北黄冈)为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t(单位:分钟).按照完成时间分成五组:A组“t≤45”,B组“45<t≤60”,C组“60<t≤75”,D组“75<t≤90”,E组“t>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是,请补全条形统计图;(2)在扇形统计图中,B组的圆心角是度,本次调查数据的中位数落在组内;(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.【答案】(1)100,图形见解析(2)72,C;(3)估计该校每天完成书面作业不超过90分钟的学生有1710人.【分析】(1)根据C组的人数和所占的百分比,可以计算出本次调查的人数,然后即可计算出D组的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以计算出B组的圆心角的度数,以及中位数落在哪一组;(3)根据题意和统计图中的数据,可以计算出该校每天完成书面作业不超过90分钟的学生人数.(1)这次调查的样本容量是:25÷25%=100,D组的人数为:100-10-20-25-5=40,补全的条形统计图如图所示:故答案为:100;(2)在扇形统计图中,B组的圆心角是:360°×20100=72°,℃本次调查了100个数据,第50个数据和51个数据都在C组,℃中位数落在C组,故答案为:72,C;(3)1800×1005100=1710(人),答:估计该校每天完成书面作业不超过90分钟的学生有1710人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.30.(2022·湖南常德)2020年7月,教育部印发的《大中小学劳动教育指导纲要(试行)》中明确要求中小学劳动教育课平均每周不少于1课时,初中生平均每周劳动时间不少于3小时.某初级中学为了解学生劳动教育的情况,从本校学生中随机抽取了500名进行问卷调查.下图是根据此次调查结果得到的统计图.请根据统计图回答下列问题:(1)本次调查中,平均每周劳动时间符合教育部要求的人数占被调查人数的百分比为多少?(2)若该校有2000名学生,请估计最喜欢的劳动课程为木工的有多少人.(3)请你根据本次问卷调查的结果给同学和学校各提一条合理化建议.【答案】(1)21%(2)320人(3)见解析【分析】(1)由条形统计图求出平均每周劳动时间不少于3小时的人数,然后代入即可得出答案;(2)由扇形统计图得木工所占比例为16%,然后代入即可得出答案;(3)对学校来说应该多增加一些与学生生活息息相关的劳动课程,锻炼生活技能;对学生来说应该在学习的同时多多参加课外劳动课程,学一些与生活有关的技能,增加生活经验.(1)由条形统计图可知:平均每周劳动时间不少于3小时的人数为50013018085105---=人,故平均每周劳动时间符合教育部要求的人数占被调查人数的百分比为10521% 500=.(2)由扇形统计图得木工所占比例为140%27%10%7%16%----=,故最喜欢的劳动课程为木工的有200016%320⨯=人.(3)对学校:劳动课程应该多增加操作简单、与学生生活息息相关且能让学生有所收获的生活技能内容;对学生:多多参加课外劳动课程,劳逸结合,学习一些基本的生活技能,比如烹饪、种植等【点睛】本题考查调查统计,解题的关键是能够根据统计图得出关键信息并加以转化运算.31.(2022·湖南娄底)按国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》要求,各中小学校积极行动,取得了良好的成绩.某中学随机抽取了。
卷I 查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是 ☆ ;扇形统计图中的圆心角α等于 ☆ ;补全统计直方图; 解:(1)30;︒144;………2分补全统计图如下: …………4分 (2)根据题意列表如下:3.(常德)、某校组织了一批学生随机对部分市民就是否吸烟以及吸烟和非吸烟人群对他人在公共场所吸烟的态度(分三类:A 表示主动制止;B 表示反感但不制止,C 表示无所谓)进行了问卷调查,根据调查结果分别绘制了如下两个统计图。
请根据图中提供的信息解答下列问题:(1)图1中,(2)这次被调查的市民有多少人? (3)补全条形统计图 (4)若该市共有市民760万人,参考答案 (1)360°×(1-85%)=54° (2)(80+60+30)÷85%=200(3)200-(80+60+30+8+12)=10 (4)760×(1-85%)=114(万人)3. (2015•益阳)2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,如图表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题)19(题第α小时54~小时10~小时32~小时21~%20 43小时~小时时间/人频数/小时时间/人频数/图1吸烟与不吸烟人数比例统计图图2态度C 60403020B A(1)2014年益阳市的地区生产总值为多少亿元?(2)请将条形统计图中第二产业部分补充完整;(3)求扇形统计图中第二产业对应的扇形的圆心角度数.)扇形统计图中第二产业部分的圆心角为从所有参加测试等级请回答下列问题:(1)孔明同学这次测试的成绩是87分,则他的成绩等级是;(2)请将条形统计图补充完整;(3)已知该校所有参加这次测试的学生中,有60名学生成绩是A等,请根据以上抽样结果,估计该校参加这次测试的学生总人数是多少?【试题分析】本题考点:数据分析与统计(1)从表格中找到A的最低分为85分,故易知孔明的成绩为A(2)易知:C 等的人数为10-3-5=2(3)这是由抽样来衡量整体的方法:10个中A 有3个,所以A 的比例为310总人数为:36020010÷= 5.(无锡)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达 ( )A .从不B .很少C .有时D .常常E .总是答题的学生在这五个选项中只能选择一项.下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有 ▲ 名初二年级的学生参加了本次问卷调查; (2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为 ▲ . .解:(1)3200;(2)图略,“有时”的人数为704;(3)42%.6.(呼和浩特)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:(1)看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解:(1)乙的平均成绩:73+80+82+834=79.5各选项选择人数的条形统计图各选项选择人数分布的扇形统计图600 900 1200 1500 从不很少有时常常总是从不 3%人数选项∵80.25 >79.5 ∴应选派甲(2)甲的平均成绩:85×2+78×1+85×3+73×410 = 79.5乙的平均成绩:73×2+80×1+82×3+83×410= 80.4∵79.5<80.4 ∴应选派乙7.(浙江台州)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x (单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题: (1)补全频数分布直方图(2)求扇形统计图中m 的值和E 组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数解:(1(2)∵100%1010=÷, ∴%4010040=÷,∴40=m .∵%41004=÷,∴“E ”组对应的圆心角度数︒=︒⨯=4.14360%4.(写成14.4,也给分)(3)870%)4%25(3000=+⨯人答:估计该校学生中每周的课外阅读时间不小于6小时的人数是人.安徽岳西县城关中学 李庆社(246600)。
2022年中考数学真题汇编统计解答题专题11.(2022·湖南省衡阳市)为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:参与此次抽样调查的学生人数是______人,补全统计图要求在条形图上方注明人数;图中扇形的圆心角度数为______度;若参加成果展示活动的学生共有人,估计其中最喜爱“测量”项目的学生人数是多少;计划在,,,,五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中,这两项活动的概率.2.(2022·湖南省邵阳市)年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团假设该校要求人人参与社团,每人只能选择一个为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图、图所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.求抽取参加调查的学生人数.将以上两幅不完整的统计图补充完整.若该校有人参加社团活动,试估计该校报兴趣类社团的学生人数.3.(2022·四川省乐山市)为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:文学鉴赏,趣味数学,川行历史,航模科技.为了解该校八年级名学生对四门校本课程的选择意向,张老师做了以下工作:抽取名学生作为调查对象;整理数据并绘制统计图;收集名学生对四门课程的选择意向的相关数据;结合统计图分析数据并得出结论.请对张老师的工作步骤正确排序______.以上步骤中抽取名学生最合适的方式是______.A.随机抽取八年级三班的名学生B.随机抽取八年级名男生C.随机抽取八年级名女生D.随机抽取八年级名学生如图是张老师绘制的名学生所选课后服务类型的条形统计图.假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.4.(2022·浙江省湖州市)为落实“双减”政策,切实减轻学生学业负担,丰富学生课余生活,某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组,要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向,并将抽查结果绘制成如下统计图不完整.根据统计图中的信息,解答下列问题:求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数;将条形统计图补充完整;该校共有名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.5.(2022·浙江省宁波市)小聪、小明参加了米跑的期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:这期的集训共有多少天?哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.6.(2022·湖南省怀化市)电视剧一代洪商在中央电视台第八套播出后,怀化市各旅游景点知名度得到显著提高.为全面提高旅游服务质量,旅游管理部门随机抽取了名游客进行满意度调查,并绘制成如下不完整的频数分布表和扇形统计图.频数分布表满意程度频数人频率非常满意满意一般不满意合计根据统计图表提供的信息,解答下列问题:______,______,______;求扇形统计图中表示“一般”的扇形圆心角的度数;根据调查情况,请你对各景点的服务提一至两条合理建议.7.(2022·浙江省温州市)为了解某校名学生在校午餐所需的时间,抽查了名学生在校午餐所花的时间,由图示分组信息得:,,,,,,,,,,,,,,,,,,,.分组信息组:组:组:组:组:注:分钟为午餐时间某校被抽查的名学生在校午餐所花时间的频数表组别划记频数____________ ____________合计(1)请填写频数表,并估计这名学生午餐所花时间在组的人数.在既考虑学生午餐用时需求,又考虑食堂运行效率的情况下,校方准备在分钟,分钟,分钟,分钟中选择一个作为午餐时间,你认为应选择几分钟为宜?说明理由.8.(2022·甘肃省武威市)受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了名学生周累计居家锻炼时间单位:的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:【数据收集】【数据整理】将收集的个数据按,,,,五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图说明:,,,,,其中表示锻炼时间;【数据分析】统计量平均数众数中位数锻炼时间请根据以上信息解答下列问题:填空:______;补全频数分布直方图;如果学校将管理目标确定为每周不少于,该校有名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.9.(2022·云南省)临近端午节,某学校数学兴趣小组到社区参加社会实践活动,帮助有关部门了解某小区居民对去年销量较好的鲜花粽、火腿粽、豆沙粽、蛋黄粽四种粽子的喜爱情况.在对该小区居民进行抽样调查后,根据统计结果绘制如下统计图:说明:参与本次抽样调查的每一位居民在上述四种粽子中选择且只选择了一种喜爱的粽子.请根据以上信息,解答下列问题:补全条形统计图;若该小区有人,估计喜爱火腿粽的有多少人?10.(2022·浙江省绍兴市)双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长单位:小时的情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题.八年级学生每日完成书面作业所需时长情况的统计表组别所需时长小时学生人数人求统计表中,的值.已知该校八年级学生有人,试估计该校八年级学生中每日完成书面作业所需时长满足的共有多少人.11.(2022·四川省凉山彝族自治州)为丰富校园文化生活,发展学生的兴趣与特长,促进学生全面发展.某中学团委组建了各种兴趣社团,为鼓励每个学生都参与到社团活动中,学生可以根据自己的爱好从美术、演讲、声乐、舞蹈、书法中选择其中个社团.某班班主任对该班学生参加社团的情况进行调查统计,并绘制成如下两幅不完整的统计图.请根据统计图提供的信息完成下列各题:该班的总人数为______人,并补全条形图注:在所补小矩形上方标出人数;在该班团支部人中,有人参加美术社团,人参加演讲社团,人参加声乐社团.如果该班班主任要从他们人中任选人作为学生会候选人,请利用树状图或列表法求选出的两人中恰好有人参加美术社团、人参加演讲社团的概率.12.(2022·山东省滨州市)某校为满足学生课外活动的需求,准备开设五类运动项目,分别为:篮球,:足球,:乒乓球,:羽毛球,:跳绳.为了解学生的报名情况,现随机抽取八年级部分学生进行调查,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上图文信息回答下列问题:此次调查共抽取了多少名学生?请将此条形统计图补充完整;在此扇形统计图中,项目所对应的扇形圆心角的大小为______;学生小聪和小明各自从以上五类运动项目中任选一项参加活动,请利用画树状图或列表的方法求他俩选择相同项目的概率.13.(2022·四川省德阳市)据德阳县志记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于年月日破土动工,年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:设本次问卷调查共抽取了名市民,图中“不太了解”所对应扇形的圆心角是度,分别写出,的值;根据以上调查结果,在名市民中,估计“非常了解”的人数有多少?为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的名男士和名女士中随机抽取人进行调查,请用列举法树状图或列表求恰好抽到一男一女的概率.14.(2022·四川省泸州市)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:劳动时间单位:小时频数(1)______,______;若该校学生有人,试估计劳动时间在范围的学生有多少人?劳动时间在范围的名学生中有男生名,女生名,学校准备从中任意抽取名交流劳动感受,求抽取的名学生恰好是一名男生和一名女生的概率.15.(2022·四川省成都市)年月日,教育部印发义务教育课程方案和课程标准年版,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长单位:分钟人数所占百分比根据图表信息,解答下列问题:本次调查的学生总人数为______,表中的值为______;该校共有名学生,请你估计等级为的学生人数;本次调查中,等级为的人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.(2022·浙江省丽水市)某校为了解学生在“五一”小长假期间参与家务劳动的时间小时,随机抽取了本校部分学生进行问卷调查.要求抽取的学生在,,,,五个选项中选且只选一项,并将抽查结果绘制成如下两幅不完整的统计图,请根据图中信息回答问题:求所抽取的学生总人数;若该校共有学生人,请估算该校学生参与家务劳动的时间满足的人数;请你根据调查结果,对该校学生参与家务劳动时间的现状作简短评述.17.(2022·四川省南充市)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:阅读数学名著;讲述数学故事;制作数学模型;挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图如图,请根据图表信息解答下列问题:项目人数人(1)______,______.扇形统计图中“”项目所对应的扇形圆心角为______度.在月末的展示活动中,“”项目中七班有人获得一等奖,七班有人获得一等奖,现从这名学生中随机抽取人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的名学生来自不同班级的概率.18.(2022·四川省自贡市)为了解学生每周参加课外兴趣小组活动的累计时间单位:小时,学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按,,,分为四个等级,分别用、、、表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:求参与问卷调查的学生人数,并将条形统计图补充完整;全校共有学生人,试估计学校每周参加课外兴趣小组活动累计时间不少于小时的学生人数;某小组有名同学,、等级各人,从中任选人向老师汇报兴趣活动情况.请用画树状图法或列表法求这人均属等级的概率.19.(2022·黑龙江省齐齐哈尔市)“双减”政策实施后,某校为了解本校学生每天课后进行体育锻炼的时间情况,在月份某天随机抽取了若干名学生进行调查,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,回答下列问题:表中______,______,______;将条形图补充完整;若制成扇形图,则组所对应的圆心角为______;若该校学生有人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过分钟的学生约有多少人?组别锻炼时间分钟频数人百分比20.(2022·四川省)我市某校在推进新课改的过程中,开设的体育选修课有::篮球,:足球,:排球,:羽毛球,:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班学生的选课情况进行调查统计,制成了两幅不完整的统计图如图.该班的总人数为人,并补全频数分布直方图;表示“足球”所在扇形的圆心角是该班班委人中,人选修篮球,人选修足球,人选修排球,李老师要从这人中任选人了解他们对体育选修课的看法,则选出的人恰好人选修篮球,人选修足球的概率是21.(2022·江苏省无锡市)育人中学初二年级共有名学生,年秋学期学校组织初二年级学生参加秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:育人中学初二学生秒跳绳测试成绩的频数分布表跳绳个数频数摸底测试频数最终测试表格中______;请把下面的扇形统计图补充完整;(只需标注相应的数据)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?参考答案1.2.解:人,答:此次共调查了人;体育类有人,文艺类社团的人数所占百分比:,阅读类社团的人数所占百分比:,将条形统计图补充完整如下:人,答:估计喜欢兴趣类社团的学生有人.3.4.解:本次被抽查学生的总人数是人,扇形统计图中表示“美工制作”的扇形的圆心角度数是;“音乐舞蹈”的人数为人,补全条形统计图如下:估计全校选择“爱心传递”兴趣小组的学生人数为人.5.解:十十天.答:这期的集训共有天.秒.答:第期小聪的成绩比他上一期的成绩进步最多,进步了秒.个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为天或天时成绩最好.6.7.8.9.解:抽样调查的总人数:人,喜欢火腿粽的人数为:人,补全条形统计图如图所示:根据题意得:人,答:喜爱火腿粽的有人,故答案为:.10.解:被调查总人数:人,人,人,答:为,为;当时,在被调查的人中有人,在该校八年级学生人中,每日完成书面作业所需时长满足的共有人,答:估计共有人.11.12.13.解:由图可知:“基本了解”的人数为人,由图可知:“基本了解”的人数占总数的,人;由图可知:“比较了解”有人,“比较了解”所对应扇形的圆心角是,由图知:“不太了解”所对应扇形的圆心角是度;由图知:“非常了解”的人数占总人数的,于是估计在名市民中,“非常了解”的人数有人.答:在名市民中,估计“非常了解”的人数有人.从名男士和名女士中随机抽取人进行调查,抽查情况列表如下:由上表可知,一共有种等可能,其中恰好抽到一男一女的情况有中,恰好抽到一男一女的概率为.14.15.16.解:人,故所抽取的学生总人数为人;人,答:估算该校学生参与家务劳动的时间满足的人数为人;由题意可知,该校学生在“五一”小长假期间参与家务劳动时间在占最多数,中位数位于这一组答案不唯一.17.18.解:,等级的人数人,条形统计图补充如下:学校每周参加课外兴趣小组活动累计时间不少于小时的学生人数人,每周参加课外兴趣小组活动累计时间不少于小时的学生为人;设等级人分别用,表示,等级人分别用,表示,随机选出人向老师汇报兴趣活动情况的树状图如下:共有种等可能结果,而选出人中人均属等级有种,所求概率.19.20.解:该班的总人数为人,科目人数为人,科目人数为人,补全图形如下:故答案为:;表示“足球”所在扇形的圆心角是,故答案为:;画树状图为:共有种等可能的结果数,其中选出的人恰好人选修篮球,人选修足球占种,所以选出的人恰好人选修篮球,人选修足球的概率,故答案为:.21.。
2019年全国各地中考数学真题汇编(浙江专版)统计与概率参考答案与试题解析一.选择题(共12小题)1.(2019•杭州)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不易受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选:C.2.(2019•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.3.(2019•杭州)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于=,故选:B.4.(2019•温州)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.5.(2019•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.3解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.6.(2019•温州)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.解:∵袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是=,故选:D.7.(2019•嘉兴)2019年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A.1月份销量为2.2万辆B.从2月到3月的月销量增长最快C.4月份销量比3月份增加了1万辆D.1~4月新能源乘用车销量逐月增加解:由图可得,1月份销量为2.2万辆,故选项A正确,从2月到3月的月销量增长最快,故选项B正确,4月份销量比3月份增加了4.3﹣3.3=1万辆,故选项C正确,1~2月新能源乘用车销量减少,2~4月新能源乘用车销量逐月增加,故选项D 错误,故选:D.8.(2019•湖州)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.解:将三个小区分别记为A、B、C,列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=,故选:C.9.(2019•绍兴)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,∴朝上一面的数字为2的概率为,故选:A.10.(2019•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,0°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.11.(2019•衢州)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0 B.C.D.1解:∵某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,∴老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是:=.故选:B.12.(2019•湖州)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:生产件数(件)101112131415人数(人)154321则这一天16名工人生产件数的众数是()A.5件B.11件C.12件D.15件解:由表可知,11件的次数最多,所以众数为11件,故选:B.二.填空题(共3小题)13.(2019•嘉兴)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我嬴.”小红赢的概率是,据此判断该游戏不公平(填“公平”或“不公平”).解:所有可能出现的结果如下表所示:正反正(正,正)(正,反)反(反,正)(反,反)因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反,所以出现两个正面的概率为,一正一反的概率为=,因为二者概率不等,所以游戏不公平.故答案为:,不公平.14.(2019•衢州)数据5,5,4,2,3,7,6的中位数是5.解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为:5.15.(2019•金华)如图是我国2019~2019年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.三.解答题(共8小题)16.(2019•温州)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.解:(1)该市蛋糕店的总数为150÷=600家,甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店,由题意得:20%×(600+x)=100+x,解得:x=25,答:甲公司需要增设25家蛋糕店.17.(2019•杭州)某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表组别(kg)频数4.0~4.52(1)求a的值(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?解:(1)由频数分布直方图可知4.5~5.0的频数a=4;(2)∵该年级这周收集的可回收垃圾的质量小于4.5×2+5×4+5.5×3+6=51.5(kg),∴该年级这周收集的可回收垃圾被回收后所得金额小于51.5×0.8=41.2元,∴该年级这周收集的可回收垃圾被回收后所得金额不能达到50元.18.(2019•绍兴)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2019年~2019年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2019年机动车的拥有量,分别计算2019年~2019年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.解:(1)由图可得,2019年机动车的拥有量为3.40万辆,==120(次),==100(次)即;2019年~2019年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.19.(2019•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C 级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.20.(2019•嘉兴)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:收集数据(单位:mm)甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:165.5~170.5170.5~175.5175.5~180.5180.5~185.5185.5~190.5190.5~195.5甲车间245621乙车间12a b20分析数据:车间平均数众数中位数方差甲车间180********.1乙车间180********.6应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.解:(1)甲车间样品的合格率为:×100%=55%;(2)∵乙车间样品的合格产品数为:20﹣(1+2+2)=15(个),∴乙车间样品的合格率为:×100%=75%,∴乙车间的合格产品数为:1000×75%=750(个);(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好;②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比较稳定,所以乙车间生产的新产品更好..(2019•湖州)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.22.(2019•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.23.(2019•衢州)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2019人,估计其中参与了4项或5项活动的学生共有多少人?解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2019=720(人).。
概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。
天才是百分之一的天分,再加上百分之九十九的努力统计一、选择题1. (·湖北鄂州)下列说法正确的是()A. 了解飞行员视力的达标率应使用抽样调查B. 一组数据3,6,6,7,9的中位数是6C. 从2000名学生中选200名学生进行抽样调查,样本容量为2000D. 一组数据1,2,3,4,5的方差是10【考点】抽样调查、中位数、样本容量、方差.【分析】根据全面调查以及抽样调查的知识对A选项进行判断;根据中位数的定义对B选项作出判断;根据样本容量的知识对C选项作出判断;根据方差的计算公式对D选项作出判断.【解答】解:A、了解飞行员视力的达标率应使用全面调查,故此选项错误;B、一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,故此选项正确;C、从2000名学生中选200名学生进行抽样调查,样本容量应该是200,故此选项错误;D. 一组数据1,2,3,4,52+(3-3)2+(4-3)2+(5-3)2]=2,故此选项错误.故选B.【点评】本题考查的是统计知识。
全面调查和抽样调查是按调查对象范围不同划分的调查方式。
全面调查是对调查对象中的所有单位全部加以调查,通过基层单位按照一定的报表填报要求进行逐一登记、逐级上报、层层汇总,最后取得调查结果的一种调查方式,如人口普查、经济普查等。
抽样调查是一种非全面调查,它是从研究的总体中按随机原则抽取部分样本单位进行调查,并根据样本单位的调查结果来推断总体,以达到认识总体的一种统计调查方式;中位数是指将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;样本容量又称"样本数",是指一个样本的必要抽样单位数目;样本容量是对于你研究的总体而言的,是在抽样调查中总体的一些抽样。
比如:中国人的身高值为一个总体,你随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本。
全国中考数学试卷解析分类汇编(第二期)专题14统计一.选择题1.(2015•安徽,第7题4分)某校九年级(1)班全体学生2015年初中毕业体育考成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6)A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分考点:众数;统计表;加权平均数;中位数..分析:结合表格根据众数、平均数、中位数的概念求解.解答:解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.点评:本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.2.(2015•海南,第4题3分)有一组数据:1,4,﹣3,3,4,这组数据的中位数为()A.﹣3 B. 1 C. 3 D. 4考点:中位数.分析:根据中位数的定义,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数求解即可.解答:解:将这组数据从小到大排列为:﹣3,1,3,4,4,中间一个数为3,则中位数为3.故选C.点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3.(2015•鄂州, 第4题3分)为了解某社区居民的用电情况,随机对该社区10户居民(户) 1 2 3 4月用电量(度/户)30 42 50 51) A.中位数是50 B.众数是51 C.方差是42 D.极差是21考点:方差;中位数;众数;极差.专题:计算题.分析:根据表格中的数据,求出平均数,中位数,众数,极差与方差,即可做出判断.解答:解:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51﹣30=21,方差为[(30﹣46.8)2+2(42﹣46.8)2+3(50﹣46.8)2+4(51﹣46.8)2]=42.96.故选C.点评:此题考查了方差,中位数,众数,以及极差,熟练掌握各自的求法是解本题的关键.4.(2015•衡阳, 第10题3分)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是() A. 50元,30元 B. 50元,40元 C. 50元,50元 D. 55元,50元考点:众数;中位数.分析:根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.解答:解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选C.点评:此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).5.(2015•宜昌,第4题3分)某校对九年级6个班学生平均一周的课外阅读时间()(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是率为=英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从()该路段上午7::0至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示9. (2015广西崇左第1题8分)甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是=85,=85,=85,=85,方差是S甲2=3.8,S乙2=2.3,S丙2=6.2,S丁2=5.2,则成绩最稳定的是().点评:方差反映的是一组数据的波动程度,方差越大波动越大,方差越小,波动越小,反之也成立.10. (2015江苏连云港第1题4分)某校要从四名学生中选拨一名参加市“风华小主播”大赛,选拨赛中每名学生的平均成绩及其方差s2如表所示,如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是A【思路分析】在平均数相同的情况下,方差越小越稳定【答案】B【点评】本题考查方差的稳定性.11. (2015江苏扬州第3题3分)如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A、音乐组B、美术组C、体育组D、科技组12、(2015年四川省达州市中考,4,3分)2015年某中学举行的春季田径径运动会A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解答:解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选D.点评:本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.14.(2015•通辽,第7题3分)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是()A. 2 B. 4 C. 1 D. 3考点:方差;算术平均数.分析:先根据平均数的定义确定出x的值,再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2]求出这组数据的方差.解答:解:由平均数的公式得:(0+1+2+3+x)÷5=2,解得x=4;则方差=[(0﹣2)2+(1﹣2)2+(2﹣2)2+(3﹣2)2+(4﹣2)2]÷5=2.故选:A.点评:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.15. (2015•滨州,第9题3分)某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3)表示“无所谓”的家长人数为40人(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()A. 4 B. 3 C. 2 D. 1考点:条形统计图;扇形统计图;概率公式.分析:(1)根据表示赞同的人数是50,所占的百分比是25%即可求得总人数;(2)利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解;(4)求得表示很赞同的人数,然后利用概率公式求解.解答:解:(1)接受这次调查的家长人数为:50÷25%=200(人),故命题正确;(2)“不赞同”的家长部分所对应的扇形圆心角大小是:360×=162°,故命题正确;(3)表示“无所谓”的家长人数为200×20%=40(人),故命题正确;(4)表示很赞同的人数是:200﹣50﹣40﹣90=20(人),则随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是=,故命题正确.故选A.点评:本题考查的是条形统计图和扇形统计图的综合运用,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.用到的知识点为:概率=所求情况数与总情况数之比.总体数目=部分数目÷相应百分比.16. (2015•乌鲁木齐,第5题4分)在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是S甲2=0.35,S乙2=0.15,S丙2=0.25,SA.甲B.乙C.丙D.丁考点:方差.分析:方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,据此判断出这4人中成绩发挥最稳定的是哪个即可.解答:解:∵S甲2=0.35,S乙2=0.15,S丙2=0.25,S丁2=0.27,∴S乙2<S丙2<S丁2<S甲2,∴这4人中成绩发挥最稳定的是乙.故选:B.点评:此题主要考查了方差的性质和应用,要熟练在我,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.州(市) A B C D E F推荐数(个)36 27 31 56 48 54)A.42,43.5B.42,42C.31,42D.36,54考点:中位数;加权平均数.分析:根据平均数的公式求得上表统计的数据中的平均数,将其按从小到大的顺序排列中间的那个是中位数.解答:解:P=(36+27+31+56+48+54)=42,把这几个数据按从小到大顺序排列为:27,31,36,48,54,56,中位数W=(36+48)=42.故选B.点评:本题考查了平均数和中位数的知识,属于基础题,解答本题的关键是熟练掌握平均数和中位数的定义.18.(2015•山东莱芜,第7题3分)为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):﹣6,﹣3,x,2,﹣1,3.若这组数据的中位数是﹣1,则下列结论错误的是()A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣1考点:方差;算术平均数;中位数;众数;极差..分析:分别计算该组数据的平均数,众数,极差及方差后找到正确的答案即可.解答:解:根据题意可知x=﹣1,平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1,∵数据﹣1出现两次最多,∴众数为﹣1,极差=3﹣(﹣6)=9,方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9.故选A.点评:此题考查了方差、极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.19.(2015•山东泰安,第11题3分)某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分B.96分,96分C.94分,96.4分D.96分,96.4分考点:中位数;扇形统计图;条形统计图;算术平均数..分析:首先利用扇形图以及条形图求出总人数,进而求得每个小组的人数,然后根据中位数的定义求出这些职工成绩的中位数,利用加权平均数公式求出这些职工成绩的平均数.解答:解:总人数为6÷10%=60(人),则94分的有60×20%=12(人),98分的有60﹣6﹣12﹣15﹣9=18(人),第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;这些职工成绩的平均数是(92×6+94×12+96×15+98×18+100×9)÷60=(552+1128+1440+1764+900)÷60=5784÷60=96.4.故选:D.点评:本题考查了统计图及中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解题的关键是从统计图中获取正确的信息并求出各个小组的人数.同时考查了平均数的计算.20.(2015•怀化,第3题4分)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数 B.方差 C.众数 D.中位数考点:统计量的选择.分析:根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生了5次短跑训练成绩的方差.解答:解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选B.点评:此题主要考查了方差,关键是掌握方差所表示的意义.21.(2015•娄底,第6题3分)某中学女子足球队15名队员的年龄情况如下表:年龄(岁) 13 14 15 16队员(人) 2 3 6 4这支球队队员的年龄的众数和中位数分别是()A. 14,15 B. 14,14.5 C. 15,15 D. 15,14考点:众数;中位数.分析:根据众数与中位数的意义分别进行解答即可.解答:解:15出现了6次,出现的次数最多,则众数是15,把这组数据从小到大排列,最中间的数是15;故选C.点评:本题考查了众数与中位数的意义,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.22.(2015•长沙,第7题3分)一家鞋店在一段时间内销售了某种女鞋30双,各)考点:统计量的选择.分析:根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.解答:解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店最喜欢的是众数.故选:C.点评:此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.23.(2015•本溪,第6题3分)射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁考点:方差..分析:比较四个人的方差,然后根据方差的意义可判断谁的成绩最稳定.解答:解:∵S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,∴S丙2>S甲2>S丁2>S乙2,∴四人中乙的成绩最稳定.故选B.点评:本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.24.(2015•营口,第5题3分)云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是()A. 100元,100元 B. 100元,200元 C. 200元,100元 D. 200元,200元考点:众数;条形统计图;中位数.分析:认真观察统计图,根据中位数和众数的定义求解即可.解答:解:从图中看出,捐100元的人数最多有18人,所以众数是100元,捐款人数为48人,中位数是第24、25的平均数,所以中位数是200元,故选:B.点评:本题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),从统计图中获取正确的信息是解题的关键.25.(2015•昆明第2题3分)某校组织了“讲文明、守秩序、迎南博”知识竞赛活动,从中抽取了7名同学的参赛成绩如下(单位:分):80,90,70,100,60,80,80.则这组数据的中位数和众数分别是()A.90,80B.70,80C.80,80D.100,80考点:众数;中位数..分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解答:解:在这一组数据中80是出现次数最多的,故众数是80;排序后处于中间位置的那个数是80,那么由中位数的定义可知,这组数据的中位数是80;故选:C.点评:本题为统计题,考查极差、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.26.(2015•曲靖第5题3分)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论正确的是()A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元考点:频数(率)分布直方图;总体、个体、样本、样本容量;中位数;极差..分析:利用总体、个体、样本、样本容量,中位数、极差等知识分别判断后即可确定正确的选项.解答:解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为175元,错误;B、共20人,故样本容量为20,正确;C、极差为500﹣50=450元,正确;D、该企业员工最大捐款金额是500元,正确.故选:B.点评:本题考查的是频数分布直方图、平均数、样本容量、和极差的知识,掌握题目的概念并从频数分布直方图获取正确的信息是解题的关键.27.(2015•温州第3题4分)某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有()A.25人B.35人C.40人D.100人考点:扇形统计图..分析:根据参加足球的人数除以参加足球所长的百分比,可得参加兴趣小组的总人数,参加兴趣小组的总人数乘以参加乒乓球所占的百分比,可得答案.解答:解:参加兴趣小组的总人数25÷25%=100(人),参加乒乓球小组的人数100×(1﹣25%﹣35%)=40(人),故选:C.点评:本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.28. (2015年浙江衢州,5,3分)某班七个兴趣小组人数分别为4,4,5,,6,6,7. 已知这组数据的平均数是5,则这组数据的中位数【】A.7B.6C. 5D.4【答案】C.【考点】平均数;中位数.【分析】∵4,4,5,,6,6,7的平均数是5,∴,解得:.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数). 因此将这组数据重新排序为3,4,4,5,6,6,7,∴中位数是按从小到大排列后第4个数为:5.故选C.29. (2015年重庆B第6题4分)某校为纪念世界反法西斯战争胜利70周年,矩形了主题为“让历史照亮未来”的演讲比赛,期中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据中的中位数是( ) A.9.7B.9.5C.9D.8.8【答案】C【解析】试题分析:将这些数字从小到大排列为:8.6、8.8、9、9.5、9.7,这里有5个数字,中位数就是处于第三的这个数,则处于中间的数为9,即中位数为9.考点:中位数的计算.30.(2015•青海西宁第4题3分)下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.掷一枚质地均匀的硬币,正面朝上是必然事件考点:中位数;全面调查与抽样调查;总体、个体、样本、样本容量;随机事件..分析:根据全面调查以及抽样调查的知识对A选项进行判断;根据中位数的定义对B选项作出判断;根据样本容量的知识对C选项作出判断;根据随机事件的意义对D选项作出判断.解答:解:A、了解飞行员视力的达标率应使用全面调查,此选项错误;B、一组数据3,6,6,7,9的中位数是6,此选项正确;C、从2000名学生中选200名学生进行抽样调查,样本容量为200,此选项错误;D、掷一枚质地均匀的硬币,正面朝上是随机事件,此选项错误;故选B.点评:本题主要考查了中位数、随机事件、抽样调查以及样本容量等知识点,解答本题的关键是熟练掌握中位数、随机事件、抽样调查以及样本容量的意义,此题难度不大.31.(2015•四川攀枝花第2题3分) 2015年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.1.6万名考生B.2000名考生C.1.6万名考生的数学成绩D.2000名考生的数学成绩考点:总体、个体、样本、样本容量..分析:根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本,依此即可求解.解答:解:2015年我市有近1.6万名考生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析,在这个问题中抽取的2000名考生的数学成绩为样本.故选:D.点评:本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量.)A.平均数是20B.众数是20C.中位数是20D.极差是20考点:众数;加权平均数;中位数;极差..分析:根据众数、中位数、极差、平均数的概念求解.解答:解:这组数据中位数是20,则众数为:20,平均数为:20.4,极差为:30﹣10=20.故选A.点评:本题考查了众数、极差、中位数和平均数的概念,掌握各知识点的概念是解答本题的关键.33.(2015•宁夏第4题3分)某校10名学生参加“心理健康”知识测试,他们得)A.95和85B.90和85C.90和87.5D.85和87.5考点:众数;中位数..分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解答:解:在这一组数据中9是出现次数最多的,故众数是90;排序后处于中间位置的那个数是85,90,那么由中位数的定义可知,这组数据的中位数是=87.5;故选:C.点评:本题为统计题,考查极差、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.34.(2015•四川攀枝花第6题3分)一组数据6、4、a、3、2的平均数是4,则这组数据的方差为()A.0B.2C.D.10考点:方差;算术平均数..分析:先由平均数计算出a的值,再计算方差.一般地设n个数据,x1,x2,…xn 的平均数为,=(x1+x2+…+xn),则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].解答:解:∵a=5×4﹣4﹣3﹣2﹣6=5,∴S2=[(6﹣4)2+(4﹣4)2+(5﹣4)2+(3﹣4)2+(2﹣4)2]=2.故选:B.点评:本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立35.(3分)(2015•宁夏)(第4题)某校10名学生参加“心理健康”知识测试,他们得分情况如下表:=87.5故选:C.点评:本题为统计题,考查极差、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.,45,28,30,53,这组数据的众数是()A.28B.30C.45D.53考点:众数.分析:根据众数的定义进行解答.解答:解:28出现了3次,出现的次数最多,所以众数为28;故选:A.点评:本题考查了众数.一组数据中出现次数最多的数据叫做众数.37.(3分)(2015•毕节市)(第7题)某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是()A. 10,12 B. 12,11 C. 11,12 D. 12,12考点:众数;中位数.专题:计算题.分析:先把原数据按由小到大排列,然后根据中位数和众数的定义求解.解答:解:原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数==11,众数为12.故选C.点评:本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数的定义.38.(4分)(2015•黔南州)(第2题)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手评分为(单位:分):9、8、9、7、8、9、7.这组数据的众数和平均数分别是()A. 9、8 B. 9、7 C. 8、7 D. 8、8考点:众数;中位数..专题:计算题.分析:根据众数和平均数的定义求解.解答:解:9出现了三次,出现次数最多,所以这组数据的众数是9,这组数据的平均数=≈8.故选A.点评:本题考查了众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.39.(4分)(2015•黔南州)(第7题)下列说法正确的是() A.为了检测一批电池使用时间的长短,应该采用全面调查的方法B.方差反映了一组数据的波动大小,方差越大,波动越大C.打开电视正在播放新闻节目是必然事件D.为了了解某县初中学生的身体情况,从八年级学生中随机抽取50名学生作为总体的一个样本考点:全面调查与抽样调查;总体、个体、样本、样本容量;方差;随机事件..分析:根据调查方式,可判断A;根据方差的性质,可判断B;根据随机事件,可判断C;根据样本的定义,可判断D.解答:解:A、为了检测一批电池使用时间的长短,应该采用抽样调查的方法,故A错误;B、方差反映了一组数据的波动大小,方差越大,波动越大,故B正确;C、打开电视正在播放新闻节目是随机事件,故C错误;D、为了了解某县初中学生的身体情况,从七年级随机抽取100名学生,八年级学生中随机抽取100名学生九年级随机抽取100名学生作为总体的一个样本,故D错误.故选:B.点评:本题考查了全面调查与抽样调查,正确区分全面调查与抽样调查是解题关键.40.(4分)(2015•铜仁市)(第7题)在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的。
2021年全国各地中考数学真题分类汇编(通用版)统计与概率(三)参考答案与试题解析一.选择题(共13小题)1.(2021•海南)在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是()A.B.C.D.解:∵不透明袋子中装有5个球,其中有2个红球、3个白球,∴从袋子中随机取出1个球,则它是红球的概率是,故选:C.2.(2021•江西)如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是()A.一线城市购买新能源汽车的用户最多B.二线城市购买新能源汽车用户达37%C.三四线城市购买新能源汽车用户达到11万D.四线城市以下购买新能源汽车用户最少解:A、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;B、二线城市购买新能源汽车用户达37%,故本选项正确,不符合题意;C、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;D、四线城市以下购买新能源汽车用户最少,故本选项正确,不符合题意;故选:C.3.(2021•桂林)某班5名同学参加学校“感党恩,跟党走”主题演讲比赛,他们的成绩(单位:分)分别是8,6,8,7,9,这组数据的中位数是()A.6B.7C.8D.9解:把5名同学的成绩从小到大排列为:6,7,8,8,9,则这组数据的中位数是8故选:C.4.(2021•梧州)一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是()A.B.C.D.解:根据题意可得:一个袋子中装有9个球,其中有5个黑球和4个白球,随机从这个袋子中摸出一个白球的概率是.故选:A.5.(2021•贵港)一组数据8,7,8,6,4,9的中位数和平均数分别是()A.7和8B.7.5和7C.7和7D.7和7.5解:把这些数从小到大排列为4,6,7,8,8,9,则中位数是=7.5;平均数是:(8+7+8+6+4+9)÷6=7.故选:B.6.(2021•贺州)下列事件中属于必然事件的是()A.任意画一个三角形,其内角和是180°B.打开电视机,正在播放新闻联播C.随机买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上解:A.任意画一个三角形,其内角和是180°,是必然事件,因此选项A符合题意;B.打开电视机,有可能播放新闻联播,也有可能不是,是个随机事件,因此选项B不符合题意;C.随机买一张电影票,座位号有可能是奇数号,也有可能是偶数号,是随机事件,因此选项C 不符合题意;D.掷一枚质地均匀的硬币,可能正面朝上,也可能正面朝下,是随机事件,因此选项D不符合题意;故选:A.7.(2021•广西)如图是某市一天的气温随时间变化的情况,下列说法正确的是()A.这一天最低温度是﹣4℃B.这一天12时温度最高C.最高温比最低温高8℃D.0时至8时气温呈下降趋势解:从图象可以看出,这一天中的最高气温是大概14时是8℃,最低气温是﹣4℃,从0时至4时及14时至24时,这天的气温在逐渐降低,从4时至14时,这天的气温在逐渐升高,故A正确,B,D错误;这一天中最高气温与最低气温的差为12℃,故C错误;故选:A.8.(2021•毕节市)下列说法正确的是()A.了解市民知晓“礼让行人”交通新规的情况,适合全面调查B.一组数据5,5,3,4,1的中位数是3C.甲、乙两人9次跳高成绩的方差分别为S甲2=1.1,S乙2=2.5,说明乙的成绩比甲稳定D.“经过有交通信号灯的路口,遇到红灯”是随机事件解:A.了解市民知晓“礼让行人”交通新规的情况,由于调查的工作量较大,适合抽样调查,此选项错误,不符合题意;B.一组数据5,5,3,4,1,重新排列为1、3、4、5、5,其中位数是4,此选项错误,不符合题意;C.甲、乙两人9次跳高成绩的方差分别为S甲2=1.1,S乙2=2.5,由S甲2<S乙2,说明甲的成绩比乙稳定,此选项错误,不符合题意;D.“经过有交通信号灯的路口,遇到红灯”,由于事先无法预测遇到哪种灯,所以此事件是随机事件,此选项正确,符合题意;故选:D.9.(2021•云南)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援.某公司在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是()A.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.每天单独生产C型帐篷的数量最多解:A、单独生产B帐篷所需天数为=4(天),单独生产C帐篷所需天数为=1(天),∴单独生产B型帐篷的天数是单独生产C型帐篷天数的4倍,此选项错误;B、单独生产A帐篷所需天数为=2(天),∴单独生产B型帐篷的天数是单独生产A型帐篷天数的2倍,此选项错误;C、单独生产D帐篷所需天数为=2(天),∴单独生产A型帐篷与单独生产D型帐篷的天数相等,此选项正确;D、单由条形统计图可得每天单独生产A型帐篷的数量最多,此选项错误;故选:C.10.(2021•黔东南州)一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是()A.至少有1个球是白色球B.至少有1个球是黑色球C.至少有2个球是白球D.至少有2个球是黑色球解:至少有1个球是白球是随机事件,A选项不正确;至少有1个球是黑球是必然事件,B选项正确;至少有2个球是白球是随机事件,C选项不正确;至少有2个球是黑球是随机事件,D选项不正确;故选:B.11.(2021•贵阳)“一个不透明的袋中装有三个球,分别标有1,2,x这三个号码,这些球除号码外都相同,搅匀后任意摸出一个球,摸出球上的号码小于5”是必然事件,则x的值可能是()A.4B.5C.6D.7解:根据题意可得,x的值可能为4.如果是5、7、6,那么与摸出球上的号码小于5”是必然事件相违背.故选:A.12.(2021•铜仁市)有6位同学一次数学测验分数分别是:125,130,130,132,140,145,则这组数据的中位数是()A.130B.132C.131D.140解:这组数据从小到大排列处在中间位置的两个数的平均数为=131,故选:C.13.(2021•贵阳)今年是三年禁毒“大扫除”攻坚克难之年.为了让学生认识毒品的危害,某校举办了禁毒知识比赛,小红所在班级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分,在不知道小红和小星成绩的情况下,下列说法比较合理的是()A.小红的分数比小星的分数低B.小红的分数比小星的分数高C.小红的分数与小星的分数相同D.小红的分数可能比小星的分数高解:根据平均数的定义可知,已知小红所在班级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分,在不知道小红和小星成绩的情况下,小红的分数可能高于80分,或等于80分,也可能低于80分,小星的分数可能高于85分,或等于85分,也可能低于85分,所以上列说法比较合理的是小红的分数可能比小星的分数高.故选:D.二.填空题(共7小题)14.(2021•桂林)在一个不透明的袋中装有大小和质地都相同的5个球:2个白球和3个红球.从中任意取出1个球,取出的球是红球的概率是.解:根据题意可得:一个袋子中装有5个球,其中有2个白球和3个红球,随机从这个袋子中摸出一个红球的概率是.故答案为:.15.(2021•贵港)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩比较稳定的是乙(填“甲”或“乙”).解:∵S甲2=1.4,S乙2=0.6,∴S甲2>S乙2,∴两人射击成绩比较稳定的是乙.故答案为:乙.16.(2021•贺州)盒子里有4张形状、大小、质地完全相同的卡片,上面分别标着数字2,3,4,5.从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为偶数的概率是.解:画树状图如图:共有12种等可能的结果,两次抽出的卡片上的数字之和为偶数的结果有4种,∴两次抽出的卡片上的数字之和为偶数的概率为=,故答案为:.17.(2021•广西)为了庆祝中国共产党成立100周年,某校举行“党在我心中”演讲比赛,评委将从演讲内容,演讲能力,演讲效果三个方面给选手打分,各项成绩均按百分制计,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%,计算选手的综合成绩(百分制).小婷的三项成绩依次是84,95,90,她的综合成绩是89分.解:小婷的综合成绩为84×50%+95×40%+90×10%=89(分),故答案为:89分.18.(2021•黔东南州)黔东南州某校今年春季开展体操活动,小聪收集、整理了成绩突出的甲、乙两队队员(各50名)的身高得到:平均身高(单位:cm)分别为:=160,=162.方差分别为:S2甲=1.5,S2乙=2.8.现要从甲、乙两队中选出身高比较整齐的一个队参加上一级的体操比赛,根据上述数据,应该选择甲队.(填写“甲队”或“乙队”)解:∵S2甲=1.5,S2乙=2.8,∴S2甲<S2乙,∴甲队身高比较整齐,故答案为:甲队.19.(2021•铜仁市)若甲、乙两人参加射击训练的成绩(单位:环)如下:甲:6,7,8,9,10;乙:7,8,8,8,9.则甲、乙两人射击成绩比较稳定的是乙(填甲或乙).解:甲的平均数为:=8,乙的平均数为:=8,S甲2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=(4+1+0+1+4)=2,S乙2=[(7﹣8)2+(8﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2]=(1+0+0+0+1)=0.4,∵S甲2>S乙2,∴乙的成绩比较稳定.故答案为:乙.20.(2021•贵阳)贵阳市2021年中考物理实验操作技能测试中,要求学生两人一组合作进行,并随机抽签决定分组.有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概率是.解:画树状图如图:共有12种等可能的结果,甲、乙两位同学分到同一组的结果有4种,∴甲、乙两位同学分到同一组的概率为=,故答案为:.三.解答题(共15小题)21.(2021•江西)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A志愿者被选中”是随机事件(填“随机”或“不可能”或“必然”);(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.解:(1)“A志愿者被选中”是随机事件,故答案为:随机;(2)列表如下:A B C DA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣由表可知,共有12种等可能结果,其中A,B两名志愿者被选中的有2种结果,所以A,B两名志愿者被选中的概率为=.22.(2021•海南)根据2021年5月11日国务院新闻办公室发布的《第七次全国人口普查公报》,就我国2020年每10万人中,拥有大学(指大专及以上)、高中(含中专)、初中、小学、其他等文化程度的人口(以上各种受教育程度的人包括各类学校的毕业生、肄业生和在校生)受教育情况数据,绘制了条形统计图(图1)和扇形统计图(图2).根据统计图提供的信息,解答下列问题:(1)a= 3.45,b= 1.01;(2)在第六次全国人口普查中,我国2010年每10万人中拥有大学文化程度的人数约为0.90万,则2020年每10万人中拥有大学文化程度的人数与2010年相比,增长率是72.2%(精确到0.1%);(3)2020年海南省总人口约1008万人,每10万人中拥有大学文化程度的人数比全国每10万人中拥有大学文化程度的人数约少0.16万,那么全省拥有大学文化程度的人数约有140万(精确到1万).解:(1)2.48÷24.8%=10(万人),a=10×34.5%=3.45,b=10﹣1.55﹣1.51﹣3.45﹣2.48=1.01,故答案为:3.45,1.01;(2)×100%≈72.2%,故答案为:72.2;(3)1008×≈140(万人),故答案为:140.23.(2021•江西)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.甲厂鸡腿质量频数统计表质量x(g)频数频率68≤x<7120.171≤x<7430.1574≤x<7710a77≤x<8050.25合计201分析上述数据,得到下表:平均数中位数众数方差统计量厂家甲厂7576b 6.3乙厂757577 6.6请你根据图表中的信息完成下列问题:(1)a=0.5,b=76;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?解:(1)2÷0.1=20(个),a=10÷20=0.5,甲厂鸡腿质量出现次数最多的是76g,因此众数是76,即b=76,故答案为:0.5,76;(2)20﹣1﹣4﹣7=8(个),补全频数分布直方图如下:(3)两个厂的平均数相同,都是75g,而要求的规格是75g,由于甲厂的方差较小,数据比较稳定,因此选择甲厂;(4)20000×(0.15+0.5)=13000(只),答:从甲厂采购了20000只鸡腿中,可以加工成优等品的大约有13000只.24.(2021•桂林)某班为了从甲、乙两名同学中选出一名同学代表班级参加学校的投篮比赛,对甲、乙两人进行了5次投篮试投比赛,试投每人每次投球10个.两人5次试投的成绩统计图如图所示.(1)甲同学5次试投进球个数的众数是多少?(2)求乙同学5次试投进球个数的平均数;(3)不需计算,请根据折线统计图判断甲、乙两名同学谁的投篮成绩更加稳定?(4)学校投篮比赛的规则是每人投球10个,记录投进球的个数.由往届投篮比赛的结果推测,投进8个球即可获奖,但要取得冠军需要投进10个球.请你根据以上信息,从甲、乙两名同学中推荐一名同学参加学校的投篮比赛,并说明推荐的理由.解:(1)甲同学5次试投进球的个数分别为:8,7,8,9,8,∴众数是8;(2)乙同学5次试投进球的个数分别为:7,10,6,7,10,∴==8;(2)由折线统计图可得,乙的波动大,甲的波动小,故S乙2>S甲2,∴甲同学的投篮成绩更加稳定;(4)推荐甲同学参加学校的投篮比赛,理由:由统计图可知,甲同学5次试投进球的个数分别为:8,7,8,9,8,乙同学5次试投进球的个数分别为:7,10,6,7,10,∴甲获奖的机会大,而且S乙2>S甲2,甲同学的投篮成绩更加稳定,∴推荐甲同学参加学校的投篮比赛.25.(2021•梧州)某校为提高学生的安全意识,开展了安全知识竞赛,这次竞赛成绩满分为10分.现从该校七年级中随机抽取10名学生的竞赛成绩,这10名学生的竞赛成绩是:10,9,9,8,10,8,10,9,7,10.(1)求这10名学生竞赛成绩的中位数和平均数;(2)该校七年级共400名学生参加了此次竞赛活动,根据上述10名学生竞赛成绩情况估计参加此次竞赛活动成绩为满分的学生人数是多少?解:(1)这10名学生竞赛成绩从小到大排列为:7,8,8,9,9,9,10,10,10,10,中位数为:=9,平均数=(7+8×2+9×3+10×4)=9;(2)400×=160(人),答:估计参加此次竞赛活动成绩为满分的学生人数是160人.26.(2021•贵港)某校为了了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,调查发现学生每天课后进行体育锻炼的时间都不超过100分钟,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,解答下列问题:组别锻炼时间(分)频数(人)百分比A0≤x≤201220%B20<x≤40a35%C40<x≤6018bD60<x≤80610%E80<x≤10035%(1)本次调查的样本容量是60;表中a=21,b=30%;(2)将频数分布直方图补充完整;(3)已知E组有2名男生和1名女生,从中随机抽取两名学生,恰好抽到1名男生和1名女生的概率是;(4)若该校学生共有2200人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生共有多少人?解:(1)本次调查的样本容量是:12÷20%=60,则a=60﹣12﹣18﹣6﹣3=21,b=18÷60×100%=30%,故答案为:60,21,30%;(2)将频数分布直方图补充完整如下:(3)画树状图如图:共有6种等可能的结果,恰好抽到1名男生和1名女生的结果有4种,∴恰好抽到1名男生和1名女生的概率为=,故答案为:;(4)2200×(10%+5%)=330(人),即该校每天课后进行体育锻炼的时间超过60分钟的学生共有330人.27.(2021•贺州)如图,某大学农学院的学生为了解试验田杂交水稻秧苗的长势,从中随机抽取样本对苗高进行了测量,根据统计结果(数据四舍五入取整),绘制统计图.(1)本次抽取的样本水稻秧苗为500株;(2)求出样本中苗高为17cm的秧苗的株数,并完成折线统计图;(3)根据统计数据,若苗高大于或等于15cm视为优良秧苗,请你估算该试验田90000株水稻秧苗中达到优良等级的株数.解:(1)本次抽取的样本水稻秧苗为:80÷16%=500(株);故答案为:500;(2)苗高为14cm的秧苗的株数有500×20%=100(株),苗高为17cm的秧苗的株数有500﹣40﹣100﹣80﹣160=120(株),补全统计图如下:(3)90000×=64800(株),答:估算该试验田90000株水稻秧苗中达到优良等级的株数有64800株.28.(2021•广西)某水果公司以10元/kg的成本价新进2000箱荔枝,每箱质量5kg,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取20箱,去掉损坏荔枝后称得每箱的质量(单位:kg)如下:4.7 4.8 4.6 4.5 4.8 4.9 4.8 4.7 4.8 4.74.8 4.9 4.7 4.8 4.5 4.7 4.7 4.9 4.75.0整理数据:质量(kg) 4.5 4.6 4.7 4.8 4.9 5.0数量(箱)217a31分析数据:平均数众数中位数4.75b c(1)直接写出上述表格中a,b,c的值.(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这2000箱荔枝共损坏了多少千克?(3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本(结果保留一位小数)?解:(1)a=20﹣2﹣1﹣7﹣3﹣1=6,分析数据:样本中,4.7出现的次数最多;故众数b为4.7,将数据从小到大排列,找最中间的两个数为4.7,4.8,故中位数c==4.75,∴a=6,b=4.7,c=4.75;(2)选择众数4.7,这2000箱荔枝共损坏了2000×(5﹣4.7)=600(千克);(3)10×2000×5÷(2000×5﹣600)≈10.7(元),答:该公司销售这批荔枝每千克定为10.7元才不亏本.29.(2021•云南)垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.(1)以下三种抽样调查方案:方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是方案三(填写“方案一”、“方案二”或“方案三”);(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x分)样本容量平均分及格率优秀率最高分最低分10083.5995%40%10052分数段50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数57183040结合上述信息解答下列问题:①样本数据的中位数所在分数段为80≤x<90;②全校1565名学生,估计竞赛分数达到“优秀”的学生有626人.解:(1)根据抽样的代表性、普遍性和可操作性可得,方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本进行调查分析,是最符合题意的.故答案为:方案三;(2)①样本总数为:5+7+18+30+40=100(人),成绩从小到大排列后,处在中间位置的两个数都在80≤x<90,因此中位数在80≤x<90组中;②由题意得,1565×=626(人),故答案为:①80≤x<90;②626.30.(2021•遵义)《国家学生体质健康标准》规定:九年级学生50m测试成绩分为优秀、良好、及格,不及格四个等级,某中学为了了解九年级学生的体质健康状况,对九年级学生进行50m测试,并随机抽取50名男生的成绩进行分析,将成绩分等级制作成不完整的统计表和条形统计图,根据图表信息,解答下列问题:(1)统计表中a的值是6;(2)将条形统计图补充完整;(3)将等级为优秀、良好、及格定为达标,求这50名男生的达标率;(4)全校九年共有350名男生,估计不及格的男生大约有多少人?等级人数优秀4良好a及格28不及格b合计50解:(1)根据条形统计图可得a=6.故答案为:6;(2)b=50﹣4﹣6﹣28=12,将条形统计图补充完整如图:(3)×100%=76%,答:这50名男生的达标率为76%;(4)350×=84(人),答:估计不及格的男生大约有84人.31.(2021•毕节市)学完统计知识后,小明对同学们最近一周的睡眠情况进行随机抽样调查,得到他们每日平均睡眠时长t(单位:小时)的一组数据,将所得数据分为四组(A:t<8,B:8≤t<9,C:9≤t<10,D:t≥10),并绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)小明一共抽样调查了40名同学;在扇形统计图中,表示D组的扇形圆心角的度数为18°;(2)将条形统计图补充完整;(3)小明所在学校共有1400名学生,估计该校最近一周大约有多少名学生睡眠时长不足8小时?(4)A组的四名学生是2名男生和2名女生,若从他们中任选2人了解最近一周睡眠时长不足8小时的原因,试求恰好选中1名男生和1名女生的概率.解:(1)本次调查的学生人数为22÷55%=40(名),表示D组的扇形圆心角的度数为360°×=18°,故答案为:40、18°;(2)C组人数为40﹣(4+22+2)=12(名),补全图形如下:(3)估计该校最近一周睡眠时长不足8小时的人数约为1400×=140(名);(4)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率为=.32.(2021•遵义)现有A,B两个不透明的袋子,A袋的4个小球分别标有数字1,2,3,4;B袋的3个小球分别标有数字1,2,3.(每个袋中的小球除数字外,其它完全相同.)(1)从A,B两个袋中各随机摸出一个小球,则两个小球上数字相同的概率是;(2)甲、乙两人玩摸球游戏,规则是:甲从A袋中随机摸出一个小球,乙从B袋中随机摸出一个小球,若甲、乙两人摸到小球的数字之和为奇数时,则甲胜;否则乙胜,用列表或树状图的方法说明这个规则对甲、乙两人是否公平.解:(1)画树状图如图:共有12个等可能的结果,其中两个数字相同的结果有3个,∴两个小球上数字相同的概率是=,故答案为:;(2)这个规则对甲、乙两人是公平的.画树状图如下:由树状图知,共有12种等可能结果,其中两人摸到小球的数字之和为奇数有6种,两人摸到小球的数字之和为偶数的也有6种,∴P甲获胜=P乙获胜=,∴此游戏对双方是公平的.33.(2021•黔东南州)为庆祝中国共产党建党100周年,某校开展了“党在我心中”党史知识竞赛,竞赛得分为整数,王老师为了解竞赛情况,随机抽取了部分参赛学生的得分并进行整理,绘制成不完整的统计图表.组别成绩x(分)频数A75.5≤x<80.56B80.5≤x<85.514C85.5≤x<90.5mD90.5≤x<95.5nE95.5≤x<100.5p请你根据统计图表提供的信息解答下列问题:(1)上表中的m=18,n=8,p=4.(2)这次抽样调查的成绩的中位数落在哪个组?请补全频数分布直方图.(3)已知该校有1000名学生参赛,请估计竞赛成绩在90分以上的学生有多少人?(4)现要从E组随机抽取两名学生参加上级部门组织的党史知识竞赛,E组中的小丽和小洁是一对好朋友,请用列表或画树状图的方法求出恰好抽到小丽和小洁的概率.解:(1)抽取的学生人数为:14÷28%=50(人),∴m=50×36%=18,由题意得:p=4,∴n=50﹣6﹣14﹣18﹣4=8,故答案为:18,8,4;(2)∵p+n+m=4+8+18=30,∴这次调查成绩的中位数落在C组;补全频数分布直方图如下:(3),即估计竞赛成绩在90分以上的学生有240人;34.(2021•铜仁市)某校开展主题为“防疫常识知多少”的调查活动,抽取了部分学生进行调查,调查问卷设置了A:非常了解、B:比较了解、C:基本了解、D:不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频数分布直方图,根据以上信息回答下列问题:等级频数频率A200.4B15bC100.2D a0.1(1)频数分布表中a=5,b=0.3,将频数分布直方图补充完整;(2)若该校有学生1000人,请根据抽样调查结果估算该校“非常了解”和“比较了解”防疫常识的学生共有多少人?(3)在“非常了解”防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.解:(1)20÷0.4=50(人),a=50×0.1=5(人),。
统计
一、选择题
1.(2014年天津市,第11题3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:
候选人甲乙丙丁
测试成绩(百分制)面试86 92 90 83
笔试90 83 83 92
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()
A.甲B.乙C.丙D.丁
考点:加权平均数.
分析:根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.
解答:解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),
乙的平均成绩为:(92×6+83×4)÷10=88.4(分),
丙的平均成绩为:(90×6+83×4)÷10=87.2(分),
丁的平均成绩为:(83×6+92×4)÷10=86.6(分),
因为乙的平均分数最高,
所以乙将被录取.
故选B.
点评:此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.
2.(2014•新疆,第7题5分)某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()
360×=252
3.(2014年云南省,第8题3分)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:
成绩(分)9.40 9.50 9.60 9.70 9.80 9.90
人数 2 3 5 4 3 1
则入围同学决赛成绩的中位数和众数分别是()
A. 9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60
考点:众数;中位数
分析:根据中位数和众数的概念求解.
解答:解:∵共有18名同学,
则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,
众数为:9.60.
故选B.
点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
4.(2014•温州,第2题4分)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()
5.(2014•温州,第6题4分)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()
6.(2014•舟山,第2题3分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()
7.(2014•舟山,第4题3分)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()。