五年级数学质数和合数
- 格式:ppt
- 大小:263.50 KB
- 文档页数:7
质数和合数(教案)一、教学目标1.了解什么是质数和合数2.掌握质数和合数的基本性质3.能够分辨质数和合数二、教学重点1.质数和合数的定义2.质数和合数的性质3.分辨质数和合数的方法三、教学难点1.质数与合数的区分2.合数的因数分解四、教学过程1. 导入新知识1.教师向学生介绍质数和合数的定义2.用数学语言形式定义质数和合数3.通过板书的方式,让学生了解质数和合数的特点4.让学生思考,有哪些数字是质数、哪些数字是合数2. 引入实例1.给学生出示一个小于10的质数2.给学生出示一个小于10的合数3.让学生发现,小于10的质数和合数有哪些3. 教学要点(1)质数和合数的定义1.对质数和合数的定义进行具体讲解2.通过质数和合数的例子,更好地帮助学生理解并记住定义(2)质数和合数的性质1.通过举例子的方式,让学生更好地理解质数和合数的性质2.让学生分析质数和合数的性质,进一步加深对质数和合数的印象(3)分辨质数和合数的方法1.利用分解因数的方法,对数字进行分类2.通过找数字的因子来确定其是质数还是合数4. 案例练习1.举例让学生分辨质数和合数2.让学生找出某个数的因子并分辨出其是质数还是合数5. 总结归纳1.对于质数和合数的概念、性质、分辨方法进行总结2.强化练习,让学生能够独立进行质合数的分辨五、教学反思通过本节课的教学,学生们对于质数和合数有了更加清晰的认知。
质数和合数的定义、性质以及分辨方法都在课堂上进行了深入浅出的解释和讲解。
通过案例分析和练习,使学生们能够独立地进行质合数的分辨。
本节课的教学效果较好,但可以在案例练习的数量和难度上进行更加精细的安排,以更好地提高学生们的学习积极性和学习效果。
《质数与合数》数学教案五年级五篇很多学生都不能区分质数与合数,为让学生更好的接受这个知识点,下面就是小编整理的《质数与合数》数学教案,希望大家喜欢。
《质数与合数》数学教案1教学内容:人教版小学五年级数学质数和合数教学目标:1.理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数的个数进行分类.2.培养学生细心观察全面概括.准确判断.自主探索、独立思考、合作交流的能力。
教学重点:能准确判断一个数是质数还是合数.教学难点:找出100以内的质数.教学过程:一、复习导入(加深前面知识的理解,为新知作铺垫)下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数.3和154和2449和791和13指名回答。
二、小组合作学习质数和合数的的概念。
全班分两组探讨并写出1~20各数的因数。
1、观察各数因数的个数的特点。
2、板前填写师出示的表格。
只有一个因数只有1和它本身两个因数除了1和它本身还有别的因数3、师概括:只有1和它本身两个因数,这样的的数叫做质数。
除了1和它本身还有别的因数,这们的数叫做合数。
(板书:质数和合数)4、举例。
你能举一些质数的例子吗?你能举一些合数的例子吗?练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?5。
探究“1”是质数还是合数。
刚才我们说了还有一类就是只有一个因数的。
想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。
)引导学生明确:1既不是质数也不是合数。
练习:自然数中除了质数就是合数吗?三、给自然数分类。
1、想一想师:按照是不是2的倍数把自然数分为奇数和偶数。
按照因数个数的多少,把非零自然数分为哪几类?生:质数,合数,1。
2、说一说。
既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。
【导语】学⽣是数学学习的主⼈,是数学课堂上主动求知、主动探索的主体。
教师是数学学习的组织者、引导者和合作者。
⽆忧考准备了以下内容,希望对你有帮助!【篇⼀】⼈教版五年级下册数学第⼆单元《质数和合数》教案 ⼀、学情分析: 《质数和合数》这⼀课内容⽐较抽象,很难结合⽣活实例或具体情境来教学,学⽣理解起来有⼀定的难度。
另外,到本节课为⽌,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学⽣容易混淆,如学⽣往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学⽣辨析这些概念。
⼆、教学⽬标: 1、理解质数和合数的概念。
2、能熟练判断质数与合数,能够找出100以内的质数。
3、培养学⽣分析问题的能⼒和应⽤数学的意识;体验从特殊到⼀般的认识发展过程,进⼀步完善学⽣对⾃然数的分类⽅法的掌握,培养学⽣思维的灵活性。
三、教学重难点: 重点:理解质数、合数的含义,能正确快速地判断⼀个数是质数还是合数。
难点:能运⽤⼀定的⽅法,从不同的⾓度判断、感悟质数合数。
四、教学过程: (⼀)导⼊新课。
找出1~20各数的因数。
你发现了什么? (学⽣可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本⾝;……) 今天我们学习的内容就与⼀个数因数的个数有关。
[设计意图说明:让学⽣⽤⾃⼰的话描述1~20各数因数的特点,通过观察学⽣虽然没有质数与合数的概念,但对这些数已经有了⾃⼰的分类与认识,为之后的分类与概念的学习打下基础。
] (⼆)新授 探究⼀:认识质数和合数 师:请同学们按照因数的个数,将这些数分分类。
(学⽣可能回答:将1,2,3,5,7,11,13,17,19分为⼀类,它们的因数都是1和它⾃⼰本⾝,其余的数分为⼀类;将1,4,9,16分为⼀类,它们的因数个数都是奇数个,其余的分为⼀类,它们的因数个数都是偶数个;……) 师:同学们都说得⾮常好,请打开课本翻到第14页,请你按照它的⽅法分⼀分。
人教版五年级数学下册《质数和合数》知识点易错点汇总人教版五年级数学下册《质数和合数》知识点易错点汇总质数和合数【知识点1】质数和合数的相关定义一个数.如果只有1和它本身两个因数.这样的数叫做质数(或素数)一个数.如果除了1和它本身还有别的因数.这样的数叫做合数. 1不是质数也不是合数.自然数除了1外.不是质数就是合数.如果把自然数按其因数的个数的不同分类.可分为质数(两个因数)、合数(大于两个因数)和1(1个因数).100百以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.共25个.除1以外所有的质数都是奇数. 除1以外任意两个质数的和都是偶数最小的质数是2.最小的合数是4质数×质数=合数合数×合数=合数质数×合数=合数练习:(1)像2、3、5、7这样的数都是().像10、6、30、15这样的数都是().(2)20以内的质数有().合数有().(3)自然数()除外.按因数的个数可以分为()、()和().(4)在16、23、169、31、27、54、102、111、97、121这些数中.()是质数.()是合数.(5)用A表示一个大于1的自然数.A2必定是().A+A必定是().(6)一个四位数.个位上的数是最小的质数.十位上是最小的自然数.百位上是最大的一位数.最高位上是最小的合数.这个数是().(7)两个连续的质数是()和();两个连续的合数是()和()(8)两个质数的和是12.积是35.这两个质数是()A. 3和8B. 2和9C. 5和7(9)判断并改正:一个自然数不是质数就是合数.()所有偶数都是合数.()一个合数的因数的个数比一个质数的因数的个数多.()所有质数都是奇数.()两个不同质数的和一定是偶数.()三个连续自然数中.至少有一个合数.()大于2的两个质数的积是合数.()7的倍数都是合数.()20以内最大的质数乘以10以内最大的奇数.积是171.() 2是偶数也是合数.()1是最小的自然数.也是最小的质数.()最小的自然数.最小的质数.最小的合数的和是7.()(10)下面是一道有余数的整数除法算式:A÷B=C… R1既不是质数也不是合数. ()个位上是3的数一定是3的倍数.()所有的偶数都是合数. ()所有的质数都是奇数. ()两个数相乘的积一定是合数. ()(11)写出一些三位数.这些数都同时是2、3、5的倍数.(每种写两个数)(6%)①有两个数字是质数:②有两个数字是合数:③有两个数字是奇数:【知识点2】分解质因数(相加和相乘)把一个合数分成几个质数相乘的形式.叫做分解质因数.每个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数.叫做这个合数的质因数.例如15=3×5.3和5 叫做15的质因数.分解质因数.应该从最小的质数开始试积.直到每个因数都是质数时为止.例如:24=2×12 24=3×82×6 因此24=2×2×2×3 2×2×3 2×242=(2)+(40)=(3)+(39)=(5)+(37)× × √练习:(1)把48、51、28用几个质数相乘的形式分别表示出来.(2)下列的数可以用那两个质数的和表示.并总结规律.()+() 42=()+()()+() 80=()+()50=()+() 62=()+()(3)用质数填空.质数不能重复()+()=()+()=()+()+()2=()×()×() 30=()×()×() 8=()×()×()(4)100以内的哪些数是三个不同质数的积?【知识点3】确定数字这类题关键在于准确掌握有关倍数、因数、奇数、偶数、质数、合数以及一些特殊的数.例如:两个质数的和是25.这两个质数的差是多少?首先将25分解成两个质数的和的形式:25=2+23=3+22=5+20=7+18=11+14=13+12=17+8=19+6√ × × × × × × ×通过分解只有2和23一种情况.因此这两个质数的差是23-2=21练习:(1)一个四位数.个位上的数是最小的奇数.十位上的数是最小的偶数.百位上的数是最小的合数.千位上的数既是质数又是偶数.这个四位数是多少?(2)猜电话号码0592-A B C D E F G提示:A——5的最小倍数 B——最小的自然数 C——5的最大因数 D——它既是4的倍数.又是4的因数——它的所有因数是1.2.3.6 F——它的所有因数是1. 3 G——它只有一个因数这个号码就是(3)1+2+3+……+999+1000+1001的和是奇数还是偶数?请写出理由.(3%)(4)有两个质数.和是18.积是65.这两个质数是()和().(5)在100~150中.找出两个整数.使它们相乘的积等于91和187的乘积.这两个数分别是()和().(6)连续五个奇数的积的末位数是().(7)两数相加的和是最大的两位数.两数相减的差是大于90的最小质数.那么这两个数的积是().(8)三个连续自然数的乘积是720.这三个数是()、()和().(9)把六个数:85、51、33、91、65、77分成两组.每组三个数.每组中三个数的乘积相等.写出其中一个组的三个数()(10)一个数的最大因数和最小倍数相加等于62.这个数是()(11)一个数是18的倍数.它又是18的因数.猜一猜.这个数是().(12)一个数是48的因数.这个数可能是()一个数既是48的因数.又是8的倍数.这个可能是()一个数既是48的因数.又是8的倍数.同时还是3的倍数.这个数是()*短除法:把一个合数用质因数相乘的形式表示出来.叫做分解质因数. 例如:把18分解质因数为18=2×3×32 18 2 18 222×3×3 18和24的最大公因数是2×3=6. 18和24的最小公倍数是2×3×3×4=72。
2023-2024学年五年级下学期数学第一单元合数、质数(教案)一、教学目标1. 让学生理解合数和质数的概念,能够识别合数和质数。
2. 使学生掌握分解质因数的方法,能够对合数进行分解质因数。
3. 培养学生的观察能力、分析能力和逻辑思维能力。
二、教学内容1. 合数和质数的概念2. 合数和质数的识别3. 分解质因数的方法三、教学重点与难点1. 教学重点:合数和质数的概念,分解质因数的方法。
2. 教学难点:合数和质数的识别,分解质因数的过程。
四、教学过程1. 导入:通过生活中的实例,引导学生理解合数和质数的概念。
2. 新课:讲解合数和质数的定义,让学生学会识别合数和质数。
3. 活动一:让学生找出20以内的合数和质数,并进行分类。
4. 活动二:让学生尝试对一些合数进行分解质因数,总结分解质因数的方法。
5. 课堂小结:对本节课的内容进行总结,强调合数和质数的概念以及分解质因数的方法。
6. 课后作业:布置一些练习题,让学生巩固本节课所学内容。
五、教学评价1. 课堂参与度:观察学生在课堂上的发言和参与情况,了解学生对知识的掌握程度。
2. 练习完成情况:检查学生课后作业的完成情况,评估学生对知识的理解和运用能力。
六、教学反思1. 在教学过程中,要注意激发学生的学习兴趣,引导学生主动参与课堂活动。
2. 在讲解合数和质数的概念时,要尽量用简单易懂的语言,让学生容易理解。
3. 在进行分解质因数的练习时,要注重培养学生的观察能力和分析能力,让学生能够找到合数的最小质因数。
4. 在教学评价中,要及时了解学生的学习情况,对学生的学习方法进行指导,提高学生的学习效果。
七、教学资源1. 教材:《数学》五年级下册2. 教学课件:PPT或黑板八、教学时间安排1. 导入:5分钟2. 新课:10分钟3. 活动一:10分钟4. 活动二:10分钟5. 课堂小结:5分钟6. 课后作业:5分钟九、教学策略1. 启发式教学:通过提问、讨论等方式,引导学生主动思考,培养学生的思维能力。
质数和合数是小学五年级数学中非常重要的概念。
本文将详细总结小学五年级数学中有关质数和合数的知识点,并提供具体的例题和解析,帮助同学们更好地理解和应用这些知识。
一、质数的定义与性质1.质数的定义:只能被1和自身整除的数称为质数。
2.质数的特点:质数大于1,除了1和自身外没有其他因数。
3.示例:2、3、5、7、11等都是质数。
二、合数的定义与性质1.合数的定义:除了1和自身外,还有其他的因数的数称为合数。
2.合数的特点:大于1且不是质数的数。
3.示例:4、6、8、9、10等都是合数。
三、质数和合数的判定方法1.除法法:将待判定的数用小于它自身且不包括1的所有数进行除法运算,若能整除,则为合数;若不能整除,则为质数。
2.除以小于等于它一半的数:一个大于1的数,如果不能被2到它自身的一半的数整除,就是质数;否则是合数。
3.示例:判断数16的质合性。
解析:16÷2=8,16÷3≠整数,故16为合数。
四、质数的性质和运用1.除数字1和自身外,质数不能被任何其他数字整除。
2.任意两个质数的乘积还是质数。
3.从1到100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、974.示例:求1-100以内的所有质数。
解析:从2开始,用除法法判断每个数字是否为质数。
五、合数的性质和运用1.合数可以分解成几个质数的乘积。
2.任意两个合数的乘积还是合数。
3.合数的分解可以用分解法进行,一直除以质数,直到得到所有的质数因子。
4.示例:分解数32为质因数的乘积。
解析:32÷2=16,16÷2=8,8÷2=4,4÷2=2、因此,32=2×2×2×2=2^4六、质数和合数在算术运算中的应用1.质因数分解法:通过对质数和合数的分解式进行运算,可以简化大数的计算。
五年级下册数学《质数和合数》教案3篇Teaching plan of "prime number and total number" in mathem atics volume 2 of grade 5五年级下册数学《质数和合数》教案3篇前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:五年级下册数学《质数和合数》教案2、篇章2:五年级下册数学《质数和合数》教案3、篇章3:五年级下册数学《质数和合数》教案篇章1:五年级下册数学《质数和合数》教案教学内容:苏教版义务教育教科书《数学》五年级下册第37页例6、“试一试”和“练一练”,第39页练习六第1~3题。
教学目标:1.使学生认识质数和合数的意义,能判断或写出质数或者合数,并说明理由;体会非0自然数的分类,了解50以内的质数。
2.使学生通过比较、分类、概括等活动认识质数和合数,积累认识数学概念的基本活动经验,进一步体会分类的思想,培养观察、比较,以及抽象、概括和判断、推理等思维能力。
3.使学生主动参与数学思考和交流等活动,体会数学内容的内在联系,产生对数学的积极情感和主动学习数学的愿望。
重点难点:理解和认识质数和合数。
教学准备:小黑板教学过程:一、导入新课回顾:同学们在前面研究因数和倍数中,以是不是2的倍数为标准对大于O的自然数进行过分类,还记得按这个标准,把大于0自然数分成了哪几类吗?(板书:偶数奇数)引入:这节课我们继续研究大于O的自然数的分类。
五年级上册数学素材质数和合数的概念|北师大版【基础知识】质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数〔或素数〕合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其因数的个数的不同分类,可分为质数〔两个因数〕、合数〔大于两个因数〕和1〔1个因数〕。
100百以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
共25个。
除1除1以外任意两个质数的和都是偶数最小的质数是2,最小的合数是4质数×质数=合数合数×合数=合数质数×合数=合数【随堂练习】像2、3、5、7这样的数都是〔〕,像10、6、30、15这样的数都是〔〕。
20以内的质数有〔〕,合数有〔〕。
自然数〔〕除外,按因数的个数可以分为〔〕、〔〕和〔〕。
在16、23、169、31、27、54、102、111、97、121这些数中,〔〕是质数,〔〕是合数。
用A表示一个大于1的自然数,A2必定是〔〕。
A+A必定是〔〕。
一个四位数,个位上的数是最小的质数,十位上是最小的自然数,百位上是最大的一位数,最高位上是最小的合数,这个数是〔〕。
两个连续的质数是〔〕和〔〕;两个连续的合数是〔〕和〔〕〔8〕两个质数的和是12,积是35,这两个质数是〔〕A. 3和8B. 2和9C. 5和7〔9〕判断并改正:一个自然数不是质数就是合数。
〔〕所有偶数都是合数。
〔〕一个合数的因数的个数比一个质数的因数的个数多。
〔〕所有质数都是奇数。
〔〕两个不同质数的和一定是偶数。
〔〕三个连续自然数中,至少有一个合数。
〔〕大于2的两个质数的积是合数。
〔〕7的倍数都是合数。
〔〕20以内最大的质数乘以10以内最大的奇数,积是171。
〔〕2是偶数也是合数。
〔〕1是最小的自然数,也是最小的质数。
五年级下册数学第二单元《质数和合数》教案篇1 【教学目标】1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、独立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
【重点难点】质数、合数的意义。
教学过程:【复习导入】1、什么叫因数?2、自然数分几类?(奇数和偶数)教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。
【新课讲授】1、学习质数、合数的概念。
(1)写出1 ~20各数的因数。
(学生动手完成)点四位学生上黑板写,教师注意指导。
(2)根据写出的因数的个数进行分类。
(3)教学质数和合数概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。
如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。
(板书)2、教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
17 22 29 35 37 87 93 96教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)质数:17 29 37合数:22 35 87 93 963、出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100 以内的质数表?(2)汇报:①根据质数的概念逐个判断。
②用筛选法排除。
③注意1既不是质数,也不是合数。
五年级下册数学第二单元《质数和合数》教案篇2教学目标1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。
2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。
3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。
重点难点重点:初步学会准确判断一个数是质数还是合数。
难点:区分奇数、质数、偶数、合数。
一、质数和合数相关定义一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其因数的个数的不同分类,可分为质数(两个因数)、合数(大于两个因数)和1(1个因数)。
100百以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
共25个。
所有的质数都是奇数。
除2以外任意两个质数的和都是偶数。
最小的质数是2,最小的合数是4质数×质数=合数合数×合数=合数质数×合数=合数二、补充几个易错点,同学们一定牢记。
注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以内的质数:有8个(2、3、5、7、11、13、17、19)2、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;A的最大因数是:本身;A的最小倍数是:本身;最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的自然数是:0 最小的合数是:4;100以内质数歌二三五七和十一,十三后面是十七,还有十九别忘记,二三九,三一七,四一,四三,四十七,五三九,六一七,七一,七三,七十九,八三,八九,九十七。
五年级上册数学素材-质数和合数的概念【基础知识】质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其因数的个数的不同分类,可分为质数(两个因数)、合数(大于两个因数)和1(1个因数)。
100百以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
共25个。
【随堂练习】(1)像2、3、5、7这样的数都是(),像10、6、30、15这样的数都是()。
(2)20以内的质数有(),合数有()。
(3)自然数()除外,按因数的个数可以分为()、()和()。
(4)在16、23、169、31、27、54、102、111、97、121这些数中,()是质数,()是合数。
(5)用A表示一个大于1的自然数,A2必定是()。
A+A必定是()。
(6)一个四位数,个位上的数是最小的质数,十位上是最小的自然数,百位上是最大的一位数,最高位上是最小的合数,这个数是()。
(7)两个连续的质数是()和();两个连续的合数是()和()(8)两个质数的和是12,积是35,这两个质数是()A. 3和8B. 2和9C. 5和7(9)判断并改正:一个自然数不是质数就是合数。
()所有偶数都是合数。
()一个合数的因数的个数比一个质数的因数的个数多。
()所有质数都是奇数。
()两个不同质数的和一定是偶数。
()三个连续自然数中,至少有一个合数。
()大于2的两个质数的积是合数。
()7的倍数都是合数。
()20以内最大的质数乘以10以内最大的奇数,积是171。
()2是偶数也是合数。
()1是最小的自然数,也是最小的质数。
()最小的自然数,最小的质数,最小的合数的和是7。
()(10)下面是一道有余数的整数除法算式:A÷B=C… R1既不是质数也不是合数。