超高速超精密加工技术
- 格式:pptx
- 大小:1.72 MB
- 文档页数:36
术工技加工与超高速加超精密一、技术概述超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速。
技术和加工质量的现代加工度和进给速度来提高材料切除率、加工精度超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。
目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,纤维增强塑料为2000~9000m/min。
各种切削工艺的切速范围为:车削700~7000m/min,铣削300~6000m/min,钻以上等等。
削250m/s削200~1100m/min,磨超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具等。
术在线自动检测与控制技制造技术,超高速加工-c超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra 小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm 的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。
超精密加工技术主要包括:超精密加工的机理研究,超精密加工的设备制造技术研究,超精密加工工具及刃磨技术研究,超精密测量技术研究。
条件和误差补偿技术研究,超精密加工工作环境展趋势外发二、现状及国内高速加工.超1工业发达国家对超高速加工的研究起步早,水平高。
在此项技术中,意大利等。
国、主要有德国、日本、美处于领先地位的国家在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速加工的工艺方法,而高速数控机床和加工中心则是实现超高速加工的关键设备。
目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。
切削速度亦随着刀具材料创新而从以前的12m/min 提高到1200m/min 以上。
磨削技术论文:超高速磨削及其优势探析一、概述超高速磨削作为一种高精度精密加工技术,已在各个领域得到广泛应用。
本文将从超高速磨削的基本原理入手,分析其优势,探讨其在建筑领域的应用前景。
二、基本原理超高速磨削是利用高速旋转的砂轮磨削工件表面,以达到高精度加工的一种技术。
它与传统的磨削技术不同之处在于,超高速磨削使用的砂轮转速通常在1万~10万转/分之间,较传统的磨削转速快得多。
这种高速磨削技术可以大幅提高加工效率,同时还能够获得更高的精度和光洁度。
三、优势分析1. 精度高超高速磨削的砂轮转速快,磨削力大,可以快速去除工件表面杂质,得到更加精细的加工表面,精度可达到0.005mm以下。
2. 效率高由于砂轮转速快,磨削力大,超高速磨削速度比传统磨削技术快得多。
工件加工时间可以降低30%以上,大幅提高生产效率。
3. 造价低超高速磨削使用的砂轮寿命长,能够在保证加工效率的情况下,延长更换周期,降低磨具成本。
4. 应用范围广超高速磨削是一种高效、环保、精细化的磨削技术,可适用于各种材料的加工,包括金属、非金属材料、陶瓷材料等。
5. 环保超高速磨削使用的是无毒、无害、无污染的磨料,减少了对环境的污染。
四、应用前景在建筑领域,超高速磨削技术可以用于加工各类构件。
它能够大幅节约加工时间,提高生产效率。
同时,它还能精细加工各类构件表面,达到工艺标准,节约原材料,降低生产成本。
在未来,超高速磨削技术有望得到更加广泛的应用。
五、案例分析1. XXX公司的构件加工中,采用超高速磨削技术,成功优化了加工效率,降低了产品成本,得到了客户的一致好评。
2. XX公司将超高速磨削技术应用于钢筋加工中,减少了加工时间,提高了钢筋的精度和尺寸的一致性,受到了建筑公司的赞扬。
3. XX公司采用超高速磨削技术加工门窗构件,成功提高了构件的表面精度和光洁度,降低了产品的废品率,提高了客户的满意度。
4. XX公司采用超高速磨削技术加工凸轮、传动齿轮等构件,减少了加工时间,提高了精度和表面光洁度,获得了广泛应用。
超精密加工制造技术
超精密加工制造技术
超精密加工制造技术是指采用精密加工制造技术,利用激光、电子束、水刀、高速钻以及特种机床,对零部件或组件进行加工,以达到更高精度,更优质品质的制造目的。
目前,超精密加工制造技术主要用于航空、航天、船舶、汽车、医疗设备等高端产品的制造。
它能够满足产品的精密度需求,提高制造材料的品质,并减少制造成本。
超精密加工制造技术有多种,如激光切割技术、EDM(电子束机)技术、高速钻加工技术、高压水刀技术、精密机床加工技术等。
这些技术的应用将极大地提高产品的加工精度,减少加工损耗,从而满足客户对产品加工精度的要求。
超精密加工制造技术有其特定的要求,需要选用正确的机床、加工参数、工艺条件和制造材料,以保证制造出精确的零件或组件。
因此,超精密加工制造技术对制造者具有重大意义,它为制造者提供了一种制造更精确的零件和组件的方法,从而满足客户的高要求。
而且,利用超精密加工制造技术也可以大大节省加工成本,从而提高制造的竞争力。
- 1 -。
机械制造与自动化的新工艺和新方法随着机械工业的发展和科学技术的进步,机械制造工艺的内涵和外延不断发生变化常规工艺不断优化并普及,原来十分严格的工艺界限和分工,如下料和加工、毛坯制造和零件加工,粗加工和精加工、冷加工和热加工等在界限上逐步趋于淡化,在功能上趋于交叉,各种先进加工方法不断出现和发展。
以下为一些机械制造的新工艺和新方法:1、超高速加工技术超高速加工技术是指采用超硬材料刀具磨具和高速运动的自动化制造设备,以极大的切削速度来达到提高材料切除率、加工精度和加工质量的现代加工技术.超高速加工能使被加工金属材料在切除过程中的剪切滑移速度达到或超过某个极限值,使切削加工过程所消耗的能量、切削力、加工表面温度、刀具磨具磨损、加工表面质量、加工效率等明显优于常规切削速度下的指标,它是提高切削和磨削效果、提高加工质量、加工精度和降低加工成本的重要手段。
与常规切削加工相比,超高速加工有以下优点:(1)随着进给速度的提高,单位时间内材料的切除率可以增加3-6倍,可以大幅度缩短零件加工的切削工时,显著提高生产率。
(2)切削力可以降低30%以上。
(3)切削过程极其迅速,95%以上的切削热被切屑带走,来不及传给工件,故特别适合加工容易热变形的零件。
(4)机床作高速运转,振动频率特别高,工作平稳振动小,因而能加工非常精密、非常光洁的零件。
2、超精密加工技术超精密加工是指加工精度和表面质量达到极高程度的精密加工工艺.目前超精密加工的主要手段有:金刚石刀具超精切削,金刚石砂轮和CBN砂轮超精密磨削、超精密研磨和抛光、精密特种加工和复合加工。
金刚石砂轮超精密磨削是当前超精密加工的重要研究方向之一,其主要加工方式有外圆磨、无心磨、、沟槽磨和切割等,被加工材料有陶瓷、半导体等难加工材料,其关键技术包括金刚石砂轮的修整、微粉金刚石砂轮超精密磨削等。
金刚石砂轮的修整包括整形和修锐两部分,对于密实型无气孔的金刚石砂轮,如金属结合剂金刚石砂轮,一般在整形后还需要修锐;有气孔型陶瓷结合剂金刚石砂轮在整形后即可使用。
超高速精密加工技术研究超高速精密加工技术是近年来制造领域的重要技术之一,它可以实现对各种材料的高速、高精度、高质量的加工,广泛应用于航空、航天、光学、电子、汽车等领域。
本文将从技术发展、应用领域以及未来发展等方面对超高速精密加工技术进行探讨。
一、技术发展超高速精密加工技术最早起源于日本,1975年,日本理化学研究所研制成功了激光磨削技术,这使得加工速度和精度大大提高。
1980年代初,随着计算机数控技术的发展,超高速加工被广泛应用于模具加工和精密加工领域。
此后,各种新的超高速加工技术如电解加工、电火花加工、等离子体加工、水喷射加工、纳米加工等相继出现,使得加工精度和速度更加突出。
二、应用领域在航空领域,超高速精密加工技术被广泛应用于航空发动机叶片制造、螺旋桨制造等方面。
这些领域对零件要求的精度和表面质量非常高,超高速加工技术可以保证零件的质量和稳定性。
在航天领域,超高速精密加工技术可以用于制造太阳能电池板、航天器外壳、反射镜等。
这些零件的加工难度非常大,超高速加工技术可以大大提高生产效率和品质。
在电子领域,超高速精密加工技术主要应用于半导体芯片加工、各类机械零件加工等方面。
这些领域对零件尺寸和表面精度要求非常高,超高速加工技术可以极大提高生产效率和品质。
在汽车领域,超高速精密加工技术主要应用于发动机零件加工、车身零件加工等方面。
这些领域对零件质量和精度要求较高,超高速加工技术可以保证零件的生产效率和品质。
三、未来发展未来,超高速精密加工技术将继续向深度化和高效化方向发展。
一方面,随着新材料的出现,超高速加工技术将有更广泛的应用领域。
另一方面,随着机械、电子、计算机等技术手段的不断提高,超高速加工技术将更具创新性和智能化。
四、结语超高速精密加工技术是当前制造领域中具有重要地位的技术之一,它的发展对制造业的发展具有重要意义。
未来,随着技术手段的不断提高和领域的不断拓展,超高速加工将更好地服务于制造业的进步和发展。
超精密加工技术在材料制造中的应用随着科技的不断发展,超精密加工技术在材料制造领域中日益得到广泛应用。
超精密加工技术已经成为了当代材料制造的重要工具,它可以帮助我们制造各种高精度、高性能、高材料的产品,为现代产业的发展提供了有力的技术支撑。
一、超精密加工技术的基本概念超精密加工技术是一种较为先进的加工技术,它的原理是通过在工件表面上形成微小的切削屑来实现对工件的加工。
同时,该技术还可以利用其高精度的控制系统,对工件进行高精度的加工和加工参数的调整,以实现对工件加工的最优化。
超精密加工技术已经被广泛应用于各种工程领域中,如电子元器件加工、汽车制造、航空航天制造和精密半导体制造等。
这些领域所需要的产品均需要高精度、高性能和高材料的工件来支持其功能,因此超精密加工技术的应用对于这些领域的发展具有非常关键的作用。
二、超精密加工技术的应用范围目前,超精密加工技术的应用领域已经相当广泛,其中主要包括以下几个方面:1、半导体工业由于半导体工业对于制造产品的精度和质量要求很高,因此超精密加工技术可以为半导体工业提供非常有力的技术支持。
在半导体制造过程中,超精密加工技术可以用于制造高精度的微电子器件、光学器件和微机械系统等。
2、光学工业光学工业则需要制造大量的高性能光学元件,其中的加工难度尤为突出。
超精密加工技术可以实现对光学元件表面的质量进行高精度的加工,为光学工业的发展提供了关键的技术支持。
3、医疗器械在医疗器械的制造过程中,超精密加工技术可以实现医疗器械零部件的高精度加工和改进产品的结构设计。
这些器械的高精度制造,可以为提高医疗器械的制造水平和疗效提供技术保障。
4、汽车工业在汽车工业中,超精密加工技术可以用于制造高精度零部件,包括汽车发动机的部件以及底盘零部件等。
这些零部件可以提高汽车的性能,同时降低燃油的消耗和减少环境污染。
三、超精密加工技术在材料制造中的优势超精密加工技术具有很多优势,它可以大大提高加工效率,同时还可以实现对工件的高度可控性和高剛度的加工精度,为快速生产高质量的零部件提供了保障。