铜的电解精炼技术
- 格式:doc
- 大小:27.00 KB
- 文档页数:3
铜的电解精炼火法精炼产出的精铜品位一般为99.2% ~99.7%,另外还含有0.3% ~0.8%的杂质。
电解精炼的目的就是进一步脱除火法精炼难以除去的、对铜的导电性能和机械性能有损害的杂质,将铜的品位提高到99.95%以上,并且回收火法精炼铜中的有价元素,特别是贵,金属、铂族金属和稀散金属。
铜的电解精炼是将火法精炼铜铸成阳极板,以电解产出的薄铜片(始极片)作为阴极,二者相间地装入盛有电解液(硫酸铜与硫酸的水溶液)的电解槽中,在直流电的作用下,阳极铜进行电化学溶解,阴极上进行纯铜的沉积。
由于化学性质的差异,贵金属和部分杂质进人阳极泥,大部分杂质则以离子形态保留在电解液中,从而实现了铜与杂质的分离。
铜电解所处理的阳极成分(%)一般为:Cu 99.2~99.7,Ni0. 09~0.15,As 0. 02~0.05,Sb 0. 018~0.3,Ag 0. 058~0.1,Au 0. 003~0.007,Bi 0. 0026,Se 0. 017~0.025。
产品一号铜的成分要求(%):Cu+Ag不小于99.95;Bi和P不大于0.001;As、Sb、Sn、Ni不大于0.002;Pb和Zn不大于0.003;硫不大于0.004。
铜电解精炼的原理如下:阳极反应:Cu-2e ==Cu2+EΘCu/Cu2+=0. 34VMe-2e ==Me 2+EΘ2+<0. 34VMe/MeH2O-2e==2H++1/2O2 EΘH2O/O2=1.229VSO42――2e ==SO3+1/2O2 EΘSO42-/O2=2.42V式中Me代表Fe、Ni、Pb、As、Sb等比Cu更负电性的金属,它们从阳极上溶解进入溶液。
H2O和SO42-失去电子的反应由于其电位比铜正,故在正常情况下不会发生。
贵金属的电位更正,不溶解,而进入阳极泥。
阴极反应:Cu2++2e ==Cu EΘCu/Cu2+<0. 34V2H++2e==H2EΘH+/H2=0. 0VMe2++2e ==Me EΘSO42-/O2>0. 34V在这些反应中,具有标准电位比铜正、浓度高的金属离子才可能在阴极上被还原,但它们在阳极不溶解,因此只有铜离子还原是阴极的主要反应。
电解精炼铜实验报告电解精炼铜实验报告一、引言电解精炼铜是一种常见的冶炼工艺,通过电解的方式去除铜中的杂质,提高铜的纯度。
本实验旨在通过模拟电解精炼铜的过程,探究其原理和效果。
二、实验步骤1. 实验准备准备一块铜板作为阳极,一块铜板作为阴极,将它们放置在电解槽中。
准备一定浓度的硫酸铜溶液,作为电解液。
连接电源,确保电解槽与电源的正负极正确连接。
2. 开始电解将电解槽中的铜板完全浸入电解液中,打开电源,设定合适的电压和电流。
开始电解过程。
3. 观察实验现象实验过程中,观察电解槽中的变化。
可以发现,阳极上的铜板逐渐溶解,而阴极上的铜板逐渐增厚。
同时,电解液中的杂质被吸附在阴极上,阳极上的纯铜逐渐增多。
4. 结束实验当观察到阳极上的铜板几乎完全溶解,或者电解液中的杂质浓度达到一定程度时,可以结束实验。
关闭电源,取出阴极上的铜板。
三、实验结果与分析通过实验可以得到以下结果:1. 阳极上的铜板逐渐溶解,而阴极上的铜板逐渐增厚。
这是因为在电解过程中,阳极上的铜原子失去电子形成Cu2+离子,溶解到电解液中;而阴极上的Cu2+离子接受电子还原为纯铜,沉积在阴极上。
2. 电解液中的杂质被吸附在阴极上。
在电解过程中,电解液中的杂质离子被电场吸引,沉积在阴极上,从而净化了电解液中的铜。
3. 随着电解时间的增加,阴极上的铜板逐渐增厚,纯度也逐渐提高。
这是因为随着电解时间的延长,阳极上的铜板溶解得更多,电解液中的杂质离子也被吸附得更多,从而阴极上的纯铜沉积得更厚。
四、实验总结电解精炼铜是一种有效的提高铜纯度的方法。
通过电解过程,可以将铜中的杂质去除,得到较为纯净的铜。
本实验模拟了电解精炼铜的过程,通过观察实验现象和分析实验结果,验证了电解精炼铜的原理和效果。
然而,实际的电解精炼铜工艺比本实验更为复杂,需要考虑更多的因素,如电压、电流、电解液浓度等。
此外,还需要进行后续的处理步骤,如熔炼、铸造等,才能得到可应用的铜产品。
电解精炼铜工艺在现代冶金工业中具有重要的地位,广泛应用于铜冶炼过程中。
铜的电解精炼铜的电解精炼,是将火法精炼的铜浇铸成阳极板,(现在普遍的工艺)用永久性不锈钢阴极作为阴极片,相间的放入电解槽中,用硫酸铜和硫酸的水溶液作为电解液,在直流电的作用下,阳极上的铜会失去两个电子生成-2价铜离子,而贵金属和某些金属不溶,成为阳极泥沉淀于电解槽低。
溶液中的-2价铜离子会在阴极上优先析出,而其他电位较负的贱金属不能在阴极上析出,留在电解液中,待电解液定期净化时除去。
这样,得到的铜纯度很高,称电铜。
简单说一下电解精炼的工艺:电解液由循环槽经电解液循环泵泵至板式换热器,加热至65℃左右以稳定的流量供到各个电解槽。
电解槽供液采用底部给液(也有的采用侧面给液)、两端溢流出液的方式,槽两端溢流出的电解液汇总后返回循环槽。
为保证电解液的洁净度,配备了专用的LAROX净化过滤机,循环系统每天抽取电解液循环量的约25%进行净化过滤。
根据电解液中杂质的情况,每天抽取部分电解液进行脱铜、脱杂处理,保证电解液中铜、酸及杂质浓度不超过极限值。
为保证电解液成分,调节阴极铜的物理性能,需在电解液中加入硫酸、添加剂。
现在普遍采用的是永久性不锈钢阴极电解技术。
它的主要优点:1、高电流密度2、极间距小3、残极率低4、阴极周期短5、蒸汽耗量低、6、机械化程度高,适用于大规模生产。
1、电解液铜离子从阳极转移到阴极的载体。
如果说阳极、阴极是铜电解过程的两个支柱,电解液则是铜电解过程中铜离子迁移的载体。
组成:C U SO4、H2SO4、H2O、添加剂(盐酸、有机化合物)。
1)H2SO4一般波动于100—220g/L,电流密度在300A/m2、电解液温度在60~65℃时要把H2SO4控制在180g/L。
电解液的物理性质——影响比电导的因素:H2SO4>电解液温度>杂质>C U2+酸度越大,电解液的导电性越好。
但是H2SO4不能无限地升高,硫酸升高时,硫酸铜的溶解度会降低,甚至析出沉淀(C U SO4·5H2O)。
铜的电解精炼详细步骤
1. 准备原料
首先,需要准备好进行电解所需的原料,包括纯铜片、硫酸铜溶液、电力以及各种设备和仪器。
2. 溶解铜矿
将铜矿与硫酸反应,使其溶解成硫酸铜溶液。
这是电解过程的重要步骤,因为只有硫酸铜溶液才能进行电解。
3. 电解过程
将溶解后的硫酸铜溶液进行电解。
在电解过程中,硫酸铜溶液中的铜离子在直流电的作用下,会在阴极上还原成金属铜,同时阳极上铜会氧化成铜离子。
4. 提取铜
在电解过程中,阴极上附着的铜会逐渐积累并形成阳极泥。
这些铜可以通过收集并清洗的方式提取出来,得到纯度较高的电解铜。
5. 回收硫酸
在提取铜的过程中,会有部分硫酸残留在阳极泥中。
可以通过将阳极泥清洗、干燥并煅烧的方式回收残留的硫酸。
6. 废液处理
电解后剩下的废液需要进行处理。
通常的处理方式包括中和、沉降、过滤等步骤,使废液中的有害物质浓度降低至安全水平后进行排放。
7. 质量检测
在提取和储存过程中,需要定期对铜的质量进行检测,确保其纯度符合要求。
质量检测通常包括化学分析和物理测试等步骤。
8. 产品储存
提取出的电解铜需要在干燥、通风良好的地方进行储存,以防止其氧化和受潮。
同时,为了保持产品质量,还需要定期进行检查和维护。
铜电解精炼过程一、过程概述铜电解精炼是以火法精炼得到的粗铜为阳极,纯铜为阴极,硫酸铜和硫酸的水溶液为电解液,通过向电解槽通入直流电,使阳极粗铜溶解并在阴极析出纯度更高的金属铜的过程。
这一过程中,阳极上的杂质或者进入阳极泥或者保留在电解液中被脱出,从而实现铜与杂质的分离。
二、电解原理1、阳极反应:粗铜在阳极上失去电子,被氧化成铜离子(Cu²⁺)进入电解液。
同时,阳极中其他电位较负的金属(如铁、锡、铅、镍等)也会溶解进入电解液,而电位较正的金属(如银、金、铂族元素)则不溶,成为阳极泥沉积于电解槽底。
2、阴极反应:电解液中的铜离子在阴极上得到电子,被还原成纯铜沉积在阴极上。
而比铜电位更负的金属离子则不会在阴极上析出,继续留在电解液中。
三、电解精炼工艺1、设备准备:电解槽通常采用多槽并联或串联的方式,槽内放置阳极和阴极,阴极通常采用纯铜薄片或电解产出的薄铜片(始极片)。
电解液则是由硫酸和硫酸铜组成的水溶液,其成分需要精确控制以保证电解过程的顺利进行。
2、电解操作:在直流电的作用下,阳极粗铜逐渐溶解,纯铜在阴极上析出。
电解液在电解过程中会不断循环,以保持其成分的稳定和均匀。
同时,需要定时对电解液进行净化和处理,以去除其中的杂质和有害物质。
3、产品收集与处理:电解结束后,阴极上析出的纯铜可以进行收集和处理,以得到所需的电解铜产品。
而阳极泥则需要进行进一步的处理和回收,以提取其中的贵金属和其他有价值的金属。
四、过程控制在铜电解精炼过程中,需要严格控制电解条件以确保产品的质量和产量。
这包括电解液的成分、温度、pH值、电流密度以及电解时间等。
同时,还需要对电解槽进行定期的检查和维护,以确保其正常运行和延长使用寿命。
总之,铜电解精炼过程是一个涉及多个环节的复杂过程,需要精心设计和严格控制才能获得高质量的产品。
通过这一过程,我们可以将粗铜提纯为高纯度的电解铜,满足工业化应用的需求。
电解精炼铜原理
电解精炼铜是一种有效的利用电能来精炼铜的方法。
精炼时,将精炼炉中的铜块用电能将其氧化,使原有金属中的杂质转变为氧化物形态,然后再将氧化物形态的杂质从金属中分离出来,从而得到纯度高的铜。
电解精炼铜的原理是:电流穿过铜块,铜块的金属结构和电位受到电流的影响,使其原有的金属结构产生变化,同时也产生氧化物,最终使铜中的杂质转变为氧化物形态,被电流分离出来,从而达到精炼的效果。
二、电解精炼铜的步骤
1、将原料铜块放入精炼炉中;
2、连接电极,将精炼电源的控制电压调节到预定值;
3、打开电源,使精炼炉中的电解电流流过铜块,调整电解电流的大小;
4、在精炼过程中,进行实时监测和控制,完成所需的精炼工艺;
5、当精炼时间达到结束时,关闭电源,停止精炼过程。
6、取出内容物,分析纯度,电解精炼铜完成。
- 1 -。
电解原理的应用: 精炼铜简介在现代工业中,电解是一种常用的方法,用于从矿石中提取金属或精炼金属。
本文将重点介绍电解原理在精炼铜的应用。
1. 电解原理简介电解是指利用电流通过电解质溶液,将正电荷离子从阳极移动到阴极的过程。
在电解过程中,溶液中的金属离子会在电极上发生各种反应,从而得到纯净的金属。
2. 精炼铜的电解过程精炼铜是将含有杂质的铜通过电解,从而得到纯净铜的过程。
具体步骤如下:2.1 准备电解池和电解质溶液首先,需要准备一个电解池,它由一个容器和两个电极组成。
电解质溶液通常由铜硫酸和硫酸组成,它们在溶液中分解成铜离子和硫酸根离子。
2.2 放置阳极和阴极将铜矿石放置在电解池的阳极,而纯铜板则放置在阴极。
阳极和阴极之间的距离通常较近,以便电流能够顺利通过溶液。
2.3 施加电流施加直流电流使阳极成为正极,阴极成为负极。
这样,铜离子就会从阳极溶解并转移到阴极上。
同时,杂质也会从阳极溶解到溶液中。
2.4 铜的析出在电解过程中,铜离子在阴极上得到还原,并以纯铜的形式析出。
与此同时,溶液中的杂质会逐渐浓缩,形成泥浆状的物质,称为阳极泥。
2.5 定期更换电解质溶液由于电解过程中溶液中的成分会逐渐变化,需要定期更换电解池中的电解质溶液,以确保精炼过程的稳定性和效果。
3. 电解精炼铜的优势•高纯度:电解精炼能够获得极高纯度的铜,常常达到99.99%以上。
•能源效率高:相比其他传统冶炼方法,电解精炼铜的能源效率更高。
•环保:电解过程中不需要添加有害物质,较少产生废气和废水。
•可回收利用:由于精炼过程使用的是电流,铜离子可以在溶液中循环使用,实现了资源的回收利用。
4. 应用领域电解精炼铜广泛应用于各个领域:•电子行业:高纯度铜是电子产业中的重要材料,用于制造导线、电子元器件等。
•钢铁工业:在钢铁制造过程中,电解铜用作合金添加剂,以提高钢材的强度和耐腐蚀性。
•装饰和建筑业:精炼铜常用于制作金属装饰品、建筑构件等。
•冶金工业:电解精炼铜可以作为其他金属冶炼的原料,如电解精炼铅、锌等。
铜的电解精炼火法精炼产出的精铜品位一般为99.2% ~99.7%,另外还含有0.3% ~0.8%的杂质。
电解精炼的目的就是进一步脱除火法精炼难以除去的、对铜的导电性能和机械性能有损害的杂质,将铜的品位提高到99.95%以上,并且回收火法精炼铜中的有价元素,特别是贵,金属、铂族金属和稀散金属。
铜的电解精炼是将火法精炼铜铸成阳极板,以电解产出的薄铜片(始极片)作为阴极,二者相间地装入盛有电解液(硫酸铜与硫酸的水溶液)的电解槽中,在直流电的作用下,阳极铜进行电化学溶解,阴极上进行纯铜的沉积。
由于化学性质的差异,贵金属和部分杂质进人阳极泥,大部分杂质则以离子形态保留在电解液中,从而实现了铜与杂质的分离。
铜电解所处理的阳极成分(%)一般为:Cu 99.2~99.7,Ni0. 09~0.15,As 0. 02~0.05,Sb 0. 018~0.3,Ag 0. 058~0.1,Au 0. 003~0.007,Bi 0. 0026,Se 0. 017~0.025。
产品一号铜的成分要求(%):Cu+Ag不小于99.95;Bi和P不大于0.001;As、Sb、Sn、Ni不大于0.002;Pb和Zn不大于0.003;硫不大于0.004。
铜电解精炼的原理如下:阳极反应:Cu-2e ==Cu2+EΘCu/Cu2+=0. 34VMe-2e ==Me 2+EΘ2+<0. 34VMe/MeH2O-2e==2H++1/2O2 EΘH2O/O2=1.229VSO42――2e ==SO3+1/2O2 EΘSO42-/O2=2.42V式中Me代表Fe、Ni、Pb、As、Sb等比Cu更负电性的金属,它们从阳极上溶解进入溶液。
H2O和SO42-失去电子的反应由于其电位比铜正,故在正常情况下不会发生。
贵金属的电位更正,不溶解,而进入阳极泥。
阴极反应:Cu2++2e ==Cu EΘCu/Cu2+<0. 34V2H++2e==H2EΘH+/H2=0. 0VMe2++2e ==Me EΘSO42-/O2>0. 34V在这些反应中,具有标准电位比铜正、浓度高的金属离子才可能在阴极上被还原,但它们在阳极不溶解,因此只有铜离子还原是阴极的主要反应。
电解铜的精炼原理
电解铜的精炼原理是利用电解的原理将含有杂质的铜矿石经过破碎、浸出等步骤得到的铜离子溶液,在电解槽中通过电流的作用,将铜离子还原为纯铜金属沉积在阴极上,同时杂质则被氧化或沉淀在阳极上,实现对铜的精炼。
具体的步骤如下:
1. 将铜矿石破碎成合适的颗粒大小,并浸出得到含铜离子的溶液。
2. 准备一个电解槽,将溶液注入其中,槽内分为阳极和阴极两个区域,阳极通常由铜板制成,阴极则是待精炼的铜板。
3. 通过外加电源,将阳极与阴极连接,形成闭合的电路,使电流通过溶液。
4. 在电解过程中,阳极上的铜金属被氧化成铜离子,并溶解到溶液中,同时溶液中的铜离子被还原成纯铜金属,沉积在阴极上。
5. 杂质则会在阳极上发生氧化反应或沉淀下来,形成称为阳极泥或泥浆的物质。
6. 经过一段时间的电解,阴极上积累的纯铜金属可以被取下,经过进一步的冶炼和加工,得到高纯度的铜产品。
通过电解铜的精炼,可以将原本含有较多杂质的铜矿石转化为高纯度的铜金属,提高铜的纯度和质量。
铜电解精炼总反应方程式
电解方法精炼粗铜,阳极材料是粗铜,电极反应为:Cu-2e-═Cu2+,电解池的阴极材料是纯铜,电极反应为:Cu2++2e-=Cu,所以,粗铜是Cu-2e-═Cu2+,纯铜是Cu2++2e-=Cu。
关于粗铜精炼使用的方法是精炼法。
精炼法用粗铜为阳极,精铜为阴极。
粗铜会溶解,精铜在阴极析出,因为阳极失电子,粗铜里的铜变成了铜离子,至于阴极得电子,根据金属离子放电顺序,铜离子比亚铁离子和锌离子先得电子(铜离子的氧化能力强,得电子的能力强),所以铜离子得电子被还原为铜,而杂质不会产生。
目前使用的精炼方法有两类:
1、粗铜火法精炼,直接生产含铜99.5%以粗铜火法精炼,直接生产含铜99.5%以上的精铜。
2、粗铜先经过火法精炼除去部分杂质,浇粗铜先经过火法精炼除去部分杂质,铸成阳极,再进行电解精炼。
铸成阳极,再进行电解精炼。
产出含铜99.95%以上杂质含量达到标准的精铜。
电解法精炼铜是指将铜精炼成纯铜,其中采用电解技术。
工厂流程如下:
1、准备炼铜:将铜超级大硫酸从混联氧化铜中提取出来,经过前处理,酸洗细碎,成为含氧化产物的沉淀,经分离提纯后,将提纯的精铜做
成铜锭用于炼铜。
2、电解炼铜:将锭破放入电解槽内,添加作为乙炔溶剂和吸附剂的水,并在无水乙炔的稀释溶液中加入少量的碳酸钠,然后再调节pH值,最后再放入电极板组,启动电解机经电解,即可将精铜熔铸。
3、后续处理:经电解炼铜后,将从电解槽内收集的熔铸产物搅拌,过滤,分离空气和污物,再经过净化,即可得到满足纯度要求的精铜液。
电解法精炼铜的优势在于其简便容易操作,对环境污染小,可以有效
地将混联氧化铜中的其他杂质精炼提取出来,得到高纯度的精铜。
电解法精炼铜除了简便快捷外,还可以有效地将氯铜中的其他杂质精
炼提取,达到纯化提升精铜纯度的目的,得到高纯度的精铜,从而满
足生产需要。
电解法精炼铜技术既可用于对金属的分离,也可用于金
属的还原,最终的目的是提高精铜的纯度,比如可以将被氧化的铜还
原至纯铜;此外,该技术可以进行精确的控制,能够获得准确的成品
纯度结果。
传统的熔炼法可以得到较高纯度的精铜,但是会产生大量的烟尘,对
环境污染严重。
而电解法精炼铜则能有效节约能源,减少污染,具有
显著的经济效益。
总之,电解法精炼铜技术特点是简单,快捷,可以有效降低铜污染,使得控制精度提高;另外,电解法精炼铜可以实现精确控制,可以得到准确的成品纯度结果。
高纯度铜制备技术中的电解精炼研究高纯度铜是现代工业制造中不可缺少的材料之一,其广泛用于电力、交通运输、航空航天、电子信息等领域。
在高纯度铜的制备技术中,电解精炼被认为是一种有效的方法。
本文将从电解精炼的原理、技术流程、优缺点以及未来发展方向等方面进行探讨。
一、原理电解精炼是指利用电化学反应的原理,将铜中的杂质物质从阳极溶解到电解液中,在阴极沉积出高纯度铜的方法。
在电解的过程中,将含有杂质的铜电极放在阳极上,在电解液中流通电流的同时,铜中的杂质物质被氧化成为离子,溶解到电解液中。
而电极上的纯铜被还原成纯铜原子,并沉积在阴极上,形成高纯度铜。
其反应公式为:阳极反应:Cu → Cu2+ + 2e-阴极反应:Cu2+ + 2e- → Cu由于不同杂质具有不同氧化还原电位,因此它们的电化学反应速度不同,这样就实现了从铜中分离出不同种类的杂质。
二、技术流程电解精炼技术的流程主要包括前处理、电解处理和铜板加工三个部分。
前处理是通过物理方法和化学方法处理原料铜,去除大多数杂质,以使电解精炼过程更好地进行。
电解处理是涉及到电解池、电解液、电流密度和电解时间等生产过程。
最后,对精炼后的铜板进行加工和检测。
三、优缺点电解精炼技术具有以下优点:1. 能够使铜的纯度达到99.99%,有很高的金属回收效率。
2. 生产过程中能够大量消耗装备,造价相对低廉。
3. 相比其他精炼方法,电解精炼对环境的影响较小。
同时,电解精炼技术也存在一些缺点:1. 生产过程中对电能的消耗较大,对电站能源的消耗较大。
2. 生产过程中会产生废水和废气,需要采取相应的措施进行处理。
四、未来发展方向目前,电解精炼技术已经发展到一定程度,但在实际应用中还存在一些问题,例如,精炼汽油中含有氧化铜而且粘度较大,容易造成设备堵塞,降低产量等问题。
未来,我们可以通过尝试新型电解液的研究,优化电化学反应过程,以及开发新型高效电解池的研发等方面来提高电解精炼技术的效率,同时也减少其对环境和能源的影响。
铜电解精炼冶金计算【最新版】目录一、铜电解精炼概述二、铜电解精炼的冶金计算三、铜电解精炼的实际应用四、总结正文一、铜电解精炼概述铜电解精炼是一种重要的金属提炼方法,主要用于粗铜的精炼。
粗铜中含有一定数量的锌、铁、镍等杂质,通过电解的方法可以将铜与这些杂质分离,提高铜的纯度。
铜电解精炼的基本原理是:在电解槽中,粗铜作为阳极,纯铜作为阴极,电解质溶液为硫酸铜。
当电流通过电解槽时,阳极上的粗铜不断溶解,铜离子在电解质溶液中向阴极迁移,并在阴极上还原成纯铜。
与此同时,阳极上的杂质金属也会失去电子,进入电解质溶液,最终与铜分离。
二、铜电解精炼的冶金计算铜电解精炼的冶金计算主要包括物料平衡计算和电能消耗计算。
1.物料平衡计算物料平衡计算是为了确保电解过程中铜的收率和杂质的分离效果。
计算条件包括产量、工作日、阳极成分等。
以产量为 10000t 电解铜/a,年工作日为 3 天为例,根据阳极成分表,可以计算出各种杂质在电解过程中的行为。
例如,锌、铁、镍等杂质在电解过程中会失去电子,进入电解质溶液,而金、银等杂质则不会发生电极反应,最终与铜分离。
2.电能消耗计算电能消耗计算是为了评估铜电解精炼的能源效率。
根据电解过程中电流、电压等参数,可以计算出单位时间内的电能消耗。
在此基础上,结合实际生产情况,可以进一步优化生产工艺,降低能耗。
三、铜电解精炼的实际应用铜电解精炼在实际应用中具有重要意义。
通过铜电解精炼,可以有效提高铜的纯度,满足各种工业需求。
同时,铜电解精炼还可以实现对粗铜中有价金属的回收利用,降低生产成本,提高资源利用效率。
四、总结铜电解精炼是一种高效、环保的金属提炼方法。
通过对粗铜的电解,可以实现铜与杂质的分离,提高铜的纯度。
铜的电解精炼
铜的电解精炼,是将火法精炼的铜浇铸成阳极板,(现在普遍的工艺)用永久性不锈钢阴极作为阴极片,相间的放入电解槽中,用硫酸铜和硫酸的水溶液作为电解液,在直流电的作用下,阳极上的铜会失去两个电子生成-2价铜离子,而贵金属和某些金属不溶,成为阳极泥沉淀于电解槽低。
溶液中的-2价铜离子会在阴极上优先析出,而其他电位较负的贱金属不能在阴极上析出,留在电解液中,待电解液定期净化时除去。
这样,得到的铜纯度很高,称电铜。
简单说一下电解精炼的工艺:电解液由循环槽经电解液循环泵泵至板式换热器,加热至65℃左右以稳定的流量供到各个电解槽。
电解槽供液采用底部给液(也有的采用侧面给液)、两端溢流出液的方式,槽两端溢流出的电解液汇总后返回循环槽。
为保证电解液的洁净度,配备了专用的LAROX净化过滤机,循环系统每天抽取电解液循环量的约25%进行净化过滤。
根据电解液中杂质的情况,每天抽取部分电解液进行脱铜、脱杂处理,保证电解液中铜、酸及杂质浓度不超过极限值。
为保证电解液成分,调节阴极铜的物理性能,需在电解液中加入硫酸、添加剂。
现在普遍采用的是永久性不锈钢阴极电解技术。
它的主要优点:1、高电流密度2、极间距小3、残极率低4、阴极周期短5、蒸汽耗量低、6、机械化程度高,适用于大规模生产。
1、电解液
铜离子从阳极转移到阴极的载体。
如果说阳极、阴极是铜电解过程的两个支柱,电解液则是铜电解过程中铜离子迁移的载体。
组成:C U SO4、H2SO4、H2O、添加剂(盐酸、有机化合物)。
1)H2SO4一般波动于100—220g/L,电流密度在300A/m2、电解液温度在60~65℃时要把H2SO4控制在180g/L。
电解液的物理性质——影响比电导的因素:H2SO4>电解液温度>杂质>C U2+
酸度越大,电解液的导电性越好。
但是H2SO4不能无限地升高,硫酸升高时,硫酸铜的溶解度会降低,甚至析出沉淀(C U SO4·5H2O)。
2)电解液中C U2+的稳定性很重要。
C U2+浓度不得小于35g/L,否则杂质A S、S b、B i可能在阴极析出,C U2+浓度升高时,电阻、槽电压、电能消耗都会升高,严重时会有
硫酸铜析出。
要控制C U2+在45—48g/l范围内。
C U2+大幅度波动会使阴极铜质量失
控,泵、管道堵塞或损坏,甚至电解槽漏液等事故,因此,在电解车间建设中脱铜
工序是不可少的。
C U2+与电流密度的关系:电流密度升高,阴极的主反应会加快,阴极附近的C U2+浓度下降,若不采取措施就会造成电解液中C U2+贫化,因此电流密度提高时,相应的要提高C U2+的浓度。
电流密度与电解液中浓度控制参数
电流密度(A/m2)200 200~250 250~300 >300
C U2+(g/l) 37~45 40~45 45~50 45~60
3 ) 添加剂:加入电解液中能有效调节阴极铜的物理性质的物质。
从而控制阴极铜光泽度、平滑度、硬度和韧性。
骨胶、硫脲、盐酸我们现在普遍使用的添加剂。
骨胶是一种动物胶,由动物骨、皮熬制成的生胶质。
对温度的变化最敏感,温度越高失效也越快。
目前,对胶的作用机理有两种不同的观点。
1.在铜电解液中加入胶时,除了减少放电步骤的可逆行,胶体阳离子还吸附在晶面及晶面的生长点上,增加极化,减慢晶体继续成长的速度,此外,由于它的表面吸附作用能降低表面能,可以降低微晶的形成,有利于行晶核的形成,因而得到平整、致密、结晶极为细小的阴极铜。
2.胶在电解液中于铜离子形成吸附络合物,胶粒吸附带电的C U2+而形成载胶体,受到静电的引力而趋向阴极。
促使极化作用的增强是因为络合阳离子在阴极上析出。
由于胶的加入,对晶核生长速度有抑制,相应的晶核生成速度就有所增加,便于得到光滑。
细密的结晶。
胶与C U2+还会形成载胶体,对阴极上的凸瘤部分有钝化作用,使其逐渐长平。
胶过量,铜表面形成堆砌六面体闪金星结晶,比较粗糙,表面电铜离子硬而韧,疙瘩不易脱落。
胶不足,电铜较软,小疙瘩明显失去抑制,敲打薄阴极时发出“扑扑”的空声,阴极表面比较粗糙。
电解液中胶的浓度控制在40mg/L.
硫脲【(NH2)2CS】白色结晶,易溶于水,但在纯水中比较稳定。
(NH2)2CS在纯水中比较稳定,温度在60℃-80℃时几乎不分解,浓度不随时间变化而变化。
在酸中的稍有分解。
在G U SO4电解液中不稳定,它会随电解液的温度和电解液中cl-的浓度增加,分解速度加快。
硫脲在电解铜过程的作用实际上是它水解产物H2S 的作用,生成的H2S与C U2+和C U+形成C U2S和C U S沉积在阴极表面,增加新晶核,降低阴极有效电流密度,引起阴极极化电位降低。
硫脲用量适当,阴极铜的颜色呈玫瑰红色,表面出现金属光亮、结晶致密,阴极铜密度大,表面有细的定向结晶所引起的平行条纹,敲打时发出铿锵清脆的响声。
但若过量,阴极铜表面的条纹增粗,疙瘩增多,而且针状、柱状疙瘩多,表面颜色较暗,缺乏金属光泽,但基低仍很紧密。
生产过程中硫脲中的硫有52%~59%入阳极泥,5%~10%入电解铜,其余则以硫脲的水解产物形式留在溶液中。
cl-:符合添加剂的一种,以HCl形式加入,适合高杂质阳极电解。
氯离子作为添加剂,可使溶液中量很少的AgCl沉淀进入阳极泥。
还可能形成C U2Cl2沉淀,吸附砷、锑、铋和它们所形成的化合物共沉淀,减少砷、锑、铋等有害杂质对阴极铜的污染。
cl-能分解胶,并与硫脲生成沉淀,所以要将其和前两者分开加入。
当电流密度在300A/m2、电解液温度在60~65℃、H2SO4控制在180g/L时,氯离子的含量控制在50~80mg/l。
综合看来,添加剂的用量要根据电流密度、电解液温度、成分来决定。
添加剂的用量分析。