授课题目重因式
- 格式:docx
- 大小:10.84 KB
- 文档页数:5
课题:第二讲 整式与因式分解学习目标:1.了解单项式、多项式、整式的概念,弄清它们与代数式之间的联系和区别;2.理解同类项的概念,掌握合并同类项的法则和去、添括号的法则,能准确地进行整式的加、减、乘、除、乘方混合运算;3.会根据多项式的结构特征,进行因式分解,并能利用因式分解的方法进行整式的化简和求值。
教学重点、难点:重点:整式的运算法则和因式分解. 难点:乘法公式与因式分解. 课前准备:老师:导学案、课件学生:导学案、练习本、课本(八年级下册、七年级下册) 教学过程:一、基础回顾,课前热身 活动内容:整式相关内容回顾1.单项式是数与字母的 积 ,单独一个数或一个字母也是单项式.2.多项式是几个单项式的 和 ,每个单项式叫做多项式的 项 ,次数最高的项的次数叫做这个多项式的次数.3.单项式与多项式统称 整式 .4.所含字母相同,并且相同字母的 指数 也相同的项叫做同类项. 5.合并同类项的方法:系数 相加减 ,字母部分 不变 .6.去括号法则:如果括号前是 + 号,去括号后括号里各项都不改变符号;如果括号前是 - 号,去括号后括号里各项都改变符号.7.整式的加减法则:几个整式相加减,如果有括号先去括号,然后再合并 同类项 . 8.幂的运算性质:(1)n m a a ⋅=m n a +(m ,n 都是正整数) (2)()n m a =mn a (m ,n 都是正整数) (3)()n ab =n n b a (n 是正整数)(4)m n a a ÷= m n a -(a ≠0,m ,n 都是正整数,并且m >n ) (5)0a = 1 (a ≠0) (6)pa-=1p a( a ≠0, p 是正整数)9.整式乘法法则:(1)单项式与单项式相乘,系数 相乘 ,相同字母 的幂相乘 ,其它照抄,作为积的因式.(2)单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一 项 ,再把所得的积相加;(3)多项式与多项式相乘,先用一个多项式的每一 项 乘另一个多项式的每一 项 ,再把所得的积相加.10.乘法公式:(1)平方差公式:(a+b )(a-b )=22b a -(2)完全平方公式: (a+b )2=222ab b a ++ (a-b )2=222ab b a -+ 11.整式除法法则:(1)单项式与单项式相除,把系数、同底数幂分别 相除 后,,其它照抄,作为商的因式.(2)多项式除以单项式,先把这个多项式的每一 项 分别除以这个单项式,再把所得的商相加.12.把一个多项式化成几个因式 积 的形式,叫做因式分解.13.因式分解常用的方法有提公因式 法、 运用公式法 法.分解因式要分解到不能再分解为止.多媒体出示知识网络处理方式:多媒体出示知识提纲,学生依次回答,不完整的地方其他学生补充。
《高等代数》教案一、课程性质与目的各种数学理论在代数中取得了整合与统一,而高等代数是代数学的最基础部分。
高等代数是数学与应用数学、计算机科学、信息与计算等专业的重点基础课程,是这些专业硕士研究生入学考试的必考科目。
这是因为,它不仅是后续课程必备的数学基础,在理论和实际中有着广泛的应用背景,更重要的是这门课程的学习,对提高学生的抽象思维能力,掌握具体与抽象、特殊与一般、有限与无限等辩证关系,对数学思想、数学思维品质的形成,对培养数学感、数学基本功提高数学修养、数学素质,以及训练严谨的思维和严格的逻辑推理能力都有着特殊而重要的作用。
二、教学基本要求要求学生熟练掌握本课程的基本概念、基本理论和基本运算。
通过课程教学及大量的习题训练等教学环节,使学生做到概念清晰、推理严密及运算准确,以及提高运用已掌握的知识分析问题和解决问题的能力。
三、教学内容、学时分配及要求授课章节 §1.1 数域 §1.2 一元多项式 教学方法与手段 课堂讲授 课时安排 3 教学目的与要求:1. 掌握数域的概念。
2. 掌握一元多项式的定义、有关概念和基本运算性质。
教学重点、难点:一元多项式的定义、有关概念和基本运算性质 教学内容:§1.1 数域一、引言我们在处理一个数字问题时,往往要用到一些数。
按照所研究的问题,我们常常要明确规定所考虑的数的范围。
例如,求方程440x -=的根。
在有理数范围内此方程无根,在实数范围内,在复数范围内,这个方程有四个根:。
由此可见,同一问题在不同的数的范围内可能有不同的结论。
因此,在这种情况下,要明确规定所考虑的数的范围。
某个范围内的数的全体构成的集合称为数集。
另外,在作代数问题时,不但要考虑一些数,而且往往要对这些数作加减乘除四种运算。
因此所考虑的数集还必须满足条件:其中任两个数的和差积商仍在这个集合内。
根据以上的需要,人们引进了如下所谓数域的概念。
二、数域的定义定义1. 设P 是由一些复数组成的集合,其中包括0与1。
《咼等代数与解析几何》课程教学大纲一、课程基本信息1、课程名称:高等代数与解析几何(上、下)2、课程编号:03030001/23、课程类别:学科基础课4、总学时/学分:160/105、适用专业:信息与计算科学6、开课学期:第一、二学期二、课程与人才培养标准实现矩阵说明掌握自然科学基础知识和数学专业所需的技术基础及专业知识,掌握分析问题、解决问题的科学方法;通过所学专业基础知识,获取数学专业知识的能力,更新知识和应用知识的能力。
三、课程的地位性质与目的本课程是数学与应用数学专业学生的重要的基础课程,是现代信息科学中不可缺少的数学工具。
高等代数与解析几何最突出的特点就是代数与几何在知识与理论上的有机结合,在思想和方法上的融会贯通。
主要目的是掌握本门课程的基本理论和基本方法;同时通过本课程的教学,锻炼和提高学生的思维能力,培养学生分析问题和解决问题的能力,培养学生创新能力,提高学生的数学素养。
四、学时分配表五、课程教学内容和基本要求总的目标:通过本课程的学习要求学生对高等代数与解析几何的基本概念、基本定理有比较全面、系统认识,能把几何的观点与代数的方法结合起来,“代数为几何提供研究方法,几何为代数提供直观背景”,逐步培养学生运用几何与代数相结合的方法分析问题、解决问题的能力,培养学生抽象的思维能力及空间想象能力。
本课程各章的教学内容和基本要求如下:第一章向量代数【教学内容】1、向量的线性运算2、向量的共线与共面3、用坐标表示向量4、线性相关性与线性方程组5、n维向量空间6、几何空间向量的内积7、几何空间向量的外积8、几何空间向量的混合积【基本要求】理解向量的概念,掌握向量的线性运算、内积、外积、混合积运算;熟悉向量间垂直、共线、共面的条件;会用坐标进行向量的运算。
【教学重点及难点】重点:向量的概念,向量的线性运算、内积、外积、混合积运算;用坐标进行向量的运算。
难点:向量间垂直、共线、共面的条件。
第二章行列式【教学内容】1、映射与变换2、置换的奇偶性3、矩阵4、行列式的定义理解n阶行列式的概念及性质,掌握常见类型的行列式的计算;熟悉克拉默法则。
第四章因式分解●教学目标(一)教学知识点1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式.2.熟悉本章的知识结构图.(二)能力训练要求通过知识结构图的教学,培养学生归纳总结能力,在例题的教学过程中培养学生分析问题和解决问题的能力.(三)情感与价值观要求通过因式分解综合练习,提高学生观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识.●教学重点复习综合应用提公因式法,运用公式法分解因式.●教学难点利用分解因式进行计算及讨论.●教学方法引导学生自觉进行归纳总结.●教具准备投影片三张第一张(记作§4.6 A)第二张(记作§4.6 B)第三张(记作§4.6 C)●教学过程Ⅰ.创设问题情境,引入新课[师]前面我们已学习了因式分解概念,提公因式法分解因式,运用公式法分解因式的方法,并做了一些练习.今天,我们来综合总结一下.Ⅱ.新课讲解(一)讨论推导本章知识结构图[师]请大家先回忆一下我们这一章所学的内容有哪些?[生](1)有因式分解的意义,提公因式法和运用公式法的概念.(2)分解因式与整式乘法的关系.(3)分解因式的方法.[师]很好.请大家互相讨论,能否把本章的知识结构图绘出来呢?(若学生有困难,教师可给予帮助)[生](二)重点知识讲解[师]下面请大家把重点知识回顾一下.1.举例说明什么是分解因式.[生]如15x3y2+5x2y-20x2y3=5x2y(3xy+1-4y2)把多项式15x3y2+5x2y-20x2y3分解成为因式5x2y与3xy+1-4y2的乘积的形式,就是把多项式15x3y2+5x2y-20x2y3分解因式.[师]学习因式分解的概念应注意以下几点:(1)因式分解是一种恒等变形,即变形前后的两式恒等.(2)把一个多项式分解因式应分解到每一个多项式都不能再分解为止.2.分解因式与整式乘法有什么关系?[生]分解因式与整式乘法是两种方向相反的变形.如:ma+mb+mc=m(a+b+c)从左到右是因式分解,从右到左是整式乘法.3.分解因式常用的方法有哪些?[生]提公因式法和运用公式法.可以分别用式子表示为:ma+mb+mc=m(a+b+c)a2-b2=(a+b)(a-b)a2±2ab+b2=(a±b)24.例题讲解投影片(§4.6 A)个整式的积的形式是因式分解,否则不是.[生]解:(1)不是因式分解,因为右边的运算中还有加法.(2)不是因式分解,因为6x2y3不是多项式而是单项式,其本身就是积的形式,所以不需要再因式分解.(3)不是因式分解,而是整式乘法.(4)是因式分解.投影片(§4.6 B)[生]可以.分解因式的一般步骤为:(1)若多项式各项有公因式,则先提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.Ⅲ.课堂练习1.把下列各式分解因式(1)16a 2-9b 2;(2)(x 2+4)2-(x+3)2;(3)-4a 2-9b 2+12ab;(4)(x+y )2+25-10(x+y )解:(1)16a 2-9b 2=(4a )2-(3b )2=(4a+3b )(4a -3b );(2)(x 2+4)2-(x+3)2=[(x 2+4)+(x+3)][(x 2+4)-(x+3)]=(x 2+4+x+3)(x 2+4-x -3)=(x 2+x+7)(x 2-x+1);(3)-4a 2-9b 2+12ab=-(4a 2+9b 2-12ab )=-[(2a )2-2·2a·3b+(3b )2]=-(2a -3b )2;(4)(x+y )2+25-10(x+y )=(x+y )2-2·(x+y )·5+52=(x+y -5)22.利用因式分解进行计算(1)9x 2+12xy+4y 2,其中x=34,y=-21;(2)(2ba +)2-(2ba -)2,其中a=-81,b=2.解:(1)9x 2+12xy+4y 2=(3x )2+2·3x·2y+(2y )2=(3x+2y )2当x=34,y=-21时 原式=[3×34+2×(-21)]2 =(4-1)2=32=9(2)(2b a +)2-(2b a -)2 =(2b a ++ 2b a -)(2b a +-2b a -) =ab 当a=-81,b=2时 原式=-81×2=-41. Ⅳ.课时小结1.师生共同回顾,总结因式分解的意义,因式分解的方法及一般步骤,其中要特别指出:必须使每一个因式都不能再进行因式分解.2.利用因式分解简化某些计算.Ⅴ.课后作业复习题 A 组Ⅵ.活动与探究求满足4x 2-9y 2=31的正整数解.分析:因为4x 2-9y 2可分解为(2x+3y )(2x -3y )(x 、y 为正整数),而31为质数.所以有⎩⎨⎧=-=+1323132y x y x 或⎩⎨⎧=-=+3132132y x y x 解:∵4x 2-9y 2=31∴(2x+3y )(2x -3y )=1×31∴⎩⎨⎧=-=+1323132y x y x 或⎩⎨⎧=-=+3132132y x y x 解得⎩⎨⎧==58y x 或⎩⎨⎧-==58y x 因所求x 、y 为正整数,所以只取x=8,y=5. ●板书设计。
课题:第二讲 整式与因式分解学习目标:1. 了解单项式、多项式、整式的概念,弄清它们与代数式之间的联系和区别.2. 理解同类项的概念,掌握合并同类项的法则和去、添括号的法则.3. 掌握幂的运算、整式的乘除、平方差公式和完全平方公式.4.能准确地进行整式的加、减、乘、除、乘方混合运算.5.会根据多项式的结构特征,灵活选择合适的方法进行因式分解.6. 能利用因式分解的方法进行整式的化简和求值.教学重点与难点:重点:能够掌握整式的运算法则和因式分解.难点:概念的理解及其运用乘法公式与因式分解知识解决实际问题.教法与学法指导:本节课主要采用“知识回顾——题组练习——例题讲解——归纳总结——升华应用”的教学模式,层层推进,来巩固本章的主要内容,达到巩固基础、提升能力的目的. 学生通过自主学习、小组合作,展开互动性学习,让学生体会到学习数学的成就感. 课前准备:教师准备:多媒体课件、导学稿.学生准备:提前完成导学案的“基础知识梳理”.教学过程:一、基础知识之自我回顾课前请同学们翻阅课本浏览了七年级下册课本第2—49页及八年级下册课本第43—58页的内容,让大家熟记了概念、运算性质法则及公式等知识点,完成了知识梳理.下面我们比一比,看谁做得最好.(导学稿提前下发,学生在导学稿中填空.)设计意图:提前告知学生本节课要求,让学生早作准备。
让学生“有备而来”,有利于提高学生的复习效果。
让学生以比赛选手身份展示自己复习成果,利于提高本节课的复效果。
有效地表明其身份— —你是本课的主人,一定要参与其中,为提高课堂效率打下基础.【知识梳理】考点一 代数式1.2.代数式的值一般地,用 代替代数式里的 ,按照代数式指明的运算计算出的结果,叫做代数式的值.考点二 整式的有关概念1.单项式:由数和字母的 组成的代数式叫做单项式。
单独一个数或 也是单项式.单项式中的 叫做这个单项式的系数;单项式中所有字母的 叫做这个单项式代数式有理式 无理式分式 单项式的次数.2.多项式:几个 的和,叫做多项式._ _ 叫做常数项.多项式中 _的次数,就是这个多项式的次数.3. 和 统称整式.考点三 整式的运算1.整式的加减(1)同类项与合并同类项多项式中,所含的 相同,并且 也分别相同的项叫做同类项.把多项式中的同类项合并成一项叫做合并同类项.合并的法则是 相加,所得的结果作为合并后的系数, 不变.(2)去括号与添括号①)(c b a ++= , )(c b a +-= .②c b a -+ =+a ,c b a +-=a - .(3)整式加减的实质是合并同类项.2.幂的运算=•n m a a (n m 、都是整数). =n m a )( (n m 、都是整数). =n ab )( (n 为整数). =÷n m a a (0≠a ,n m 、都为整数).3.整式的乘法 单项式与单项式相乘:=-⨯-)61(332ym x xy . 单项式与多项式相乘:=++)(c b a m .多项式与多项式相乘:=++))((b a n m . 4.整式的除法单项式除以单项式:=÷-ab c b a 6)4(32 .多项式除以单项式:=÷++m cm bm am )( .5.乘法公式(1)平方差公式:=+-))((b a b a .(2)完全平方公式:=±2)(b a .考点四 因式分解1.因式分解的定义及与整式乘法的关系(1)把一个 化为 的形式,就是因式分解.(2)因式分解与 是互逆变形.2.因式分解的常用方法(1)提公因式法用公式可表示为=++cm bm am .公因式的确定:公因式为各项系数的 与相同因式的 的乘积.(2)运用公式法 22b a -= ,=+±222b ab a .3.因式分解的一般步骤(1)一提:如果多项式的各项有公因式,那么先提公因式;(2)二用:如果各项没有公因式,那么可以尝试运用公式法来分解;(3)三查:因式分解必须进行到每一个多项式因式都不能再分解为止.处理方式:让学生自己独立完成,然后教师进行提问,对学生掌握不好的地方加以强调,回答完成后在给学生留出2-3分钟时间进行记忆,以便更好地掌握知识点.设计意图:把本章知识点以填空题形式出现,便于学生梳理本章的知识点,检查其对知识点掌握情况,避免遗漏;同时也便于学生把握知识点间的联系,为学生归纳本章的知识网络奠定基础.【构建网络】通过前面知识梳理,相信同学们对整式与因式分解的知识结构已胸有成竹,现在请同学来详细说明.(教师留给学生3分钟时间,让学生明白本节知识及知识间的联系.)处理方式:学生举手回答,畅所欲言,其他同学互相讨论补充.在学生充分交流后教师出示【知识树】(多媒体投影展示)探究三:过三点作圆.问题1:经过同一直线上的A、B、C三点能作圆吗?问题2:作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何设计意图:在学生充分思考、交流的基础上出示本章知识网络图,让学生再次梳理知识,明确各知识点间的联系,将零散、孤立的知识形成网络,帮助学生更系统地掌握知识的同时,增强合作意识,以及与别人交流的能力,让学生在数学学习活动中完成整式与因式分解的知识要点复习.二、基础知识之基础演练1.(2014•日照)下列运算正确的是()A. 3a3•2a2=6a6B.(a2)3=a6C. a8÷a2=a4D. x3+x3=2x62.(2014•张家界)若﹣5x2y m与x n y是同类项,则m+n的值为()A. 1 B. 2 C. 3 D. 43.(2014•湘西州)下列运算正确的是()A.(m+n)2=m2+n2 B.(x3)2=x5 C.5x﹣2x=3 D.(a+b)(a﹣b)=a2﹣b24.(2014•湖州)计算2x(3x2+1),正确的结果是()A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x5.(2014•毕节)下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x (x﹣1)+26.(2014•枣庄)如图,在边长为2a 的正方形中央剪去一边长为(a+2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )A . a 2+4B . 2a 2+4aC . 3a 2﹣4a ﹣4D . 4a 2﹣a ﹣27.(2014▪抚州)因式分解:a 3-4a = . 8.(2014▪连云港)计算()()312-+x x = .9.(2014▪衡阳)先化简,再求值:()()()22a b a b b a b b +-++-,其中1a =、2b =-. 处理方式:这些都是基础知识和基本技能的再现,所以处理的方式都是让学生自行完成,要求学生10分钟内完成,其中第6、7、8、9题要求学生板演,10分钟后师生共同评价反馈矫正. 第9题教师规范书写过程.设计意图:几道简单题拉开复习的序幕,试题覆盖本章最基础的知识难度很小,正确率可以大大提升,让学生自信地复习下去.三、难点突破之聚焦中考(投影试题,学生分析、教师补充,学生完成解题过程,教师批阅,其他同学模仿.) 例1(2012●河北中考)已知1y x =-,则2()()1x y y x -+-+的值为 . 思路分析:由已知1y x =-,可得1-=-x y ,再代入到代数式中,即可求出它的值. 解:由1y x =-得1-=-x y ,所以1)()(2+-+-x y y x 1)()(2+-+-=x y x y .11)1()1(2=+-+-=答案:1方法总结:代数式求值大体可分为三种:一是直接代入求值.二是间接代入求值,就是根据已知条件,求未知数的值,再代入求值.三是整体代入.设计意图:我们知道“整体代入求值”的方法就是将一个整式(的值)作为一个整体代入到所求的整式中,从而求出整式的值的方法.解答此类问题时,要从整体上分析已知整式与所求整式之间结构的异同,从整体上把握解题思路,寻求解决问题的方法.例2(2014▪日照)若43=x ,79=y ,则y x 23-的值为( )A .74B .47 C .3- D .72 思路分析:欲求y x 23-的值,若采用先求出x ,y 的值,再代入的方法显然是不可的,观察y x 23-的指数是差的形式,可考虑逆用同底数幂的除法法则得到y x y x 22333÷=-,然后再逆用幂的乘方法则得到y x y x y x 9333322÷=÷=-,再将79=y ,43=x 代入即可求出其值。
《高等代数》课程教学大纲授课学时:总学分:作者:课程类型:专业必修课适用专业:数学与应用数学专业本科一、课程性质、地位和任务高等代数是数学系各专业开设的一门基础课,它不仅是应用学科的重要工具课,而且在抽象代数理论中也是一门很重要的理论基础课,特别是随着当今电子科技的发展,更加显示出高等代数的作用。
二、课程主要内容概述及教学基本要求本课程分以一元多项式为主体的多项式理论和线性代数两部分。
线性代数部分涉及行列式、线性方程组、矩阵、二次型、线性空间、线性变换、矩阵、欧几里得空间。
通过对这门课的学习,使学生不仅能掌握一些处理问题的基本方法,而且能使他们对于高等代数的基础理论有一个深刻的了解,从而为进一步学习专业课打下良好的基础。
培养学生的独立思维能力和解决实际问题的能力。
三、课程内容第一章多项式基本要求:通过本章学习,使学生掌握带余除法、辗转相除法、因式分解定理、复系数与实系数多项式的因式分解定理及有理系数多项式的有关结论。
教学重点:多项式的整除性理论和有理系数多项式,分解定理及复数域,实数域上分解形式。
有理根检验,Eisenstein判别法之使用,有理多项式分解归纳为整系数多项式分解。
教学难点:辗转相除法和有理系数多项式为。
分解定理及复数域,实数域上分解形式。
第二章行列式基本要求:通过本章的学习,使学生深刻理解行列式定义及性质并能用其计算简单行列式熟练掌握行列式的性质、按行(列)展开定理并在计算行列式时有思路。
会运用Cramer法则求线性方程组的解。
教学重点:行列式的定义、行列式按行(列)展开公式、Vandermonde行列式和Cramer法则教学难点:行列式的计算第三章线性方程组基本要求:通过教学使学生掌握n维向量的线性关系、矩阵的秩、线性方程组解的判定及求法。
教学重点:n维向量的线性相关性、向量组秩的概念及求秩方法、线性方程组有解的判别定理及解的结构。
教学难点:线性相关性理论和线性方程组解的理论。
因式分解复习教案(教师教学案)教学目标: 1。
复习巩固用提公因式、平方差公式、完全平方公式分解因式的方法。
2.会综合运用提公因式、平方差公式、完全平方公式分解因式.教学重点:综合运用提公因式、平方差公式、完全平方公式分解因式。
教学难点 :根据题目的结构特点,合理选择方法。
教师活动一、引入本章我们学习了分解因式,学习分解因式同学们要掌握以下知识:(1)什么叫分解因式?(2)怎样分解因式?或者分解因式有哪些方法?下面我们一起带着这些问题进行复习二、教授新课知识点1:分解因式的定义(教师和学生一起复习定义及特征,强调因式分解与整式的乘法的关系) 思考:什么是分解因式?因式分解与整式的乘法有何关系分解因式的特征,左边是 , 右边是 。
针对练习:下列选项,哪一个是分解因式( )(学生自主完成此题,并指出错在哪里)A .x x x x x 6)3)(3(692+-+=+-B 。
103)2)(5(2-+=-+x x x xC 。
22)4(168-=+-x x xD 。
y x x y x ⋅⋅=552知识点2:分解因式的第一种方法—-——--提公因式法思考:如何提公因式?(教师强调公因式公有的意思-——你有我有大家有才是公有)注意:(学生一起读一遍)公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数; (3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式 (5)某一项被作为公因式完全提出时,应补为例如:1.的公因式是多项式 963ab - aby abx -+_________2.多项式3223281624a b c a b ab c -+-分解因式时,应提取的公因式是( )A .24ab c -B .38ab -C .32abD .3324a b c3。
342)()()(n m m n y n m x +++-+的公因式是__________提公因式法分解因式分类:1.直接提公因式的类型:(1)3442231269b a b a b a +-=________________;(2)11n n n a a a +--+=____________(3)423)()()(b a b a y b a x -+---=_____________(4)不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值 2.首项符号为为负号的类型:(1)33222864y x y x y x -+- =_________(2)若被分解的因式只有两项且第一项为负,则直接交换他们的位置再分解(特别是用到平方差公式时) 如: 22188y x +-练习:1.多项式:aby abx ab 24186++-的一个因式是ab 6-,那么另一个因式是( )y x A 431..+-- y x B 431..-+ C y x 431--- D 。
因式分解复习课教案5篇第一篇:因式分解复习课教案因式分解复习课教学设计大邑外国语学校晏春霞中考目标:因式分解是代数的重要内容,它是整式乘法的逆变形,在通分、约分、解方程以及三角函数等恒等变形中有直接应用。
教学重点及难点:掌握提取公因式法、公式法、分组分解法、十字相乘法四种基本方法,并能熟练运用。
教学过程:一、中考知识梳理:1、什么叫做因式分解:把一个多项式化为几个整式的积的形式(恒等变形)2、分解因式的基本方法:(1)、提(提取公因式法);(2)、用(运用公式法、十字相乘法);(3)、分组(分组分解法)二、中考题型例析:1、因式分解的识别下列各式由左边到右边的恒等变形中,是分解因式的是()①(x+y)(x-y)=(x-y)(x+y)②a(x+y)=ax+ay③x2-4x+4=x(x-4)+4 ④x2-4=(x+2)(x-2)⑤x2-x+=x2(1-)2、灵活进行因式分解题型一:直接提公因式(1)-12x3z+18x4y(2)3x(a-b)+2y(b-a)题型二:直接用公式(1)x2-9y2(2)4x2+2x+ 题型三:先提公因式再套公式(1)2x2-8(2)-a3+a2b-ab2(3)a2b+2ab+b(4)x4y2-6x2y2-27y2题型四:先分组再套公式(1)x2-y2-3x-3y(2)16+8xy-16x2-y2 题型五:把代数式作为一个整体(1)(a+b)3-4(a+b)(2)(x+y)2-4(x+y-1)3、因式分解与分式的联系(1)当x2-4x+1=0时,求-(1+)的值(2)当x取何值式,分时有意义。
(3)当x取何值式,分时的值为零。
4、因式分解与方程的联系(1)解下列方程:x2-4x-12=0(2)若2x3-x2-5x+k有一个因式x-2,求k的值三、全国各地中考题型1、(2012呼和浩特,4,3分)下列各因式分解正确的是()A.–x2+(–2)2=(x–2)(x+2)B.x2+2x–1=(x–1)2C.4x2–4x+1=(2x–1)2D.x2–4x=2(x+2)(x–2)2、(2011江苏省无锡市,3,3′)分解因式的结果是()A.B.x2+1C.D.3、(2012北京,9,4)分解因式:.4、(2012福州,11,4分,)分解因式:x2-16=.5、(2011山东省潍坊市,题号13,分值3)分解因式:6、若是一个完全平方式,则m的值是7、若9x2+kxy+36y2是完全平方式,则k=8、当x取何值式,分时的值为零9、当x取何值式,分时有意义10、化简(1+)÷11若x3+5x2+7x+a有一个因式x+1,求a的值12、已知a,b,c是△ABC的三边的长,且满足:a2+2b2+c2-2b(a+c)=0,试判断此三角形的形状。
授课题目46重因式
重因式
授课题目:重因式
教学目标:理解多项式的重因式及导式的概念,掌握多项式有无重因式的判别方法授课时数:2学时
教学重点:多项式有无重因式判别及分离重因式的方法
教学难点:因式重数判别定理及无重因式的充分必要条件定理的证明(定理及定理的证明)
教学过程:
在典型分解式中,有的1>i k ,这时)(x p i 称位重因式,重因式的判定在因式分解理论的研究中,占有重要的地位。
一、重因式 1、定义
定义1。
设)(],[)(),(x p x F x p x f ∈是不可约多项式,如果 ),(|)(x f x p k 而)(1x p k +不能整除()f x ,则称()()p x f x k 是的重因式.
1k =当时,()()p x f x 称为的单因式,2,k ≥当时()()p x f x 称为的重因式,
()k p x 称为的重数.
2、问题
如何判断多项式有无重因式
有的说根据典型分解式,再用带余除法即可。
但典型分解式不易求得,该怎么办
二、重因式的判定 1、多项式的导数
定义2 设][)(011
1x F a x a x
a x a x f n n n n ∈++++=-- F 上的多项式122
11'2)1()(a x a x a n x
na x f n n n n +++-+=---称为f(x)的导数。
由定义知:
1)次多项式的导数是n-1次多项式; 2)项式与零次多项式的导数为零多项式;
3)多项式的n 阶导数为零次多项式,n+1阶导数为零多项式。
例1、求多项式325)(23-+-=x x x x f 的各阶导数 2、预备定理
定理 ()()
(1)p x f x k k ≥设是的重因式,()()1p x f x k '-则是的重因式.
证由已知,存在()[],q x F x ∈使得
()()(),()|().
k
f x p x q x p x q x =
所以
1()()()()(
)()k k
f x kp x p x q x p x q x -'''=+ 1
()[()()()()].k p
x kp x q x p x q x -''==
()|(),()|(),()()|()().
p x kp x p x q x c p x kp x q x ''因为所以由不可约多项式性质得但
()|()(),()|[()()()()].p x p x q x p x kp x q x p x q x '''+因此
()()1p x f x k '-故是的重因式.
注意,定理的逆不成立,如98)(5+=x x f ,4
()5x f x x '=是的4重因式,但不
是()f x 的因式。
3、主要定理
定理多项式()f x 没有重因式的充要条件是'
((),()) x f x =
证 ()f x 没有重因式,因而(2)式中121,t k k k ==== 因此,(3)式中
k k k -=-==-= 于是'
((),()) x f x =
若'((),())1,f x f x =则121110,t k k k -=-==-= 因而121,t k k k ==== 这样()f x 没有重因式。
(证毕)
4、判定有无重因式的方法,具体步骤如下: (1)由()f x 求)('x f
(2)求出)())(),(('x d x f x f =;
(3)若()1d x =, 则()f x 无重因式。
若,1)(≠x d 则()d x 的每个不可约因式都是()f x 的重因式。
具体的说,()p x 是()d x 的k 重因式,则()p x 是()f x 的k+1重因式。
例2.判断432()5972f x x x x x =-+-+有无重因式。
解 32()() x f x x x x '=-+-的导式为进一步求得
2
((),())(1)1,f x f x x '=-≠
所以()f x 有重因式,并且1()x f x -是的三重因式.
三,分离重因式的方法 1、理论依据
推论 1 设,0))((],[)(>??∈x f x F x f 则多项式))
('),(()()(x f x f x f x g =与)(x f 有完全
相同的不可约因式,而)(x g 无重因式。
在介绍前举下面例子:
)
7)(3)(2()()7()3()2()(2
35-+-=-+-=x x x x g x x x x f
问:1))(x f 、)(x g 有何相同之处
2))()(x g x f 与有什么不同
3)在讨论因式分解时,对哪个多项式讨论较为容易 2、分离重因式的具体步骤3、分离重因式的意义
利用可将一个有重因式的多项式因式分解问题,归结为一个次数比它低的较简单多项式的因式分解问题
例3 设.1084555)(2345-+--=x x x x x f 在实数域上分离)(x f 的重因式,并求)(x f 的典型分解式.
解 432()() x f x x x x x '=--+的导式为: 进一步求得
2
((),())(3)(2)f x f x x x '=-+
于是
2
()6(3)(2)((),())
f x x x x x f x f x =--=-+'
故
3
2
()(3)(2).f x x x =-+
注:无须设2
1)
2()3()(k k x x x f +-=,由)2()3())(),((2 '+-=x x x f x f 即可求出
)(x f 的典型分解式.
作业:P150,2—6题
相关文档:
•
•
•
•
•
•
•
•
•
•
更多相关文档请访问:。