第五章 MOS场效应管的特性
- 格式:ppt
- 大小:543.50 KB
- 文档页数:52
MOS 场效应管的工作原理及特点场效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。
有N沟道器件和P 沟道器件。
有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。
IGFET也称金属-氧化物-半导体三极管MOSFET(Metal Oxide SemIConductor FET)。
MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。
场效应管有三个电极:D(Drain) 称为漏极,相当双极型三极管的集电极;G(Gate) 称为栅极,相当于双极型三极管的基极;S(Source) 称为源极,相当于双极型三极管的发射极。
增强型MOS(EMOS)场效应管道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。
在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。
P型半导体称为衬底(substrat),用符号B表示。
一、工作原理1.沟道形成原理当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。
当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。
耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。
进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。
根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件--------------------------------------------------------------1.概念:场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件.特点:具有输入电阻高(100000000~1000000000Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者.作用:场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器.场效应管可以用作电子开关.场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源.2.场效应管的分类:场效应管分结型、绝缘栅型(MOS)两大类按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种.按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N 沟耗尽型和增强型;P沟耗尽型和增强型四大类.见下图:3.场效应管的主要参数:Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流.Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压.Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压.gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数.BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS.PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量.IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSMCds---漏-源电容Cdu---漏-衬底电容Cgd---栅-源电容Cgs---漏-源电容Ciss---栅短路共源输入电容Coss---栅短路共源输出电容Crss---栅短路共源反向传输电容D---占空比(占空系数,外电路参数)di/dt---电流上升率(外电路参数)dv/dt---电压上升率(外电路参数)ID---漏极电流(直流)IDM---漏极脉冲电流ID(on)---通态漏极电流IDQ---静态漏极电流(射频功率管)IDS---漏源电流IDSM---最大漏源电流IDSS---栅-源短路时,漏极电流IDS(sat)---沟道饱和电流(漏源饱和电流)IG---栅极电流(直流)IGF---正向栅电流IGR---反向栅电流IGDO---源极开路时,截止栅电流IGSO---漏极开路时,截止栅电流IGM---栅极脉冲电流IGP---栅极峰值电流IF---二极管正向电流IGSS---漏极短路时截止栅电流IDSS1---对管第一管漏源饱和电流IDSS2---对管第二管漏源饱和电流Iu---衬底电流Ipr---电流脉冲峰值(外电路参数)gfs---正向跨导Gp---功率增益Gps---共源极中和高频功率增益GpG---共栅极中和高频功率增益GPD---共漏极中和高频功率增益ggd---栅漏电导gds---漏源电导K---失调电压温度系数Ku---传输系数L---负载电感(外电路参数)LD---漏极电感Ls---源极电感rDS---漏源电阻rDS(on)---漏源通态电阻rDS(of)---漏源断态电阻rGD---栅漏电阻rGS---栅源电阻Rg---栅极外接电阻(外电路参数)RL---负载电阻(外电路参数)R(th)jc---结壳热阻R(th)ja---结环热阻PD---漏极耗散功率PDM---漏极最大允许耗散功率PIN--输入功率POUT---输出功率PPK---脉冲功率峰值(外电路参数)to(on)---开通延迟时间td(off)---关断延迟时间ti---上升时间ton---开通时间toff---关断时间tf---下降时间trr---反向恢复时间Tj---结温Tjm---最大允许结温T a---环境温度Tc---管壳温度Tstg---贮成温度VDS---漏源电压(直流)VGS---栅源电压(直流)VGSF--正向栅源电压(直流)VGSR---反向栅源电压(直流)VDD---漏极(直流)电源电压(外电路参数)VGG---栅极(直流)电源电压(外电路参数)Vss---源极(直流)电源电压(外电路参数)VGS(th)---开启电压或阀电压V(BR)DSS---漏源击穿电压V(BR)GSS---漏源短路时栅源击穿电压VDS(on)---漏源通态电压VDS(sat)---漏源饱和电压VGD---栅漏电压(直流)Vsu---源衬底电压(直流)VDu---漏衬底电压(直流)VGu---栅衬底电压(直流)Zo---驱动源内阻η---漏极效率(射频功率管)Vn---噪声电压aID---漏极电流温度系数ards---漏源电阻温度系数4.结型场效应管的管脚识别:判定栅极G:将万用表拨至R×1k档,用万用表的负极任意接一电极,另一只表笔依次去接触其余的两个极,测其电阻.若两次测得的电阻值近似相等,则负表笔所接触的为栅极,另外两电极为漏极和源极.漏极和源极互换,若两次测出的电阻都很大,则为N沟道;若两次测得的阻值都很小,则为P沟道.判定源极S、漏极D:在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极.用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极.5.场效应管与晶体三极管的比较场效应管是电压控制元件,而晶体管是电流控制元件.在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管.晶体三极管与场效应管工作原理完全不同,但是各极可以近似对应以便于理解和设计:晶体管:基极发射极集电极场效应管:栅极源极漏极要注意的是,晶体管设计发射极电位比基极电位低(约0.6V),场效应管源极电位比栅极电位高(约0.4V)。
场效应管的特点、参数及使用注意事项
1.场效应管的特点
场效应管是电压掌握型器件,它不向信号源索取电流,有很高的输入电阻,而且噪声小、热稳定性好,因此宜于做低噪声放大器,特殊是低功耗的特点使得在集成电路中大量采纳。
2.场效应管的主要参数
夹断电压U P :指当U DS 值肯定时,结型场效应管和耗尽型MOS 管的I D 减小到接近零时U GS 的值称为夹断电压。
开启电压U T :指当U DS 值肯定时,增加型MOS管开头消失I D 时的U GS 值称为开启电压。
跨导g m :指U DS 肯定时,漏极电流变化量Δ I D 与栅-源极电压变化量Δ U GS 之比。
最大耗散功率P CM :指管子正常工作条件下不能超过的最大可承受功率。
3.使用留意事项
(1)场效应管的栅极切不行悬空。
由于场效应管的输入电阻特别高,栅极上感应出的电荷不易泄放而产生高压,从而发生击穿损坏管子。
(2)存放时,应将绝缘栅型场效应管的三个极相互短路,以免受外电场作用而损坏管子,结型场效应管则可开路保存。
(3)焊接时,应先将场效应管的三个电极短路,并按源极、漏极、
栅极的先后挨次焊接。
烙铁要良好接地,并在焊接时切断电源。
(4)绝缘栅型场效应管不能用万用表检查质量好坏,结型场效应管则可以。
MOS场效应管特性与参数测试实验电路设计曹钟林【摘要】场效应管(简称FET)是一种由输入电压来控制其输出电流大小的半导体器件,是电压控制器件,其输入电阻非常高,输入端基本不取电流.由于金属-氧化物-半导体场效应管(简称MOSFET)栅极和沟道之间的绝缘层易被电压击穿,特别是栅源之间的耐压只有几十伏,外部静电电压极易造成栅源极间击穿损坏.文章针对MOSFET 在实验教学测量、测试过程中容易损坏的问题,根据MOSFET工作特性及测试要求,设计出较为便捷和安全可靠的MOSFET实验教学电路.【期刊名称】《无锡商业职业技术学院学报》【年(卷),期】2016(016)003【总页数】4页(P86-89)【关键词】场效应管;MOS;测试;参数;保护【作者】曹钟林【作者单位】无锡商业职业技术学院,江苏无锡 214153【正文语种】中文【中图分类】TN386.1(一)场效应管概述场效应管是一种电压控制电流的半导体器件,外形与封装基本类同三极管。
场效应管有三个电极,分别为栅极(gate)G,源极(source)S和漏极(drain)D。
概括地说,场效应管施加不同的栅源电压UGS和漏源UDS可以使场效应管工作在不同区域,即可变电阻区、恒流区、夹断区和击穿区。
如场效应管用于电压放大,管子工作应在恒流区,一般通过外部电路为场效应管建立合适的工作偏置电压,即给场效应管设置合适的静态偏置电压UGS和UDS,分压式偏置电路(见图1)是常见的方式。
需要指出的是场效应管应避免工作在击穿区。
(二)场效应管的管型特征辨识场效应管的管型有六种:N沟道结型场效应管(符号见图2)、P沟道结型场效应管(符号见图3)、N沟道增强型MOS场效应管(符号见图4)、P沟道增强型MOS场效应管(符号见图5)、N沟道耗尽型MOS场效应管(符号见图6)、P沟道耗尽型场效应MOS管(符号见图7)。
根据场效应管符号的辨识管型方法:栅极和沟道之间有电接触为结型,栅极和沟道之间没有电接触则为MOS型。
第五章MOS 场效应管的特性5.1MOS 场效应管5.3体效应第五章MOS 场效应管的特性5.1 MOS 场效应管5.2 MOS 管的阈值电压5.3 体效应115.5MOSFET 的噪声5.6MOSFET 尺寸按比例缩小5.7MOS 器件的二阶效应5.4 MOSFET 的温度特性5.5 MOSFET 的噪声5.6 MOSFET 尺寸按比例缩小5.7 MOS 器件的二阶效应1)N 型漏极与P 型衬底;2)N 型源极与P 型衬底。
5.1 MOS 场效应管5.1.1 MOS 管伏安特性的推导两个PN 结:图2)1)2同双极型晶体管中的PN 结一样,在结周围由于载流子的扩散、漂移达到动态平衡,而产生了耗尽层。
3)一个电容器结构:23)栅极与栅极下面的区域形成一个电容器,是MOS 管的核心,决定了MOS 管的伏安特性。
p+/ n+n(p) MOSFET的三个基本几何参数toxpoly-Si diffusionDWG L3p+/ n+⏹栅长:⏹栅宽:⏹氧化层厚度:LWt oxSMOSFET的三个基本几何参数⏹L min、W min和t ox由工艺确定⏹L min:MOS工艺的特征尺寸(feature size)决定MOSFET的速度和功耗等众多特性⏹L和W由设计者选定⏹通常选取L= L min,设计者只需选取W,W是主要的设计变量。
⏹W影响MOSFET的速度,决定电路驱动能力和功耗4MOSFET 的伏安特性:电容结构⏹当栅极不加电压或加负电压时,栅极下面的区域保持P 型导电类型,漏和源之间等效于一对背靠背的二极管,当漏源电极之间加上电压时,除了PN 结的漏电流之外,不会有更多电流形成。
⏹当栅极上的正电压不断升高时,P 型区内的空穴被不断地排斥到衬底方向。
当栅极上的电压超过阈值电压V T ,在5栅极下的P 型区域内就形成电子分布,建立起反型层,即N 型层,把同为N 型的源、漏扩散区连成一体,形成从漏极到源极的导电沟道。