锅炉受热面金属壁温计算
- 格式:ppt
- 大小:1.13 MB
- 文档页数:24
600MW机组锅炉屏式过热器壁温测试及三维计算摘要:大型锅炉过热器爆管是造成机组强迫停机的重要因素之一,而大多数的爆管都是由管壁超温引起的。
因此,为了准确了解锅炉屏式过热器(屏过)的壁温分布情况,在大别山电厂超临界600MW机组锅炉屏式过热器上进行了炉内外壁温测试,实时采集了炉内壁温及炉外壁温的变化数据,找出了屏式过热器炉内外壁温的关系,并用最小二乘法拟合出二者的关联模型,并进行了三维壁温分布计算分析。
利用所拟合的屏式过热器炉内外壁温的关联模型及炉外可长久保留的测点测量出的温度t0,可以预测发生超温管段的炉内温度。
此外,利用该模型还可验证屏式过热器三维管壁温度计算程序结果的可靠性。
伴随着锅炉蒸汽参数提高及容量增大,过热器和再热器系统成为大容量锅炉本体设计中必不可少的受热面,这两部分受热面内工质的压力和温度都很高,且大多布置在烟温较高的区域,受热面温度接近管材的极限允许温度。
锅炉容量的日益增大,使过热器和再热器系统的设计和布置更趋复杂。
在炉膛出口以及各高温受热面进口截面上,烟气速度及烟温的分布偏差越来越大,使与过热器并列屏片和同屏的各个并列管间的吸热偏差及管壁所承受的壁温差也越来越大。
由于蒸汽流经管内温度不断升高,而管外的烟气温度沿烟道横截面分布不均,且沿烟气流向在不断传热,因而管内各处温度都有不同,使得有的管段温度高于整个管内的平均温度,这也是高温受热面管过热或爆管的主要原因。
要进行大型锅炉高温受热面管壁的监测和寿命预测,必需获得管子各处的温度分布。
在现有测试条件下,还无法对高温受热面炉内壁温进行长期实时监测,只能通过测定炉外壁温去推定炉内壁温。
为此,需要进行锅炉过热器内外壁温对比试验,并利用试验数据进行屏过的壁温计算。
一、试验方案炉内壁温测量及炉内外壁温对比试验需要选定过热器不同管排及内外圈管子,在其上面安装炉内壁温测点,在各种典型工况下进行炉内壁温测量及炉内外壁温对比试验,得到炉内管壁温度分布。
一、锅炉整体热力计算1 计算方法本报告根据原苏联73年颁布的适合于大容量《电站锅炉机组热力计算标准方法》,进行了锅炉机组的热力计算和中温再热器及低温过热器出口垂直段管壁金属温度计算,计算报告中所选取的有关计算参数和计算式均出自该标准的相应章节。
对所基于的计算方法的主要内容简述如下。
锅炉的整体热力计算为一典型的校核热力计算,各个受热面及锅炉整体的热力计算均需经过反复迭代和校核过程,全部热力计算过程通过计算机FORTRAN5.0高级语言编程计算完成。
管壁温度计算分别通过EXCEL 和FORTRAN5.0完成。
1.1锅炉炉膛热力计算所采用的计算炉膛出口烟气温度的关联式为:式中,M —考虑燃烧条件的影响,与炉内火焰最高温度点的位置密切相关,因此,取决于燃烧器的布置形式,运行的方式和燃烧的煤种; T ll —燃煤的理论燃烧温度,K ; Bj —锅炉的计算燃煤量;kg/h 。
1.2锅炉对流受热面传热计算的基本方程为传热方程与热平衡方程除炉膛以外的其它受热面的热力校核计算均基于传热方程和工质及烟气侧的热量平衡方程。
计算对流受热面的传热量Q c 的传热方程式为:式中,CV B T F M T cpjj a ︒--+ψ⨯=2731)1067.5(6.031111111"11ϕϑKgKJ Bjt KH Q c /∆=H —受热面面积;⊿t —冷、热流体间的温压, 热平衡方程为:既:烟气放出的热量等于蒸汽、水或空气吸收的热量。
烟气侧放热量为:工质吸热量按下列各式分别计算。
a .屏式过热器及对流过热器,扣除来自炉膛的辐射吸热量Q fb .布置在尾部烟道中的过热器、再热器、省煤器及直流锅炉的过渡区,按下式计算:2 计算煤种与工况2.1 计算煤质表1 设计煤质数据表(应用基)2.2 计算工况本报告根据委托合同书的计算要求,分别计算了两种不同的工况。
计算工况一 —— 设计工况计算(100%负荷)根据表1中的设计煤质数据,各设计和运行参数均按《标准》推荐的数据选取。
第二节 过热器壁温计算锅炉过热器、再热器爆管是造成火电机组非正常停机的重要原因之一,严重影响了火电机组的安全、经济运行,而且过热器、再热器管的失效在大型电站中具有一定的普遍性。
过热器的失效类型主要有短期超温、长期超温、氧化减薄、高温腐蚀等,诸多失效形式均与过热器壁温状况有着直接或间接的关系。
对于工作在高温状态下的过热器、再热器而言,控制其管壁超温是运行中的首要任务。
一、温度计算公式过热器和再热器受热面管子能长期安全工作的首要条件是管壁温度不能超过金属最高允许温度。
过热器和再热器管壁平均温度的计算公式为:max q t t t gz g b μ+∆+=β()⎥⎦⎤⎢⎣⎡++λβδα112 式中 b t —管壁平均温度,ºC ;gz t —管内工质的温度,ºC ;gz t ∆—考虑管间工质温度偏离平均值的偏差,ºC ;μ—热量均流系数;β—管子外径与内径之比;m ax q —热负荷最大管排的管外最大热流密度,kw/m 2;2α—管子内壁与工质间的放热系数,kw/m 2.ºC ;δ—管壁厚度,m ;λ—管壁金属的导热系数,kw/m..ºC 。
二、壁温影响因素(1)工质温度:过热器和再热器任何部位的管壁超温都会威胁到整台机组的安全,为了使整台机组的过热器、再热器壁温不超温,运行中整体汽温的保持是非常重要的。
除此之外,各平列出口的工质温度差别越小对过热器、再热器的壁温安全越有利;(2)热偏差:壁温最高的位置是热偏差最大的位置。
当过热器、再热器温度处于正常水平时,但整个区域存在诸多不均匀因素,也会造成过热器、再热器局部壁温过高,影响过热器、再热器的安全性;第二节 过热器热偏差一、热偏差概念从上式可,管内工质温度和受热面热负荷越高,管壁温度越高;工质放热系数越高,管壁温度越低。
由于过热器和再热器中工质的温度高,受热面的热负荷高,而蒸汽的放热系数较小,因此过热器和再热器是锅炉受热面中金属工作温度最高、工作条件最差的受热面,管壁温度接近管子钢材的最高允许温度,必须避免个别管子由于设计不良或运行不当而超温损坏。
共15页 第1页
本计算汇总是按B&W的标准进行计算的,其原则为:根据设计煤种和校核煤种,考虑各种因素造成的偏差,对比各种负荷工况的计算结果,选出最厚的管壁。
需考虑因素如下:1)蒸汽流量偏差
2)炉膛出口平均烟温设计值与运行值的偏差3)沿炉宽的烟温偏差
4)考虑同管排中各管辐射吸热的偏差5)沿管长的烟温偏差6)烟气流量偏差
计算校对审核批准日期
日期
日期
日期
金属壁温计算汇总表15-G13000-0
张庆曹春张绮刘隽2008.10.31
08.10.30
08.10.31
08.10.30
年10月
金属壁温计算汇总表
METAL SELECTION CALCULATION SUMMARY
B&WB-1900/25.4-M 锅炉
200815-G13000-0
北京巴布科克 · 威尔科克斯有限公司
BABCOCK & WILCOX BEIJING CO. LTD
省煤器管组
一级过热器水平管组和出口管组
屏式过热器管组
二级过热器入口管组
二级过热器出口管组
再热器水平管组和过渡管组
再热器垂直及过渡管组。
锅炉高温再热器壁温计算1、背景及意义近年来,我国火力发电机组逐渐向大容量、高参数方向发展。
在电站锅炉的运行故障中受热面管子爆漏问题一直占据首位,电站锅炉受热面管子爆漏是妨碍机组安全运行的重要因素,占锅炉事故的50%以上,1996年我国火电事故的统计表明电站锅炉受热面管子爆漏占全部锅炉事故的72.2%,其中过热器再热器占36.9%[1]。
近年来通过不断加强受热面管子爆漏的综合治理,电站锅炉爆漏失效次数虽然持续下降但仍然维持在一个较高的水平,这一问题早期出现于国产125MW机组锅炉,后来在国产200MW和300MW机组锅炉以及个别进口锅炉的过热器与再热器中都相继发生,如1978 年投运的广东黄浦发电厂400t/h箱式油炉低温过热器的悬吊管曾发生超温问题,个别管圈的出口汽温达到600,淮北电厂DG670/140-4型锅炉高温再热器由于其集箱引出管的布置方式不合理而造成受热面多次超温爆管,谏壁电厂姚孟电厂和望亭电厂等的国产1000t/h直流锅炉的高温过热器与再热器以及陡河电厂日本日立公司设计制造的250MW机组的亚临界850t/h自然循环锅炉的高温过热器都曾因同屏各管圈的结构设计不合理导致受热面多次发生超温爆管[2]。
进入20世纪80年代以后随着按引进美国CE公司技术设计制造的300MW和600MW 机组控制循环锅炉及同类进口锅炉的成批投运,这些锅炉的再热器系统也普遍发生了由烟温偏差及再热器系统设计不合理引起的汽温偏差与超温爆管问题,例如:按引进技术设计制造的第一台300MW机组控制循环锅炉石横电厂5号炉自1987年6月投运后3年内其末级再热器多次发生超温爆管事故。
而按引进技术设计制造的第一台600MW机组控制循环锅炉平圩电厂1号炉自1989年11月投运后其过热器出口两侧汽温一直存在较大的偏差,华能福州电厂从日本三菱公司进口的350MW 机组锅炉第二级再热器也曾发生超温爆管事故。
随着机组容量的不断增大,锅炉蒸汽参数的不断提高,旧机组服役时间的增加以及新机组投产量和参数的提高,这类事故还有逐年上升的趋势,严重影响了电站系统的安全、经济运行。
CFB锅炉炉内传热计算目录⒈ 100%负荷全炉膛传热计算 (2)⒉ 100%负荷全炉膛传热计算结果的校核 (6)⒊低负荷传热计算 (7)CFB 锅炉与煤粉锅炉的显著不同是CFB 锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p ,大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。
为此首先需要计算出炉膛出口处的物料浓度C p ,此处浓度可由外循环倍率求出。
而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。
在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。
物料浓度C p 对辐射传热和对流传热都有显著影响。
炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。
鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。
至于炉内的温度水平与煤粉炉一样,对辐射传热有着重要的影响。
清华大学对CFB 锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB 锅炉炉膛中的传热过程进行了有益的探索。
根据已公开发表的文献报导,考虑工程上的方便和可行,本节根椐清华大学提出的方法,进一步分析整理,对某台440 t/h CFB 锅炉进行了计算,其结果见表1~表4。
⒈ 100%负荷全炉膛传热计算CFB 锅炉炉膛受热面的吸热量按下式计算:T H K Q ∆⋅⋅= (1)式中 Q ——传热量,W ;K ——基于烟气侧总面积的传热系数,W/m 2·K ; △T ——温差,K ; H ——烟气侧总面积,m 2。
(1) 受热面结构尺寸对传热的影响传热系数K 按式(3-40)计算,其中分母包括四部分热阻:烟气侧热阻b1α'';工质侧热阻和受热面本身热阻ft f1H H ⋅α;λδ1;以及附加热阻as ε。
λδεαα1a f tf b 111+++''=s H H K (2)式中bα''——烟气侧向壁面总表面的名义换热系数,W/m 2·K ; f α——工质侧换热系数,W/m 2·K ,可按苏1973年热力计算标准求取;t H ——烟气侧总面积,m 2;f H ——工质侧总面积,m 2;as ε——附加热阻; 1δ——管子厚度,m ;λ——受热面金属导热系数,W/m 2·K ;bs bb1]1)1([αεαηα⋅++-=''P (3)式中 P ——鳍片面积系数,tfmH H P =;fmH——鳍片面积,m2;tH——受热面外部面积,m2。
一、锅炉整体热力计算1 计算方法本报告根据原苏联73年颁布的适合于大容量《电站锅炉机组热力计算标准方法》,进行了锅炉机组的热力计算和中温再热器及低温过热器出口垂直段管壁金属温度计算,计算报告中所选取的有关计算参数和计算式均出自该标准的相应章节。
对所基于的计算方法的主要内容简述如下。
锅炉的整体热力计算为一典型的校核热力计算,各个受热面及锅炉整体的热力计算均需经过反复迭代和校核过程,全部热力计算过程通过计算机FORTRAN5.0高级语言编程计算完成。
管壁温度计算分别通过EXCEL 和FORTRAN5.0完成。
1.1锅炉炉膛热力计算所采用的计算炉膛出口烟气温度的关联式为:式中,M —考虑燃烧条件的影响,与炉内火焰最高温度点的位置密切相关,因此,取决于燃烧器的布置形式,运行的方式和燃烧的煤种; T ll —燃煤的理论燃烧温度,K ; Bj —锅炉的计算燃煤量;kg/h 。
1.2锅炉对流受热面传热计算的基本方程为传热方程与热平衡方程除炉膛以外的其它受热面的热力校核计算均基于传热方程和工质及烟气侧的热量平衡方程。
计算对流受热面的传热量Q c 的传热方程式为:式中,CV B T F M T cpjj a ︒--+ψ⨯=2731)1067.5(6.031111111"11ϕϑKgKJ Bjt KH Q c /∆=H —受热面面积;⊿t —冷、热流体间的温压, 热平衡方程为:既:烟气放出的热量等于蒸汽、水或空气吸收的热量。
烟气侧放热量为:工质吸热量按下列各式分别计算。
a .屏式过热器及对流过热器,扣除来自炉膛的辐射吸热量Q fb .布置在尾部烟道中的过热器、再热器、省煤器及直流锅炉的过渡区,按下式计算:2 计算煤种与工况2.1 计算煤质表1 设计煤质数据表(应用基)2.2 计算工况本报告根据委托合同书的计算要求,分别计算了两种不同的工况。
计算工况一 —— 设计工况计算(100%负荷)根据表1中的设计煤质数据,各设计和运行参数均按《标准》推荐的数据选取。
一、均匀受热光管的管壁温度图23-1 锅炉受热管壁温变化图23-5 膜式水冷壁管结构膜式水冷壁鳍片管正面壁温的确定与光管的相同,其均流系数按前述方法确定也具有足够的精确性。
鳍片顶端的温度按下式确定:d t d g hf qt t K t =+∆gt 鳍片根部的温度max 2211g g t t t q δβμλβα⎛⎫=+∆++ ⎪+⎝⎭23.2 壁温校核点工质温度的确定在校核管组中偏差管某一截面的管壁温度时,校核点的工质温度等于该管组计算截面的工质平均温度加上计算管的温度偏差。
gz t t t ∆组件内计算截面处工质的平均温度,t (1)对亚临界压力锅炉的蒸发受热面取其等于工质的饱和温度;(2)对于超临界压力锅炉的水冷壁、过热器、再热器、省煤器和过渡区则按计算确定。
若校核点为管组的出口截面,则工质平均温度等于该管组的出口温度,可由热力计算取用。
x i i i '=+∆若校核点为管组中任一中间点,则其平均温度按计算截面的比焓计算:i 一、炉膛水冷壁炉膛水冷壁计算管组中,从进口到计算截面区段的工质平均焓增为:()zjl f g bqdx km q A i q ηηη∆=∑二、屏及对流受热面计算管组中,从进口到计算截面区段的工质焓增为:zjk j qdx m B Q i q η∆=d fqd qd qdQ Q Q =+qd Q :计算区段每公斤燃料的吸热量dqd Q :计算区段的对流吸热量和管间辐射吸热量。
f qd Q :计算区段从炉膛或相邻气室的辐射吸热量(1) 计算管段从炉膛、屏间气室或空气室的辐射吸热量f f f qdjq A Q B =(2) 计算管段对流和管间辐射的吸热量可由下式确定:f qdd qd jKA t Q B ∆=:计算区段的平均温压。
qd t ∆计算管温度偏差:max t t t∆=-计算管校核点处的工质温度按焓值计算。
max t max i max 1rl jg xsl i i i ηηη⎛⎫=+-∆ ⎪⎝⎭rl η:热力不均匀系数。