水管锅炉受压元件强度计算2013版资料
- 格式:ppt
- 大小:14.70 MB
- 文档页数:125
六进口集管强度计算1集管外径Do mm2192纵向焊缝减弱系数ψ13集管取用壁厚δmm 84集管内径Dimm 2035孔桥减弱系数计算孔1与孔2的孔桥减弱系数直径1d1c mm 52直径2d2c mm 52相邻两孔平均直径dae mm52相邻两孔临界节距Sc mm 134.2相邻两孔的节距S mm 104孔桥减弱系数ψ0.56计算壁温td ℃3007许用应力[σ]MPa 998最小减弱系数ψmin 0.59计算壁厚δt mm 2.1910考虑腐蚀减薄的附加壁厚C1mm 0.511考虑工艺减薄的附加厚度C2mm 012负偏差与取用壁厚的百分比值m 12.513考虑负偏差的附加厚度C3mm 0.38414弯管附加厚度C mm 0.88415集管设计壁厚δdc mm 3.07416集管取用厚度δmm 817集管有效厚度δe mm 7.11618圆筒体开孔结构特性系数K 0.14619系数ββe 1.0720材料在20℃的屈服点Re MPa 24521水压试验最高允许压力[P]h MPa 6.932编号序号名称符号单数值七进口集管椭圆封头计算1封头外径Do mm 2192封头壁厚δmm8无纵焊缝先假设,后校核按中径展开的集管开孔示意图Sc=dae+2((Di+δ)x δ)^0.5根据设计S<Sc ,需计算孔桥减弱系数ψ=(s-dae )/S 表4,Td=tm 查 GB/T16507.2表5δt=PxDo/(2ψmin [σ]+P)按13.3条附录C.2.3,按13.5.2条C3=(δt+C1+C2)m/(100-C=C1+C2+C3δdc=δt+C δe=δ-C P(Do-2δe )/((2[σ]-P)δe)K≤0.4,开孔不必补强β=Do/(Do-2δe )查 GB/T16507.2表50.45ψminRe(βe 2-1)/βe 2常州能源设备总厂有限公司受压元件强度计算书计算公式及数字来源设计水压试验压力取1.05MPa采用φ219x8(20 GB3087)的钢管作为进口集管3封头内径Di mm 2034计算壁温td ℃3005封头内高度hi mm 576最小减弱系数ψmin 17许用应力[σ]MPa 1088封头结构形状系数ks 0.8629计算壁厚δt mm 0.81410考虑腐蚀减薄的附加壁厚C1mm 0.511考虑工艺减薄的附加厚度C2mm 0.13113考虑负偏差的附加厚度C3mm 0.314弯管附加厚度C mm 0.93115集管设计壁厚δdc mm 1.74516炉管取用厚度δmm817集管有效厚度δe mm 7.0618系数ββe 1.06919材料在20℃的屈服点Re MPa 24520水压试验最高允许压力[P]h MPa 10.49八出口集管强度计算1集管外径Do mm 2732纵向焊缝减弱系数ψ13集管取用壁厚δmm 104集管内径Di mm 2535孔桥减弱系数计算编号序号名称符号单数值孔1与孔2的孔桥减弱系数直径1d1c mm 110直径2d2c mm 110相邻两孔平均直径dae1mm110相邻两孔临界节距Sc mm 212.6相邻两孔的节距S1mm 300直径2d3c mm 34相邻两孔平均直径dae2mm72Di=Do-2δTd=tmJB/T 4746-2002,P41无拼缝、开孔查 GB/T16507.2表2Ks=[2+(Di/2hi)2]/6δt=ksPxDi/(2ψmin[σ]-P)按13.3条附录C.2.7,0.1(δt+C1)按13.5.1条C=C1+C2+C3δdc=δt+C δe=δ-Cβ=Do/(Do-2δe )查 GB/T16507.2表50.9ψminRe(βe 2-1)/[(2+βe 3设计水压试验压力取1.05MPa进口集管封头采用EHB219x8(6) JB/T4746 (材质为Q245R GB713)无纵焊缝先假设,后校核按中径展开的集管开孔示意图常州能源设备总厂有限公司受压元件强度计算书计算公式及数字来源Sc=dae1+2((Di+δ)x δ)^0.5根据设计Sc<S1不需计算孔桥减弱系数。
(11-017)电力职业技能考试<<锅炉本体检修>>高级工理论题库一、选择题(请将正确答案的代号填入括号内,共63题)1(La3A5033).影响流体密度和重度的因素有( )。
(A)温度和压力;(B)压力的平方;(C)动力粘度;(D)运动粘度。
答案:A2(La3A1034).对流体的运动规律具有主要影响的是流体的( )。
(A)粘性;(B)压缩性;(C)膨胀性;(D)密度。
答案:A3(La3A1035).如图A-1所示,一个容器内有A、B、C、D四个测点,( )的静压最大。
图A-1(A)A点;(B)B点;(C)C点;(D)D点。
答案:D4(La3A2036).气体的状态参数是压力、温度和( )等。
(A)体积;(B)重量;(C)熵;(D)比容。
答案:D5(La3A2037).分子间间隙最小的是( )。
(A)液体;(B)气体;(C)固体;(D)蒸汽。
答案:C6(La3A3038).水在水泵中压缩升压,可看做是( )。
(A)等温过程;(B)绝热过程;(C)等压过程;(D)都不是。
答案:B7(Lb3A1089).锅炉长期停用时必须采取( )措施。
(A)防爆措施;(B)防火措施;(C)防腐措施;(D)防氧化措施。
答案:C8(Lb3A2090).流体在管道中作紊流粗糙流动产生的阻力与流体的平均速度的( )成正比。
(A)一次方;(B)二次方;(C)三次方;(D)四次方。
答案:B9(Lb3A2091).焊口焊后热处理时,加热范围内,任意两点温差不得大于( )。
(A)30℃;(B)50℃;(C)60℃;(D)80℃。
答案:B10(Lb3A2092).在13.7MPa锅炉的12Cr1MoV钢过热器管焊接中,应采用( )焊条。
(A)奥132;(B)结507;(C)热317;(D)热407。
答案:C11(Lb3A2093).10CrMo910(或STBA24)过热器管焊接,应采用( )焊条。
(A)结507;(B)热317;(C)奥132;(D)热407。
锅炉水压试验方案1、概述锅炉水压试验方案以东方锅炉厂生产的DG3033/26.15-Ⅱ11型锅炉为例。
1.1 1000MW超超临界燃煤机组锅炉是由东方锅炉厂进行设计、制造的,型号为DG-3033/26.15-II1型锅炉为超超临界压力、循环泵式启动系统、前后墙对冲低NO X轴向旋流燃烧器、一次中间再热、单炉膛、平衡通风、固态排渣、全钢构架的变压本生直流炉。
炉膛上部布置有屏式过热器,水平烟道依次布置高温过热器和高温再热器,尾部烟道布置有低温再热器和低温过热器、省煤器。
锅炉前部上方布置2台启动分离器、1台贮水箱。
前炉膛从冷灰斗进口标高至50958.8mm范围内,采用螺旋管圈形成膜式壁,在标高51280.8mm上方为垂直管屏。
过热器汽温通过煤水比调节和二级喷水减温来控制。
再热器汽温采用平行烟气挡板调节,喷水减温仅用作微量减温。
锅炉点火采用轻柴油点火、助燃,油管道油罐区引出。
1.2锅炉的主要设计参数如下最大定蒸发量 3033t/h 省煤器进口给水温度 302℃过热器出口蒸汽压力 26.15MPa 过热器出口蒸汽温度 605℃再热器进口蒸汽压力 4.96MPa 再热器进口蒸汽温度 352℃再热器出口蒸汽压力 4.71MPa 再热器出口蒸汽温度 603℃1.3编制依据1.3.1东方锅炉厂提供的设备安装图纸1.3.2东方锅炉厂提供的《锅炉使用说明书》1.3.3《电力建设施工技术规范》(锅炉机组篇DL/T5190.2-2012)1.3.4《电力建设施工技术规范》(管道及系统DL 5190.5-2012)1.3.5《火力发电厂焊接技术规程》 DL/T869—20121.3.6《电力建设施工技术规范》(热工仪表及控制装置 DL 5190.4-2012)1.3.7《钢制承压管道对接焊接接头射线检验技术规程》(DL/T821-2002)1.3.8《管道焊接接头超声波检验规程》(DL/T820-2002)1.3.9《电力建设施工质量验收及评价规程》(锅炉机组、管道及系统、焊接篇、热工仪表及控制装置2009年版)1.3.10《电力工业锅炉压力容器监察规程》(DL612-1996)1.3.11《电站工业锅炉压力容器检验规程》(DL647-2004)1.3.12《火力发电厂水汽化学监督导则》(DL/T561-2013)1.3.13《电力基本建设热力设备管道化学监督导则》(DL/T889-2004)1.3.14《锅炉安全技术监察规程》TSG G0001-20121.3.15《电力建设安全健康与环境管理工作规定》(2002年版)1.3.16《电力建设安全工作规程(第1部分火力发电)》DL5009.1-20141.3.17 《火力发电厂锅炉化学清洗导则》(DL/T794-2012)1.3.18《工程建设标准强制性条文》 2013年版2、试验目的2.1水压试验2.1.1水压试验是锅炉承压部件的一种严密性检查试验,是锅炉本体承压部件安装完毕后和投运前的一项重要工作,是保证锅炉安全投运的重要措施之一。
2194水管锅炉受压元件强度计算在燃煤锅炉受压元件中,2194水管是一个非常关键的部件。
它承受着锅炉内高温高压水蒸气的作用,因此其强度计算显得尤为重要。
本文将从深度和广度两个方面,探讨2194水管锅炉受压元件强度计算的相关内容,并共享一些个人观点和理解。
1. 强度计算的基本原理水管锅炉受压元件的强度计算基于材料力学原理和受力分析。
在进行强度计算时,需考虑到水管在高温高压下的受力情况,以及其所承受的压力、温度等外部因素。
还需要考虑到水管在运行中可能出现的疲劳、腐蚀等因素,从而确保其安全可靠地运行。
2. 强度计算的相关公式在进行水管锅炉受压元件强度计算时,需要采用一系列与受力、材料力学相关的公式进行计算。
其中包括受力分析中的张力、剪切力、压力等的计算公式,以及考虑到高温高压环境下材料的变形、蠕变等影响的计算公式。
3. 2194水管的特殊性2194水管在水管锅炉中具有其特殊的位置和作用。
由于承受着高温高压水蒸气的作用,因此在进行强度计算时需要考虑到其特殊的受力情况和材料变形情况。
另外,由于长期运行可能出现的磨损、腐蚀等问题,也需要在强度计算中加以考虑。
4. 个人观点和理解在进行水管锅炉受压元件强度计算时,我认为应该十分重视对2194水管的特殊性的理解和考虑。
只有深入了解其受力情况、材料特性等相关因素,才能够做出准确、可靠的强度计算。
另外,随着科技的不断发展,也需要不断更新强度计算的方法和标准,以确保水管锅炉的安全运行。
结语通过对2194水管锅炉受压元件强度计算的全面探讨,相信大家对这一有价值的主题有了更深入的了解。
在实际应用中,我们应该注重理论和实践相结合,不断提升自身的专业知识和技能,以确保水管锅炉的安全稳定运行。
以上就是对2194水管锅炉受压元件强度计算的相关内容的探讨和个人观点的共享。
希望能对您有所帮助和启发。
感谢阅读!水管锅炉是一种常见的燃煤锅炉,其受压元件中的2194水管扮演着非常关键的角色。
§15-3 各种受压元件的强度计算一. 强度计算的基本公式在锅炉受压元件强度计算中,将壳体内的应力简化为两向应力状态,并且假定应力沿壁厚均匀分布,这种应力称为薄膜应力。
对于锅炉范围内的受压元件,只要其壁厚相对于直径很小,或外径与内径之比β不是很大(β=1~2),薄膜应力模型是足够精确的。
当量应力采用第三强度理论进行计算,元件强度计算的基本公式或强度条件为][31d σ≤σ-σ=σ(15-13) 式中 σd 为当量应力,σ1和σ3分别为最大和最小主应力,[σ]为许用应力。
σ1和σ3取决于受压元件的几何形状。
如图15.7所示,对于圆筒形元件,在忽略径向应力σr 后,周向应力σh 和轴向应力σz分别为S2pDh =σ (15-14)S4pD z =σ(15-15)式中,P 为计算压力,D 为筒体的平均直径(内径与外径的平均值),S 为壁厚。
比较式(15-14)和(15-15)可以看出,周向应力σh 是轴向应力σz 的2倍。
因此,σ1=σh ,σ3=σr =0。
将式(15-14)代入式(15-13)即可得到圆筒形元件的强度计算基本公式][S2pDh 31d σ≤=σ=σ-σ=σ (15-16)二. 管子和管道强度计算1. 理论计算壁厚锅炉范围内的无缝钢管属于圆筒形受压元件,由式(15-16)可以导出其理论壁厚计算式[]p2pD S wL +=σ(15-17)式中,P 为计算压力,MPa ;D w 为管子的外径,mm ;S L 称为理论计算壁厚;[σ]为许用应力,MPa2. 附加壁厚由式(15-17)确定的壁厚称为理论壁厚,该壁厚还不能作为管子的实际取用壁厚,因为锅炉在使用过程中管壁会不断腐蚀而减薄,另外实际钢管的壁厚都存在一定的负偏差。
因此钢管的最小需要壁厚应在理论壁厚的基础上再加上一定的附加壁厚C S S L m in +=(15-18)其中,S min 为最小需要壁厚,mm ;C 为附加壁厚,mm ;按下式确定21C C C +=(15-19)式中,C 1为腐蚀余量,mm ,一般取0.5mm ,腐蚀严重时按实际情况取值;C 2为壁厚负偏差图15.7 圆筒形元件的应力状态(或下偏差),mm ,根据钢管的负偏差率m 按下式确定L L 2S A S m100mC ⋅=-=(15-20)3. 最高允许计算压力[P]由式(15-16)也可以导出校核计算时管子的最高允许计算压力计算式[]y w y2[]S P D S σ=- (15-21)式中,[P]为最高允许计算压力,MPa ;S y 为管子的有效壁厚,mm ,等于名义壁厚S 减去附加壁厚y S S C =-(15-22)校核计算时附加壁厚按下式计算A S 0.5C 1A⋅+=+ (15-23)其中系数A 同式(15-20),S 为钢管的名义壁厚。
锅炉受压简体强度采用ASME规范与国内标准计算方法的对比陈志刚;张旭;毛富杰;王方【摘要】强度计算是蒸汽锅炉设计的重要组成部分,对比分析了ASME规范第Ⅰ卷与国内锅炉强度计算标准GB/T9222-2008《水管锅炉受压元件强度计算》关于锅炉筒体强度计算的异同,可为工程技术人员提供参考.【期刊名称】《华电技术》【年(卷),期】2011(033)010【总页数】4页(P29-31,63)【关键词】蒸汽锅炉;强度计算;ASME规范;国内标准;对比分析【作者】陈志刚;张旭;毛富杰;王方【作者单位】天津市特种设备监督检验技术研究院,天津300192;天津市特种设备监督检验技术研究院,天津300192;天津市特种设备监督检验技术研究院,天津300192;天津市特种设备监督检验技术研究院,天津300192【正文语种】中文【中图分类】TK2220 引言美国ASME锅炉及压力容器规范是由美国机械工程师学会ASME(AmericanSociety of Mechanical Engineers)的锅炉及压力容器委员会(BPVC)制定的,是世界上最早应用的标准之一,现已被公认为世界上技术内容最完整、应用最广泛的压力容器标准。
从2010版ASME规范开始,将之前每3年再版1次、每年进行增补的规范更新方式改为每2年再版1次、每年不再进行增补。
截至2010年年底,我国大陆地区共有500余家制造厂持有ASME钢印700余枚,其中绝大部分厂家亦持有国内的特种设备制造许可证。
在水管锅炉的强度计算中,受内压筒体元件的强度计算十分普遍且非常重要,如锅筒、集箱等。
ASME规范第Ⅰ卷[1]与我国GB/T 9222—2008《水管锅炉受压元件强度计算》标准[2]关于锅炉强度计算的规定有所不同,因此,将ASME规范第Ⅰ卷2010版与GB/T 9222—2008《水管锅炉受压元件强度计算》标准关于受内压筒体强度计算的异同进行分析,有助于制造厂准确执行ASME规范,提高产品设计效率,增强我国企业的国际竞争力。