弹性力学与有限元法习题集
- 格式:ppt
- 大小:1.65 MB
- 文档页数:71
弹性理论及有限元方法学习通课后章节答案期末考试题库2023年1.弹性力学的基本假定为___、___、___、___。
参考答案:连续性###完全弹性###均匀性###各向同性;2.在弹性力学中规定,切应变以___时为正,___时为负,与___的正负号规定相适应。
参考答案:直角变小###变大###切应力;3.连续性假定是指整个物体是由同一材料组成的。
()参考答案:错4.下面哪些物体可以作为平面应力问题分析?参考答案:大平圆盘###大平薄板5.当物体的形变分量完全确定时,位移分量却不能完全确定。
()参考答案:对6.物体受外力以后,其内部将发生___,它的集度称为___。
与物体的形变和材料强度直接有关的,是应力在其作用截面的___和___的分量,也就是___和___。
应力及其分量的量纲是___。
参考答案:内力###应力###法线方向###切线方向###正应力###切应力###ML7.下列属于平面应变问题的是:参考答案:天然气输送管道###具有固定截面的型材8.按应力求解平面问题时常采用位移法和应力法。
()参考答案:错9.弹性力学体素变形分为几类?分别是什么,简述之?参考答案:两类:长度的变化和角度的变化。
任一线素的长度的变化与原有长度的比值称为线应变(或称正应变)。
当线素伸长时,其线应变为正。
线素缩短时,其线应变为负。
任意两个原来彼此正交的线素,在变形后其夹角的变化值称为角应变或剪应变。
夹角变小时为正,变大时为负。
10.弹性力学中应力如何表示?正负如何规定?参考答案:正应力分量三个、剪应力分量六个;正面上与坐标轴方向一致,为正;负面上与坐标轴负向一致,为正。
11.表示位移分量与应力分量之间关系的方程为物理方程。
()参考答案:错12.平面问题分为___问题和___问题。
参考答案:平面应力###平面应变;13.按应力求解平面问题,最后可以归纳为求解一个应力函数。
()参考答案:错14.平面应力问题与平面应变问题的物理方程是完全相同的。
弹性力学与有限元分析试题及参考答案四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。
(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。
解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s f m l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。
(1)此组应力分量满足相容方程。
为了满足平衡微分方程,必须A =-F ,D =-E 。
此外还应满足应力边界条件。
(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。
上两式是矛盾的,因此,此组应力分量不可能存在。
2、已知应力分量312x C Qxy x +-=σ,2223xy C y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。
试利用平衡微分方程求系数C 1,C 2,C 3。
解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 3、已知应力分量q x -=σ,q y -=σ,0=xy τ,判断该应力分量是否满足平衡微分方程和相容方程。
弹性力学及有限元法答案下载一、是非题(下列各题,你认为正确的,请在题干的括号内打“√”,错的打“×”。
每题3分,共12分)1、按应力求解平面问题时,若应力分量满足平衡方程,且在边界上满足应力边界条件即为正确解答。
…………………………………………………………………………………………()2、图示弹性体在两种荷载作用下,若lh,则A点的应力分量是相同的。
…………………()3、用有限单元法求解平面应力问题时,单元刚度矩阵的子块kij的物理意义是:仅当第j个结点沿坐标正向发生x或y方向的单位位移,在i结点处引起的沿x或y 方向的结点力。
……()4、等厚度旋转圆盘以等角速度ω旋转时,该问题应属平面应变问题。
……………………()二、单选题(在本题的每一小题的备选答案中,只有一个是正确的,请把你认为正确答案的题号,填入题干的括号内。
多选不给分。
每题材5分,共15分)1、图示半平面体受集中力P作用,其应力边界条件为………………………………………()①θ=0,π,σθ=σr=0 ②θ=0,π,σθ=τθr =0③θ=0,π,r≠0,σθ=τθr=0 ④θ=0,π,r≠0,σθ=τθr=02、铅直平面内正方形薄板,边长为2a,周长固定,只受重力作用。
用瑞次法求解,其位移表达式应为…………………………………………………………………………………………()3、不计体力,图示弹性体的应力函数为………………………………………………………()①υ=τ0xy-(qy3)/6b ②υ=τxy+(qy3)/6b③υ=-τ0xy-(qy3)/6b ④υ=-τxy+(qy3)/6b三、填空题1、(3分)按应力求解平面问题。
若认应力函数υ=ax5y+bxy5(a、b 不等于零),则系数b、b应满足关系()。
2、(4分)已知一点应力状态为σx =100,σy=50,τxy=10,则σ1=(),σ2=()。
3、(3分)图示薄板,设其厚度t=1。
弹性力学及有限单元法_河海大学中国大学mooc课后章节答案期末考试题库2023年1.建立平衡微分方程时,用到了下列哪些假定()、()。
参考答案:连续性_小变形2.有限单元法中的单元仍然满足()、()、()、()的理想弹性体。
参考答案:完全弹性_均匀性_各向同性_连续性3.应力边界条件是指在边界上()之间的关系式。
参考答案:应力与面力4.面力是指分布在物体的力。
参考答案:表面上##%_YZPRLFH_%##表面5.位移是指一点的移动。
参考答案:位置6.线应变(或正应变)以为正。
参考答案:伸长7.极坐标系下的几何方程有()。
参考答案:3个8.极坐标系下的平衡微分方程有()。
参考答案:2个9.应力是指上的内力。
参考答案:单位面积##%_YZPRLFH_%##单位截面10.地面的沉陷与地基的弹性模量无关。
()参考答案:错误11.弹性力学问题中,仅对位移分量要求单值。
()参考答案:错误12.在小边界上按圣维南原理列写的三个边界条件是方程。
参考答案:代数##%_YZPRLFH_%##积分13.在大边界上按精确的应力边界条件,列出的两个边界条件是方程。
参考答案:函数14.精确的应力边界条件可理解为,边界上的应力分量应等于对应的。
参考答案:面力分量15.当体力为常量时,按应力求解可简化为按求解。
参考答案:应力函数16.常体力,是指。
参考答案:体力是常量##%_YZPRLFH_%##体力等于常量##%_YZPRLFH_%##体力为常量17.体力是指分布在物体的力。
参考答案:体积内##%_YZPRLFH_%##体积18.在弹性力学中,可以应用叠加原理。
参考答案:正确19.逆解法先假设应力分量的函数形式进行求解。
参考答案:错误20.应力的量纲与面力的量纲是一样的。
参考答案:正确21.弹性力学中应力的符号与面力的符号规定,在正、负坐标面上是一致的。
参考答案:错误22.弹性力学和材料力学中关于切应力的符号规定是一样的。
参考答案:错误23.小变形假定可简化()、()为线性方程。
2012年某高校度弹性力学与有限元分析复习题及其答案(内部资料)一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
如下图所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。
① I 单元的整体编码为162 ② II 单元的整体编码为426 ③ II 单元的整体编码为246 ④ III 单元的整体编码为243 ⑤ IV 单元的整体编码为564A. ①③B. ②④C. ①④D. ③⑤一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
第一章测试1.下列不属于弹性力学研究对象的是()。
A:板壳B:刚体C:杆件D:实体结构答案:B2.下列不属于弹性力学中基本未知量的是()。
A:位移分量B:应力分量C:面力分量D:应变分量答案:C3.在工程强度校核中起着重要作用的是()。
A:应力分量B:主应力C:正应力D:切应力答案:B4.已知物体内某点的应力张量(单位:Pa),则沿方向的正应力大小为()。
A:222.22 PaB:888.89 PaC:666.67 PaD:444.44 Pa答案:D5.下列关于应力分量的说法,正确的有()。
A:坐标面上的应力B:一点的9个应力分量可以完全确定该点的应力状态C:应力分量与面力分量的正负号规定相同D:正截面上的应力E:弹性力学中应力分量的正负号规定反映了作用力与反作用力原理以及“受拉为正、受压为负”的传统观念。
答案:ABDE6.理想弹性体满足的假设有()。
A:无初始应力假设B:均匀性假设C:连续性假设D:完全弹性假设E:各向同性假设答案:BCDE7.建立在基本假设上的弹性力学,也称为()。
A:弹性理论B:线性弹性力学C:应用弹性力学D:数学弹性力学答案:ABD8.弹性力学的主要任务是解决各类工程中所提出的问题,这些问题包括()。
A:稳定B:刚度C:强度D:动力答案:ABC9.弹性力学的研究方法是在弹性体的区域内严格考虑三方面条件,建立三套基本方程,这三方面条件包括()。
A:几何学B:物理学C:静力学D:动力学答案:ABC10.中国科学家胡海昌于1954年最早提出了三类变量的广义变分原理。
()A:错B:对答案:B11.物体内任意一点的应力分量、应变分量和位移分量,都不随该点的位置而变化,它们与位置坐标无关。
()A:对B:错答案:B12.在最大正应力的作用面上切应力为零,在最大切应力的作用面上正应力为零。
()A:对B:错答案:B13.应力张量的三个不变量是与坐标选择无关的标量。
()A:错B:对答案:B14.弹性力学与材料力学在研究方法上是完全相同的。
最新弹性力学与有限元分析复习题及其答案填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、—形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力^的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应 _______________ 和切应力。
应力及其分量的量纲是L-1MT-2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量匚x=100MPa,匚y=50MPa,“=10*50 MPa,则主应力"十=150MPa. '2 =QMPa,二》= 35 16。
&已知一点处的应力分量,匚x=200MPa,二y=0MPa,• x<-400 MPa,则主应力匚一512 MPa,二2二-312 MPa, :r =-37° 57'。
9、已知一点处的应力分量,二x"2000MPa,二y =1000MPa,x^-400 MPa,则主应力G =1052MPa,二-2052 MPa,:严82° 32'。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
弹性力学与有限元分析试题及参考答案四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。
(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。
解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s f m l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。
(1)此组应力分量满足相容方程。
为了满足平衡微分方程,必须A =-F ,D =-E 。
此外还应满足应力边界条件。
(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。
上两式是矛盾的,因此,此组应力分量不可能存在。
2、已知应力分量312x C Qxy x +-=σ,2223xy C y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。
试利用平衡微分方程求系数C 1,C 2,C 3。
解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 3、已知应力分量q x -=σ,q y -=σ,0=xy τ,判断该应力分量是否满足平衡微分方程和相容方程。
《弹性力学》复习题
1. 用最小势能原理求解图示结构的结点转角,已知各杆抗弯刚度均为EI = 5.4×104 kN·m2。
2.用最小势能原理求解图示结构在均布荷载作用下的结点转角,已知抗弯刚度为EI = 5.6×104 kN·m2。
3.图示为水库大坝示意图,设其长度远大于截面尺寸,求其在静水压力作用下的应力分布。
请采用合适的弹性力学模型对其进行简化,并写出其基本方程。
4.求图示结构在所给坐标系下的整体原始刚度矩阵(各杆件抗压刚度均为EA)。
5.计算抗压刚度为EA的图示结构在引入边界条件之前的原始刚度矩阵。
6. 求图示结构引入边界条件之前的原始整体刚度矩阵和综合结点荷载列阵,设各杆抗弯刚度为EI,不考虑轴向变形和剪切影响。
7. 计算图示常应变三角形单元的单元刚度矩阵。
已知弹性模量E,厚度t,泊松比υ=0。
弹性力学及有限元试题(一) 问答题(20分)1、什么是圣维南原理?举例说明怎样把它应用于工程问题的简化中。
2、什么叫做一点的应力状态?如何表示一点的应力状态(要求具体说明或表达)。
3、何谓逆解法和半逆解法?它们的理论依据是什么?4、什么是平面应力问题?什么是平面应变问题?分别写出弹性力学平面应力问题和平面应变问题的物理方程。
5、要保证有限元方法解答的收敛性,位移模式必须满足那些条件?(二) (10分)1.利用坐标变换从直角坐标的平衡方程推导极坐标下平衡方程(无体力)。
2.利用坐标变换从直角坐标下几何方程推导极坐标下几何方程。
(三)已知,其他应力分量为零,求位移场。
(10分)(四)设有矩形截面的悬臂粱,在自由端受有集中荷载F;体力可以不计。
试根据材料力学公式,写出弯应力σx和切应力τxy的表达式,并取挤压应力σy=0,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答(10分)。
(五)设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,试求应力分量(10分)。
提示:单位厚度上的力偶矩M的量纲是LMT-2,应力只能是M/ρ2的形式,所以可假设应力函数由:Φ=Φ(φ).(六) 铅直平面内的正方形薄板,边长为2a,四边固定,图5—18,只受重力的作用。
设μ=0,试取位移分量的表达式为用瑞利—里茨法求解(15分)。
(七)试按图示网格求解结点位移,取t =1m,μ= 0(15分)。
(八)用刚度集成法求下图所示结构的整体刚度矩阵K。
(10分)要求:单元刚度矩阵元素用ek形式表示;单元刚度矩阵用e K形式表ij示,其中e为单元号。
2021年度弹性力学及有限元分析复习题及其答案(绝密试题)一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,及正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,及切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
及物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的根本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,那么主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,那么主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
9、一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,那么主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量及体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移及约束,或应力及面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化构造,然后再用构造力学位移法进展求解。
其具体步骤分为单元分析和整体分析两局部。
15、每个单元的位移一般总是包含着两局部:一局部是由本单元的形变引起的,另一局部是由于其他单元发生了形变而连带引起的。