超精密切削加工
- 格式:ppt
- 大小:3.17 MB
- 文档页数:31
金刚石刀具超精密切削的机理丶条件和应用范围
金刚石刀具是超精密切削中常用的刀具材料,其切削机理、条件和应用范围如下:
1.切削机理:
⏹金刚石刀具的切削刃非常锋利,在切削过程中能够实现“切入式切削”,
使切削力大大减小。
⏹金刚石的硬度极高,切削时不易被工件材料磨损,能够保持良好的切削刃
形状。
⏹金刚石的传热性能极佳,能够快速地将切削热量传递出去,从而降低切削
温度,减少热损伤。
1.切削条件:
⏹刀具刃口半径:为了实现超精密切削,需要将刀具的刃口半径减小到亚微
米级,以提高切削的精度和表面粗糙度。
⏹切削用量:为了减小切削力和热量,需要选择较小的切削深度和进给速度,
以提高切削效率。
⏹工件材料:金刚石刀具适用于加工各种硬材料,如淬火钢、硬质合金等。
但是,对于一些韧性较大的材料,需要进行预处理或选择其他刀具材料。
1.应用范围:
⏹金刚石刀具广泛应用于超精密切削领域,如光学零件、轴承、硬盘磁头、IC
芯片等高精度、高表面质量的零件加工。
⏹在加工过程中,金刚石刀具还可以用于制作各种微细结构,如微孔、微槽
等。
综上所述,金刚石刀具的超精密切削需要满足一定的条件,并具有广泛的应用范围。
1、精密和超精密加工的三大领域:超精密切削、精密和超精密磨削研磨、精密特种加工。
2、金刚石刀具进行超精密切削时,适合加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料。
3、最硬的刀具是天然单晶金刚石刀具。
金刚石刀具的的寿命用切削路程的长度计算。
4、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境条件等直接相关。
5、影响超精密切削极限最小切削厚度最大的参数是切削刃钝圆半径r n。
6、金刚石晶体有3个主要晶面,即(100)、(110)、(111),(100)晶面的摩擦因数曲线有4个波峰和波谷,(110)晶面有2个波峰和波谷,(111)晶面有3个波峰和波谷。
以摩擦因数低的波谷比较,(100)晶面的摩擦因数最低,(111)晶面次之,(110)晶面最高。
比较同一晶面的摩擦因数值变化,(100)晶面的摩擦因数差别最大,(110)次之,(111)晶面最小。
7、实际金刚石晶体的(111)晶面的硬度和耐磨性最高。
推荐金刚石刀具的前面应选(100)晶面。
8、(110)晶面的磨削率最高,最容易磨;(100)晶面的磨削率次之,(111)晶面磨削率最低,最不容易磨。
9、金刚石的3个主要晶面磨削(研磨)方向不同时,磨削率相差很大。
现在习惯上把高磨削率方向称为“好磨方向”,把低磨削率方向称为“难磨方向”。
10、金刚石磨损本质是微观解离的积累;破损主要产生于(111)晶面的解离。
11、金刚石晶体定向方法:人工目测定向、X射线晶体定向、激光晶体定向。
其中激光晶体定向最常用。
12、金刚石的固定方法有:机械夹固、用粉末冶金法固定、使用粘结或钎焊固定。
13、精密磨削机理包括:微刃的微切削作用,微刃的等高切削作用,微刃的滑挤、摩擦、抛光作用。
14、超硬磨料砂轮修整的方法有:车削法、磨削法、滚压挤轧法、喷射法、电加工法、超声波振动修整法。
电解在线修锐法(ELID—electrolytic in—process dressing),原理是利用电化学腐蚀作用蚀出金属结合剂。
1、通常将加工精度在0.1-1um、加工表面粗糙度R在0.02-0.1um之间的加工方法称为精密加工。
而将加工精度高于0.1um、加工表面粗糙度R小于0.01um的加工方法称为超精密加工。
2、提高加工精度的原因:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。
3、精密和超精密加工目前包含三个领域:超精密切削;精密和超精密磨削研磨‘精密特种加工。
4、金刚石刀具的超精密切削加工技术,主要应用于两个方面:单件的大型超精密零件的切削加工和大量生产的中小型零件的超精密切削加工技术。
5、金刚石刀具有两个比较重要的问题:晶面的选择;切削刃钝圆半径。
6、超稳定环境条件主要是指恒温、防振、超净和恒湿五个方面的条件。
7、我国应开展超精密加工技术基础的研究,其主要内容包括以下四个方面:1)超精密切削、磨削的基本理论和工艺。
2)超精密设备的关键技术、精度、动特性和热稳定性。
3)超精密加工的精度检测、在线检测和误差补偿。
4)超精密加工的环境条件。
5)超精密加工的材料。
8、超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。
9、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境等都直接有关。
10、为实现超精密切削,刀具应具有如下性能:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。
2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r值极小,能实现超薄切削厚度。
3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。
4)和工件材料的抗粘结性好、化学亲和性小、摩擦因素低,能得到极好的加工表面完整性。
11、SPDT——金刚石刀具切削和超精密切削。
12、晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象称为解理现象。
超精密切削加工技术介绍
超精密加工技术是适应现代高科技的需要而发展起来的先进制造技术, 是高科技尖端产品开发中不可或缺的关键技术, 是一个国家制造业水平重要标志, 是先进制造技术基础和关键, 也是装备现代化不可缺少的关键技术之一, 在军用和民用工业中有着十分广阔的应用前景。
金刚石超精密切削技术, 是超精密加工技术发展最早的、应用最为广泛的技术之一。
超精密切削加工技术
1、超精密切削的历史
60年代初,由于宇航用的陀螺,计算机用的磁鼓、磁盘,光学扫描用的多面棱镜,大功率激光核聚变装置用的大直径非圆曲面镜,以及各种复杂形状的红外光用的立体镜等等,各种反射镜和多面棱镜精度要求极高,使用磨削、研磨、抛光等方法进行加工,不但加工成本很高,而且很难满足精度和表面粗糙度的要求。
为此,研究、开发了使用高精度、高刚度的机床和金刚石刀具进行切削加工的方法加工。
2、超精密切削加工的应用
(1)平面镜的切削
平面度
金刚石刀具
1、金刚石刀具特点
金刚石刀具拥有很高的高温强度和硬度,而且材质细密,经过精细研磨,切削刃可磨得极为锋利,表面粗糙度值很小,因此可进行镜面切削。
金刚石刀具超精密切削主要用于加工铜、铝等有色金属,如高密度硬磁盘的铝合金基片、激光器的反射镜、复印机的硒鼓、光学平面镜,凹凸镜、抛物面镜等。
超精切削刀具材料有天然金刚石,人造单晶金刚石。
金刚石刀具磨损的常见形式为机械磨损和破损。
机械磨损——机械摩擦、非常微小;破损。
控制机械加工表面质量的工艺途径随着科学技术的发展,对零件的表面质量的要求已越来越高。
为了获得合格零件,保证机器的使用性能,人们一直在研究控制和提高零件表面质量的途径。
提高表面质量的工艺途径大致可以分为两类:一类是用低效率、高成本的加工方法,寻求各工艺参数的优化组合,以减小表面粗糙度;另一类是着重改善工件表面的物理力学性能,以提高其表面质量。
一、降低表面粗糙度的加工方法1.超精密切削和低粗糙度磨削加工⑴超精密切削加工超精密切削是指表面粗糙度为R a0.04μm以下的切削加工方法。
超精密切削加工最关键的问题在于要在最后一道工序切削0.1μm的微薄表面层,这就既要求刀具极其锋利,刀具钝圆半径为纳米级尺寸,又要求这样的刀具有足够的耐用度,以维持其锋利。
目前只有金刚石刀具才能达到要求。
超精密切削时,走刀量要小,切削速度要非常高,才能保证工件表面上的残留面积小,从而获得极小的表面粗糙度。
⑵小粗糙度磨削加工为了简化工艺过程,缩短工序周期,有时用小粗糙度磨削替代光整加工。
小粗糙度磨削除要求设备精度高外,磨削用量的选择最为重要。
在选择磨削用量时,参数之间往往会相互矛盾和排斥。
例如,为了减小表面粗糙度,砂轮应修整得细一些,但如此却可能引起磨削烧伤;为了避免烧伤,应将工件转速加快,但这样又会增大表面粗糙度,而且容易引起振动;采用小磨削用量有利于提高工件表面质量,但会降低生产效率而增加生产成本;而且工件材料不同其磨削性能也不一样,一般很难凭手册确定磨削用量,要通过试验不断调整参数,因而表面质量较难准确控制。
近年来,国内外对磨削用量最优化作了不少研究,分析了磨削用量与磨削力、磨削热之间的关系,并用图表表示各参数的最佳组合,加上计算机的运用,通过指令进行过程控制,使得小粗糙度磨削逐步达到了应有的效果。
2.采用超精密加工、珩磨、研磨等方法作为最终工序加工超精密加工、珩磨等都是利用磨条以一定压力压在加工表面上,并作相对运动以降低表面粗糙度和提高精度的方法,一般用于表面粗糙度为R a0.4μm以下的表面加工。
超精密切削表面划伤机理及控制
近年来,超精密切削工艺作为一种高精度加工方法,被广泛应用于航空航天、汽车及其他工业中。
随着超精密加工技术的发展,加工的表面的质量已经大大提高。
但是,由于超精密加工的复杂性,表面划伤问题也成为了抑制加工质量的一个潜在影响因素。
因此,了解表面划伤的机理及其预防控制,对于提高加工表面质量和产品性能具有重要意义。
表面划伤是指在磨削或切削过程中,加工表面出现被刀片划痕,起蚀磨现象的现象。
它是由于工件摩擦力较大、刀具高速磨损、切削液状态不稳定等因素引起的。
当这些因素不能得到有效控制时,容易导致表面划伤。
在超精密切削过程中,表面划伤的主要机理有微观尖角摩擦力、切削液的不稳定、刀具的过分腐蚀、切削参数的不合理、切削断层的持久性等。
其中,微观尖角摩擦力是表面划伤的主要原因,通常在切削过程中,工件的表面粗糙度和刀具的表面粗糙度是有区别的,产生了微尖角摩擦力,这样就会使得加工表面出现裂纹。
为了控制超精密切削表面划伤,应采取有效措施:
首先,应控制刀具和工件的表面粗糙度,使其相差不太大,以减少摩擦力。
其次,应选择合适的切削液,最大限度稳定切削过程,减少磨损。
此外,应选择合理的切削参数,避免切削过度,降低划伤的可能性。
最后,应监测切削断层,对发生问题的断层进行有效处理,避免表面划伤。
综上所述,表面划伤是超精密加工中常见的表面缺陷,其机理复杂,由于种种原因,一旦发生,将会对加工表面及产品性能产生严重影响。
因此,在超精密加工过程中,需要采取有效的控制措施,以防止表面划伤的发生,提高加工表面质量。
试述超精密切削时积屑瘤生产规律和它对切削过程和加工表面粗糙度的影响。
介绍如下:
1.生产规律:
•在低速切削时,h0值比较稳定;在中速时,h0值不稳定。
•在进给量f很小时,h0较大。
•在背吃刀量ap<25um时,h0变化不大;在ap>25um时,h0将随ap的值增大而增大。
•刀具的微观缺陷也将直接影响积屑瘤的高度,完整刃的积屑瘤高度比有微小崩刃的刀刃积屑瘤高度小。
2.对切削过程的影响:
•积屑瘤高时切削力大,积屑瘤小时切削力小。
•积屑瘤如生长稳定,起到了保护了刀具,提高了刀具的使用寿命的作用;如频繁脱落,则加剧了刀具的磨损,降低了刀具的使用寿命。
3.对加工表面粗糙度的影响:
•积屑瘤伸出切削刃外的部分高低不平,外形极不规则,增大了已加工表面的粗糙度,降低了表面加工质量。
超精密加工技术----发展及对策超精密加工技术,是现代机械制造业最主要的发展方向之一。
在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。
超精密加工是指亚微米级(尺寸误差为0.3~0.03μm,表面粗糙度为Ra0.03~0.005μm)和纳米级(精度误差为0.03μm,表面粗糙度小于Ra0.005μm)精度的加工。
实现这些加工所采取的工艺方法和技术措施,则称为超精加工技术。
加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。
超精密加工主要包括三个领域:1、超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。
它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。
2、超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。
3、超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1μm。
如用扫描隧道电子显微镜(STM)加工,线宽可达2~5nm。
国外概况美国是最早研制开发超精密加工技术的国家。
早在1962年,美国就开发出以单点金刚石车刀镜面切削铝合金和无氧铜的超精密半球车床,其主轴回转精度为0.125μm,加工直径为φ100mm的半球,尺寸精度为±0.6μm,粗糙度为Ra0.025μm。
1984年又研制成功大型光学金刚石车床,可加工重1350kg,φ1625mm的大型零件,工件的圆度和平面度达0.025μm,表面粗糙度为Ra0.042μm。
在该机床上采用多项新技术,如多光路激光测量反馈控制,用静电电容测微仪测量工件变形,32位机的CNC系统,用摩擦式驱动进给和热交换器控制温度等。
美国利用自己已有的成熟单元技术,只用两周的时间便组装成了一台小型的超精密加工车床(BODTM型),用刀尖半径为5~10nm的单晶金刚石刀具,实现切削厚度为1nm (纳米)的加工。
尽管如此,最近美国政府还是继续把微米级和纳米级的加工技术作为国家的关键技术之一,这足以说明美国对这一技术的重视。
超精密切削加⼯主要指⾦刚⽯⼑具的超精密切削超精密切削加⼯主要指⾦刚⽯⼑具的超精密切削。
超精密切削的⼯作机理:普通的切削的切削深度⼀般远⼤于材料晶粒的尺⼨,切削加⼯以数⼗计的晶粒团为加⼯单位,在切削⼒的作⽤下从基体上去除⾦属。
⽽超精密加⼯的切削层很薄或尺⼨很⼩,切削深度和进给量必然很⼩,特别是亚微⽶和纳⽶级的超精密切削,切削深度通常⼩于材料晶粒直径,使的切削只能在晶粒内部进⾏。
超精密切削时的切削⼒的特征为:切削⼒微⼩,单位切削⼒很⼤,切削⼒随着切削深度的减⼩⽽增⼤,⽽在切深很⼩时切削⼒却急剧上升。
超精密切削加⼯的特点与应⽤(1)单位切削⼒⼤实现纳⽶级的超精密加⼯的物理实质是切断材料的分⼦、原⼦间的结合,实现原⼦或者分⼦的去除,因此切削⼒必须超过晶体内部的分⼦、原⼦结合⼒。
(2)切削温度由于超精密切削的切削⽤量极⼩以及⾦刚⽯⼑具和⼯件材料具有的⾼导热性,因此超精密切削温度相当低。
(3)⼑刃圆弧半径对最⼩切削厚度的限制⼑具刃⼝半径限制了其最⼩的切削厚度,⼑具刃⼝越⼩,允许的最⼩切削厚度也越⼩。
超精密切削的应⽤超精密加⼯主要⽤于加⼯软⾦属材料以及光学玻璃、⼤理⽯和碳素纤维板等⾮⾦属材料,主要加⼯对象是精度要求很⾼的镜⾯零件。
(下图是超精密切削球⾯镜的加⼯原理图)球⾯镜的加⼯原理1-主轴;2-凹⾯镜;3-⼑具轴超精密磨削超精密磨削是当代能达到最低磨削表⾯粗糙度值和最⾼加⼯精度的磨削⽅法。
超精密磨削去除量最薄,采⽤较⼩修整导程和吃⼑量来修整砂轮,是靠超微细磨粒等⾼微刃磨削作⽤,并采⽤较⼩的磨削⽤量磨削。
超精密磨削要求严格消除振动,并保证恒温及超净的⼯作环境。
超精密磨削的光磨微细摩擦作⽤带有⼀定的研抛作⽤性质。
1.超精密砂轮磨削的磨削超精密砂轮磨削机理:( 1 ) 超微量切除超精密磨削是⼀种极薄切削,切屑厚度极⼩,磨削深度可能⼩于晶粒的⼤⼩,磨削就在晶粒内进⾏,因此磨削⼒⼀定要超过晶体内部⾮常⼤的原⼦、分⼦结合⼒,从⽽磨粒上所承受的切应⼒就急速地增加并变得⾮常⼤,可能接近被磨削材料的剪切强度的极限。
《精密和超精密加工技术》学习总结11机械1班 2011411011070. 引言精密和超精密加工技术不仅直接影响尖端技术和国防工业的发展,还影响着国家的机械制造业的国际竞争力,因此,全球各国对此十分重视!本文就从超精密切削、精密和超精密磨削、精密研磨与抛光、精密加工的机床设备和外部支撑环境、微纳加工技术等相关的超精密加工技术进行研究与总结。
1. 超精密切削超精密切削是国防和尖端技术中的重要部分,受到了各国的重视和发展。
一、超精密切削的切削速度选择超精密切削所使用的刀具是天然单晶金刚石刀具,它是目前自然界硬度最高的物质,具有耐磨性好、热传导系数高和有色金属间摩擦系数小。
因此,在加工有色金属时,切削温度低,刀具寿命很高,亦可使用1000-2000m/min的高速切削。
而这一点(切削速度并不受刀具寿命的制约)是和普通切削规律不同的。
超精密切削的速度选择是根据所使用的超精密机床的动特性和切削系统的动特性所决定的,即选择振动最小的转速。
换而言之,要高效地切削出高质量的加工表面,就应该选择动特性好,振动小条件下最高转速的超精密机床。
例如沈阳第一机厂圣工场的SI-255液体静压主轴的超精密车床在700-800r/min时振动最大,故要避开该转速范围,选择低于或者高于该速度范围进行切削,则可得到较好的加工表面。
二、超精密切削时刀具的磨损和寿命天然单晶金刚石刀具超精密切削应用于加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料,比如激光反射镜、雷达的波导管内腔、计算机磁盘等。
判断金刚石刀具是否破损或磨损而不能继续使用的标准是根据工件加工的表面粗糙度有无超过规定值。
而金刚石刀具的切削路程的长度则是其寿命长短的标志。
倘若切削条件正常,刀具的耐用度可达数百千米。
但是在实际使用中,金刚石刀具常是达不到这个耐用度,因为加工过程中切削刃会产生微小崩刃而不能继续使用,而这主要是由于切削时的振动或切削刃的碰撞引起的。
因此,金刚石刀具只能使用在机床主轴转动非常平稳的高精度机床上,而刀具的维护对机床的要求亦是如此。
超精密加工技术概述摘要:随着社会的发展,工业产品精细化程度逐步提高,传统的机械加工技术已经远远不能满足人们的需求,机械加工向着更高精度的方向发展。
本文主要介绍超精密加工技术的产生背景、概念、国内外的发展状况、几种超精密加工技术和对未来超精密加工技术发展的展望。
关键词:超精密加工技术背景概念发展状况发展趋势一.产生的背景制造技术的发展已经有几千年的历史,石器时代、铜器时代、铁器时代都有着制造技术发展的足迹。
直至近代,随着第一次工业革命的完成,传统的机械制造技术出现了,传统的机械加工技术主要包括车削、铣削、钻削和磨削。
随着人类社会的进一步发展,现代科学技术的迅猛发展,机械工业、电子工业、航空航天工业、化学工业等,尤其是国防工业部门,要求尖端科学技术产品向高精度、高速度、大功率、小型化方向发展,以及在高温、高压、重载荷或腐蚀环境下长期可靠地工作。
为了适应这些要求,各种新结构、新材料和复杂形状的精密零件大量出现,其结构和形状越来越复杂,材料的性能越来越强韧,对精度要求越来越高,对加工表面粗糙度和完整性要求越来越严格,使机械制造面临着一系列严峻的任务:(1)解决各种难切削材料的加工问题。
如硬质合金、钛合金、耐热钢、不锈钢、淬火钢、金刚石、石英以及锗、硅等各种高硬度,高强度、高韧性、高脆性的金属及非加工。
(2)解决各种特殊复杂型面的加工问题。
如喷气涡轮机叶片、整体涡轮、发动机机匣、锻压模等的立体成型表面,各种冲模、冷拔模等特殊断面的型孔,炮管内膛线、喷油嘴,喷丝头上的小孔、窄缝等的加工。
(3)解决各种超精密、光整零件的加工问题。
如对表面质量和精度要求很高的航天航空陀螺仪、精密光学透镜、激光核聚变用的曲面镜、高灵敏度的红外传感器等零件的精细表面加工,形状和尺寸精度要求在0.1皮米以上,表面粗糙度尺寸要求在0.01微米以上。
(4)特殊零件的加工问题。
如大规模集成电路、光盘基片、复印机和打印机的感光鼓、微型机械和机器人零件、细长轴、薄壁零件、弹性元件等低刚度零件的加工。
精密和超精密加工,精密加工的技术手段有什么?制造业是一个国家或地区国民经济的重要支柱,所谓先进制造技术,就是将机械工程技术、电子信息技术(包括微电子、光电子、计算机软硬件、现代通信技术)和自动化技术,以及材料技术、现代管理技术综合集成的生产技术。
先进制造技术追求的目标就是实现优质、精确、省料、节能、清洁、高效、灵活生产,满足社会需求。
精密加工技术是为适应现代高技术需要而发展起来的先进制造技术,是其它高新技术实施的基础。
精密加工技术的发展也促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。
精密和超精密加工通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。
目前,精密加工是指加工精度为1~0.1µ;m,表面粗糙度为Ra0.1~0.01µ;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。
精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。
超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。
当前的超精密加工是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。
超精密加工包括微细加工、超微细加工、光整加工、精整加工等加工技术。
微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。
光整加工一般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高。