盾构法施工管片拼装点位如何决定
- 格式:docx
- 大小:15.46 KB
- 文档页数:2
通过环自动排版系统使用计划一、使用计划目前我标段正在使用的两台小松盾构机均安装日本演算工坊出品的自动导向系统,其附带的自动排版系统无法满足施工。
我项目部已与日本小松公司上海办事处取得了联系,对改装自动测量系统和加装盾尾间隙仪的情况进行了了解,由于盾尾间隙仪的两个主要设备(激光测距仪、电动执行器)都是从日本进口,其交货时间至少要3个月。
设备进场后,需要进行盾尾间隙仪的安装,大概需要1-2天时间,然后进行自动测量系统的更新,从确定购买到投入使用大概需要100天时间。
根据我标段的施工进度,计划10月中下旬开始施工机栎区间下行线,计划11月上旬开始施工机栎区间上行线,盾尾间隙仪只能在机栎区间开始投入使用。
二、立项建议盾尾间隙仪采用的是激光测距,根据物质不同的密度反射波来确定盾尾的间隙,一旦盾尾内侧筒体上或管片外侧有泥土,有可能影响测量精度;再加上盾尾间隙仪的测量位置是否完全能用于复杂的施工环境;自动排版系统的程序是否完全适用于通用环管片等因素,建议对使用盾尾间隙仪的自动排版系统进行立项评审,开展运用研究。
三、自动排版系统需要注意的环节管片点位选择由多方面的因素相互影响决定的,把这些因素综合起来就是一个复杂的空间立体几何问题,这些因素主要分为以下方面:1、设计轴线,管片的点位选择必须切合设计轴线的平、竖向的空间要求;2、盾构机的姿态,因为铰接油缸的原因,盾构机的姿态分为前后筒体,在计算盾构机相对于中心轴线的趋势时,主要是利用中、后点的水平和垂直偏差来进行计算,但前筒体的姿态也是影响盾构机掘进趋势的重要因素,掘进的趋势又是控制管片趋势的主因之一,所以盾构机的姿态也是管片点位选择的重要考量因素之一。
3、盾尾间隙,理论间隙,上、下、左、右各3cm,但在掘进、拼装过程中,由于不同点位的超前量,会改变盾尾间隙,通用环管片每环都有楔形量,每环都会改变盾构间隙,通用环管片的盾尾间隙该变量在计算上是相当困难的。
而手工实测的间隙量,一般是管片拼装前后的间隙量,对于真正影响管片质量的尾刷仓两个突出圆环无法测量,在安装盾尾间隙仪时应着重考虑这个问题,测量出真正的盾尾间隙。
管片拼装作业指导书一、管片的基本参数衬砌环外径:6000mm;内径:5400mm;管片宽度:1500mm;管片厚度:300mm。
每环管片的最大重量约4.5T。
管片拼装质量是影响整个隧道工程质量的关键因素,管片拼装是整个盾构施工的重要环节之一,管片拼装点位是指封顶块管片位置的确定。
本工程所使用的管片为通用环管片,分别以印有:F 、L1、L2、B1、B2、B3。
二、管片拼装设备管片拼装机的运动情况是根据现有的条件而特别设计的,它可以对管片进行精确的定位。
伸缩、旋转和移动等功能都是比例控制的,贮存所有这些功能操纵板,可以使其对元件进行精确定位。
在掘进停止且切换为管片构建模式时,管片拼装机才可以通过便管片拼装遥控器进行工作。
对于管片的定位,管片拼装机总共有6个自由度:(1)拖架梁上的移动架的移动功能(平行移动到中心线);(2)竖对着中心线的旋转架的旋转+/-200°的功能;(3)竖对着中心的旋转架的伸缩臂的伸缩功能;(4)夹紧头的倾斜功能;(5)夹紧头的翻转功能;(6)夹紧头的旋转功能。
管片拼装机包括下列组件(为液压系统控制):✓管片输送器;✓前后移动伸缩缸(器);✓旋转架;✓带夹紧液压系统。
三、管片拼装施工3.1管片拼装管片拼装是采用盾构法施工的一个重要工序,是用环、纵向螺栓逐块将高精度预制钢筋混凝土管片组装而成。
(1)准备工作①管片下井拼装前,应对管片背部上的空穴、缺损,用聚合物快凝水泥填平,用钢丝刷清除管片上的浮灰、浮砂;②检查管片的吊装孔、弯曲螺栓孔是否收缩或有混凝土,若出现收缩或混凝土堵死现象,必须进行解决以期达到使用要求,必要时进行更换管片;③检查管片的传力垫和止水条,要求必须粘结牢固,表面平整,无空鼓、脱落、破损等现象;④管片在地面上按拼装顺序排列堆放,管片拼装的连接件和配件、防水垫圈等的数量规格要准备齐全,并随管片运送至工作面;⑤拼装前检查盾构机的姿态:盾构千斤顶顶块与前一环管片环面的净距必须大于管片宽度再加上10cm;检查前一环管片与盾尾间四周间隙情况,结合前环管片拼装情况确定本环拼装的纠偏措施;操作人员应全面检查管片拼装机的动力及液压设备是否正常,管片吊机钳子是否灵活、安全可靠;⑥盾构千斤顶油缸行程大于1750mm,满足管片拼装空间。
盾构隧道管片拼装施工选型与排版总结区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径5500mm,厚度350mm,宽度1200mm。
在盾构施工开工前,应对管片进行预排版,确定管片类型数量.1)隧道衬砌环类型为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。
国内一般采用第③种,项目隧道采用该衬砌环。
直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量。
盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。
由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。
2)管片预排版1、转弯环设计区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。
即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。
管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。
还有一个可供参考的因素:楔形量管模的使用地域。
楔形量理论公式如下:△=D(m+n)B/nR ①(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径)本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。
按最小水平曲线半径R=300m计算,楔形量△=37.2mm,楔形角β=0.334°。
值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。
2、圆曲线预排版设需拟合圆曲线半径为450m(南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下:β=L/R=0.6 ②△总=(R+D/2)β-(R-D/2)β=3720mm ③由△总计算出需用楔形环数量:n1=△总/△=100 ④标准环数量为:n2=(L-n1*B)/B=125 ⑤标准环和楔形环的比值为:u=n2:n1=5:4 ⑥即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1。
盾构管片选型和安装林建平在盾构法施工中,管片的选型和安装好坏直接影响着隧道的质量和使用寿命。
本文根据广州地铁三号线客~大区间的实际施工情况,就盾构管片选型和安装技术做总结分析。
一、工程概况客~大盾构区间分为两条平行的分离式单线圆形盾构隧道,总长度为3016.933米,管片生产与安装2011环。
管片外径6000mm,内径5400mm,宽度1500mm,防渗等级S10,砼C50。
依据配筋将管片分为A、B、C三类,C类配筋最高、B类配筋最低;管片的楔形量38mm,分左转、右转、标准三类。
二、管片的特征1、管片的拼装点位本区间的管片拼装分10个点位,和钟表的点位相近,分别是1、2、3、4、5、7、8、9、10、11。
管片划分点位的依据有两个:管片的分块形式和螺栓孔的布置。
拼环时点位尽量要求ABA(1点、11点)形式。
在广州盾构隧道管片要求错缝拼装,相邻两环管片不能通缝。
管片拼装点位有很强的规律,管片的点位可划分为两类,一类为1点、3点、5点、8点、10点;二类为11点、2点、4点、7点、9点。
同一类管片不能相连,例如1点后不能跟3、5、8、10这四个点位,只能跟11、2、4、7、9五个点位。
在成型隧道里两联络通道之间的奇数管片是同一类,偶数管片是同一类。
(竖列表示拼装好的管片,横向:√-表示可选后续的管片;×-表示不可选后续的管片)2、隧道管片排序鉴于管片拼装的规律性,所以盾构施工前必须对隧道管片做好排序,并根据设计,模拟出联络通道和泵房位置,管片拼到联络通道处时,点位要正好和设计点位符合,否则联络通道位置会被改变。
在本工程中,是从左线始发,第325、326环处是联络通道,此处拼装点位是11点,将标准块A3块拼到洞门位置。
盾构始发时的负环是6环,1环零环。
从负环到325环共332环,第325环是11点,相当于第332环是11点,那么负环第一环点位应该是1点,或3点、5点、8点、10点。
管片排序时,要优化洞门的长度,在广州洞门长度要求在400mm以上,一环管片的长度是1500mm,在条件允许的条件下,通过调整始发负环的位置,把每节隧道两端的洞门长度之和控制在1500mm以内,当隧道长度除以管片长度的余数大于两倍最小洞门宽度800mm(各地洞门的最小宽度要求不同)时,就取余数的一半为洞门长度。
盾构法隧道管片选型及拼装技术文章通过介绍盾构隧道管片的设计依据、楔形量、管片种类及选型、管片拼装点位选择方法和原则、管片拼装过程中应注意的问题等方面,阐述了盾构法隧道施工中的管片选型及拼装技术,以确保施工质量,供读者参考。
标签:盾构法;隧道施工;管片选型;管片拼装引言盾构法隧道施工技术在目前的城市地铁、轨道交通等地下隧道工程中的运用日益广泛,文章结合了深圳地铁5号线、7号线,台山核电站海底取水隧洞工程盾构施工,对盾构隧道施工中管片选型及管片拼装技术进行了总结和探讨。
1 管片选型1.1 盾构隧道管片设计管片宽度、厚度、配筋、砼强度和抗渗等级、分块长度、楔形量、直径等,均是管片设计的要素。
(1)管片厚度和配筋、砼强度和抗渗等级要根据全线的工程地质情况、隧道覆土厚度、施工荷载状况、隧道的使用目的及管片施工条件等多种因素確定,对管片配筋要进行试算和验算。
(2)管片环宽与分块设计主要由管片的制作、防水、运输、拼装、隧道总体线型、地质条件、结构受力性能、盾构掘进机选型等因素确定。
衬砌管片宽度越大,隧道结构的纵向刚度越大,抗变形能力越强;衬砌环纵向接缝越少,漏水环节、螺栓数量越少,施工速度越快,费用越省。
(3)管片楔形量。
楔形管环中最大宽度与最小宽度的差即楔形量。
楔形管片分为单面楔形、双面楔形两种,其中单面楔形又分为前楔形、后楔形两种,即通常所说的左转弯环、右转弯环。
确定楔形量的因素有三个:线路的曲线中心半径R,管片宽度d,管片直径D,标准环与楔形环环数之比U(U不小于1)。
取中心弧长L=(U+1)*d,圆心角β=L/R,外弧长L1=β(R+0.5D),内弧长L2=β(R-0.5D),即可计算出管片楔形量X= L1-L2。
1.2 管片选型应用实例每环管片均由标准块、邻接块、封顶块组成。
在深圳地铁5号线施工中,采用的管片为单面楔形,有标准环、左转弯环、右转弯环三种,外径6m,厚度30cm,宽度1.5m,楔形量38mm,每环分为6块(A1、A2、A3、B、C、K)。
管片选型及拼装作业指导书目的及范围编制管片的选型及拼装施工技术措施,对施工做以指导,保证管片的拼装质量,达到施工及查收要求。
目前国内常有的管片形式为通用环和标准环加左、右转弯环管片。
所以,主要介绍这两种类管片的施工技术。
编制依照管片设计要求;适应地道设计线路;适应盾构机的姿态。
职责管片拼装职责表序号部门人员人数职责备注审查管片选型及拼装的方案及技术1项目总工总工程师1人交底、安全交底,对区间地道的管片拼装做整体筹办,并负责管片选型拼装的配合协调工作。
负责管片选型及拼装的方案拟定,下2施工技术部技术主管1人发管片选型及拼装施工技术交底及安全交底。
队长1人看管管片选型及拼装过程。
详尽实行盾构机姿态的检查及盾尾3盾构队土建工程师1人/班缝隙,选择出最正确的管片选型,并指导管片拼装手实行。
管片拼装手1人/班依照土建工程师所选择出的管片选型进行管片拼装4.施工工艺、方法及主要技术措施施工工艺及流程管片止水条及衬垫粘贴管片选型、下井和运输组织盾构掘进管片吊装卸车、管片短驳掘进盾尾的清理缩回安装地点油缸管片螺栓的连接管片就位推动缸顶紧就位管片整圆器就位管片环离开盾尾后的二次紧固图管片安装工艺流程图施工方法管片的形式为平板型单层管片衬砌,衬砌环纵、环缝均采纳弯螺栓连接,经过合理的管片选型使管片错缝拼装。
管片的拼装点位通用性管片管片为双面楔形通用管片,衬砌环纵采纳12根弯螺栓连接,环缝采纳16根弯螺栓连接。
依据管片环向16个螺栓孔,将管片依照钟表的方向均匀分为16个点位,通过管片的选型,以达到错缝拼装的要求。
表管片拼装点位表12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 1112 ×—√×—√××√××√—×√—13 —×—√×—√××√××√—×√14 √—×—√×—√××√××√—×15 ×√—×—√×—√××√××√—16 —×√—×—√×—√××√××√1 √—×√—×—√×—√××√××2 ×√—×√—×—√×—√××√×3 ××√—×√—×—√×—√××√4 √××√—×√—×—√×—√××5 ×√××√—×√—×—√×—√×6 ××√××√—×√—×—√×—√7 √××√××√—×√—×—√×—8 —√××√××√—×√—×—√××—√××√××√—×√—×—√10 √×—√××√××√—×√—×—11 —√×—√××√××√—×√—×(竖列表示拼装好的管片,横向:√-表示可选后续的管片;×-表示不行选后续的管片)标准环加左、右转弯环管片管片为双面楔形通用管片,衬砌环纵采纳12根弯螺栓连接,环缝采纳10根弯螺栓连接。
地铁盾构隧道管片选型与拼装摘要:在盾构施工中因管片的选型和拼装不当而引起成型隧道管片破损及漏水现象是个普遍现象,结合西安六号线丈八六路站~丈八四路站区间右线的管片选型和拼装质量为研究对象,总结在施工过程中的经验说明了管片选型的原则,从管片不同拼装点位等方面叙述了施工中管片拼装要求。
关键词:盾构机、管片、盾尾间隙、盾构机姿态、油缸行程差1工程概况西安地铁六号线一期TJSG-7标丈八六路站~丈八四路站区间采用盾构法施工,右线区间长度1138.4m,最小曲线半径R=2000m。
区间隧道底部埋深介于17.14-24.52m之间。
隧道从丈八四路站西端以线间距14.0m坡度2‰出站后,以25‰的坡度下行,继续以14‰的坡度下行至区间最低点。
然后以20‰的坡度上行,最终以2‰的坡度进入丈八六路站。
2管片设计2.1本区间隧道管片采用C50P12预制钢筋混凝土管片,管片设计具体参数见下表:3管片选型的影响因素管片作为成型隧道衬砌、是隧道永久支护的一部分,会受到来自土层、地下水压力等特殊外力,如管片选型不当,会引起管片错台、开裂、隧道渗水,所以管片的选型至关重要。
选取管片主要需要考虑3方面的因素:(1)盾尾间隙;(2)推进油缸行程差;(3)铰接油缸行程差。
3.1管片选型首先要考虑盾尾间隙对管片选型的影响本工程采用小松TM614PMX-12号盾构机盾尾外径为6140mm、壁厚为40mm的圆柱形钢结构,管片的外径为6000mm。
假设拼装完成的管片中心轴线和盾尾的中心轴线重合时,则一周的盾尾间隙值为(6140-40*2-6000)=30mm,若拼装完成的管片中心轴线和盾尾的中心轴线不完全重合时,盾尾间隙就会发生偏差,盾尾间隙是管片选择的主要依据之一,当间隙过小,盾构推进过程中盾尾与管片发生摩擦,增大盾构掘进阻力,降低掘进效率,严重时损坏管片,造成隧道渗漏。
管片和盾尾通过盾尾刷密封,当盾尾间隙小于20mm,管片在拖出盾尾时,管片和盾尾刷密封会发生挤压,导致盾尾的密封效果减弱,造成盾尾浆液泄漏。
浅谈盾构区间管片选点拼装施工技术作者:程安年朱亚华来源:《砖瓦世界·下半月》2019年第10期摘要:结合合肥轨道4号线土建01【鸡鸣山站~科学城明挖区间】、【鸡鸣山站~方兴大道站区间】、【长宁大道站~创新大道站区间】等区间盾构掘进,主要介绍合肥城市地區在利用铁建重工土压平衡盾构机的情况,如何确定管片选点拼装,从而提高管片拼装质量,减少管片错台、碎裂、侵限等问题关键词:拼装选点确定;拼装顺序;拼装工艺一、工程基本概况合肥轨道4号线土建监理01标工程项目总计里程为8.3km,主要工作内容为4个车站,5条区间即鸡科区间、鸡方区间、长方区间、长创区间、创丰区间(2776m)、管片预制等内容。
二、地铁盾构管片拼装设计要求和精度三、技术依据1、《地下铁道工程施工及质量验收标准》GB/T 40299-20182、《盾构法隧道施工及验收规范》GB40446-20173、《地下防水工程质量验收规范》GB40208-20114、合肥地铁4号线土建01标区间图纸四、管片选点与拼装的重要性(一)管片分类:按材质分:钢管片、铸铁管片、钢筋混凝土管片;按管片适应的线性分类;普通楔形管片、通用管片;按连接方式分类:螺栓连接和榫槽连接(二)管片选点是根据线路走向,通过拼装点位的选择,以达到拟合隧道线路的管片组合。
(三)管片安装将管片按照已选好的点位组装起来,形成一个整体的管环,主要由盾构机管片拼装机实施。
(四)管片选点与拼装的重要性:管片选点正确与否、安装是否规范直接关系到盾构隧道是否会发生错台。
并导致渗漏水、管片破损等伴生现象.五、管片选点施工技术(一)管片选点原则:确保管片的走向符合线路走向,且拼装后的管片满足盾尾间隙的最低要求。
(二)选点依据:①管片拼装点位顺序②盾构机的姿态与油缸行程③盾尾间隙(三)管片拼装点位的选择:合肥城市地铁的管片为六大块(标准块A1、A2、A3,邻接块B1、B2,封顶块K),共16个点位,22.5度一个点位。
盾构管片拼装点位确定方法与流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、确定盾构管片拼装点位的重要性。
在盾构施工中,盾构管片的拼装点位确定是非常重要的环节。
盾构法隧道施工管片拼装一、一般规定1、拼装前,管片防水密封材料的粘贴效果应验收合格。
2、管片选型应符合下列规定:(1)应根据设计要求,选择管片类型、排版方法、拼装方式和拼装位置;(2)当在曲线地段或需纠偏时,管片类型和拼装位置的选择应根据隧道设计轴线和上一环管片姿态、盾构姿态、盾尾间隙、推进油缸行程差和较接油缸行程差等参数综合确定。
3、管片应按便于拼装的顺序存放,存放场地基础条件应满足承载力要求。
4、拼装管片时,拼装机作业范围内严禁站人和穿行。
二、拼装作业1、管片拼装前,应对上一衬砌环面进行清理。
2、应控制盾构推进液压缸的压力和行程,并应保持盾构姿态和开挖面稳定。
3、应根据管片位置和拼装顺序,逐块依次拼装成环。
4、管片连接螺栓紧固扭矩应符合设计要求。
管片拼装完成,脱出盾尾后,应对管片螺栓及时复紧。
5、拼装管片时,应防止管片及防水密封条损坏。
6、对已拼装成环的衬砌环应进行椭圆度抽查。
7、当盾构在既有结构内空推并拼装管片时,应合理设置导台,并应采取措施控制管片拼装质量和壁后填充效果。
8、当在富水稳定岩层掘进时,应采取防止管片上浮、偏移或错台的措施。
9、当在联络通道等特殊位置拼装管片时,应根据特殊管片的设计位置,预先调整盾构姿态和盾尾间隙,管片拼装应符合设计要求。
三、拼装质量控制1、管片不得有内外贯穿裂缝、宽度大于0. 2伽】的裂缝及混凝土剥落现象。
2、管片防水密封质量应符合设计要求,不得缺损,粘结应牢固、平整。
3、螺栓质量及拧紧度应符合设计要求。
4、管片拼装过程中应对隧道轴线和高程进行控制,其允许偏差和检验方法应符合表9. 3. 4的规定。
表9. 3. 4隧道轴线和髙程允许偏差和检验方法(mm)注:本表中市政隧道包括给水排水隧道、电力隧道等。
5、施工中管片拼装允许偏差和检验方法应符合表9. 3. 5的规定。
表9. 3. 5管片拼装允许偏差和检验方法注:本表中市政隧道包括给水排水隧道、电力隧道等;6、粘贴管片防水密封条前应将管片密封槽清理干净,粘贴后的防水密封条应牢固、平整和严密、位置应正确、不得有起鼓、超长和缺口现象。
盾构管片拼装点位确定方法与流程The determination of the assembly point of shield tunneling segment is a crucial step in the construction process. 盾构管片拼装点位的确定是施工过程中的关键步骤。
It involves precise measurements, careful planning, and coordination among various parties. 这涉及到精确的测量、细致的规划以及各方之间的协调。
The method and process used to determine the assembly point are essential for the successful completion of the tunneling project. 确定拼装点的方法和流程对于成功完成隧道工程至关重要。
One of the most common methods used to determine the assembly point of shield tunneling segments is the use of laser scanning technology. 确定盾构管片拼装点的最常见方法之一是利用激光扫描技术。
This technology allows for the accurate measurement of the tunneling alignment and the positioning of the segments. 这项技术能够精确测量隧道的对准程度和管片的定位。
By scanning the tunneling face and surrounding areas, engineers can create a 3D model of the tunnel and identify the optimal assembly points for the segments. 通过扫描隧道掘进面和周围区域,工程师可以建立隧道的三维模型,并确定管片的最佳拼装点。
盾构隧道管片拼装施工选型与排版总结区间盾构结构为预制钢筋混凝土环形管片,外径6200mm内径5500mm 厚度350mm宽度1200mm在盾构施工开工前,应对管片进行预排版,确定管片类型数量.1) 隧道衬砌环类型为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。
国内一般采用第③种,项目隧道采用该衬砌环。
直线衬砌环与楔形衬砌环组合排版优缺点:优点一简化施工控制,减少管片选型工作量;缺点一需要做好管片生产计划,增加钢模数量。
盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。
由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。
2) 管片预排版1、转弯环设计区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。
即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。
管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。
还有一个可供参考的因素:楔形量管模的使用地域。
楔形量理论公式如下:△ =D( m+n B/nR(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径)本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。
按最小水平曲线半径R=300m计算,楔形量^=37.2mm 楔形角P =0.334 °。
值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。
2、圆曲线预排版设需拟合圆曲线半径为450m南门路到团结桥区间曲线半径值),拟合轴线弧长270m需用总楔形量计算如下:P 二L/R=0.6△总=(R+D/2) P - (R-D/2) P =3720mm由△总计算出需用楔形环数量:n1= △总/ △=100标准环数量为:n2= (L-n 1*B ) /B=125标准环和楔形环的比值为:u=n2: n1=5:4即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1。
步骤三中完成可选择拼装点位的选择性评价后,还需对当前环盾构管⽚拼装施⼯完成后的盾构机千⽄顶⾏程信息和盾尾间隙信息分别进⾏计算;当前环盾构管⽚拼装施⼯完成后的盾构机千⽄顶⾏程信息包括YGS、YGX、YGZ和YGY;其中,YGS为当前环盾构管⽚拼装施⼯完成后盾构机上部千⽄顶的⾏程,YGX为当前环盾构管⽚拼装施⼯完成后盾构机下部千⽄顶的⾏程,YGZ为当前环盾构管⽚拼装施⼯完成后盾构机左侧千⽄顶的⾏程,YGY为当前环盾构管⽚拼装施⼯完成后盾构机右侧千⽄顶的⾏程;当前环盾构管⽚拼装施⼯完成后的盾尾间隙信息包括DWS、DWX、DWZ和DWY;其中,DWS 为当前环盾构管⽚拼装施⼯完成后的上部盾尾间隙,DWX为当前环盾构管⽚拼装施⼯完成后的下部盾尾间隙,DWZ为当前环盾构管⽚拼装施⼯完成后的左侧盾尾间隙,DWY为当前环盾构管⽚拼装施⼯完成后的右侧盾尾间隙。
上述⼀种地铁盾构施⼯通⽤环管⽚拼装点位确定⽅法,其特征是:步骤⼆中三个所述选择影响指标中所述盾构机姿态的权重系数记作λZ,盾构机千⽄顶⾏程差的权重系数记作λQ,盾尾间隙的权重系数记作λD;其中,0<λZ<1,0<λQ<1,0<λD<1,λZ+λQ+λD=1。
上述⼀种地铁盾构施⼯通⽤环管⽚拼装点位确定⽅法,其特征是:步骤⼆中三个所述选择影响指标的权重系数中数值最⼤的权重系数记作λM,λM=0.4~0.6;三个所述选择影响指标的权重系数中数值最⼩的权重系数记作λm,λm=0.1~0.3。
上述⼀种地铁盾构施⼯通⽤环管⽚拼装点位确定⽅法,其特征是:步骤⼆中对三个所述选择影响指标的权重系数进⾏确定时,先根据对当前环盾构管⽚所处隧道节段进⾏盾构掘进施⼯时的盾构掘进施⼯参数,并结合预先设定的设定参数,对三个所述选择影响指标的影响程度分别进⾏确定;影响程度最⼤的选择影响指标的权重系数=λM,影响程度最⼩的选择影响指标的权重系数=λm;所述设定参数包括盾构机姿态偏差阈值s、千⽄顶⾏程差阈值q和盾尾间隙允许值d;其中,s>0,q>0且d>0。
盾构法施工管片拼装点位如何决定
在管片拼装过程中,当上一环管片拼装完毕后,根据盾尾间隙和油缸行程怎样决定下一环管片的型号和点位?
最佳答案
简单讲由油缸行程差可以确认下一环管片的楔形量,根据楔形量和隧道线路要求选择管片,在这个过程中要考虑盾尾间隙是否能满足选择管片的要求。
具体讲从以下方面得出
管片拼装方式
管片形式分为L1、L2、B1、B2、B3、F六种,每块管片都有不同的楔形量,我们依靠这个楔形量来实现隧道的转向及盾构机的辅助控制,其中F管片的楔形量最小,拼装顺序
F管片位置的选择
在盾构机前进时,管片的拼装位置极其重要,对盾构机前进时的姿态控制很有效。
当管片与推进千斤顶接触平面不重合时,在千斤顶产生推力时管片即出现裂缝导致漏水,并且此时出现盾构机的姿态难以控制,很难遵循预定线路前进。
由于管片与推进千斤顶接触平面有个夹角,近似于线接触,管片混凝土的拉伸强度为50kg/平方厘米左右,而千斤顶产生的拉伸应力远远超过该值,由此判断管片开裂起因于千斤顶与管片平面不重合。
并且由于管片碎裂使得盾构机各个千斤顶不同步,导致很难控制方向。
所以应使管片与推进千斤顶接触平面尽量重合,这可以通过选择管片的拼装位置来实现。
在选择管片位置时,有两个参数需要考虑,一个是盾尾间隙的保证;另一个是管片平面走向趋势。
管片趋势相关的参数有:推进汕缸行程,铰接油缸行程,管片平面位置,
由此我们就可以得到管片走向趋势:CH(水平走向趋势)=Fb—Fd;CV(垂直走向趋势)=Fa-Fc。
其中,Fa=Pa-Aa Fb=Pb-Ab Fc=Pc-Ac Fd=Pd-Ad
当我们用管片的不同楔形量来使CH、CV为。
时,管片平面就与盾构机前进平面重合,此时盾构机的千斤顶受力情况最好,便于整个掘进工序,当楔形量不能使CH与CV同时为0时。
时,应尽量使其中一个保持最小,使盾构机能获得最大的推进力,并使侧向分力减小,便于盾构机遵循预定线路前进。
因此,应优先考虑管片趋势。
盾尾间隙对选择管片位置的影响
不同点位的选择,可以控制盾尾间隙,由于在盾尾后部设有一圈加强环,可以保持盾尾保圆度另外还可以作为一道止水环,防止泥水进人盾尾密封刷内。
加强环高度为45mm,而且盾构机在不同的线路上总是有一定的偏移量,因此盾尾间隙要保持在45mm以上,否则会使加强环挤压管片造成碎裂,并妨碍了掘进时方向的控制。
由于管片类型不同,对盾尾间隙可以起到调节作用,我们把盾尾分成11个点位。
例如:当F块位于3点位置时,就可以将3点位置上的盾尾间隙减小,而9点钟位置间隙得到最大补偿
当前进线路为小半径曲线时,一侧盾尾间隙会变得很小,而且始终这样。
出于对盾尾间隙的考虑,我们选择的管片位置有时很不利于盾构机的掘进,使得千斤顶平面与管片平面有很大的一个夹角,由于这个原因会导致管片发生挤碎现象,造成盾构机的控制上的困难。
当管片经常发生碎裂时,我们就要通过控制盾构机的线路来使间隙得到平衡,从而选择最适合的点位如图4。
当间隙得到平衡后再还回原来线路,但是调整线路应尽量小。
再次掘进时,我们对管片拼装位置做了仔细的推敲再进行拼装,使管片位置最优化,再也没有出现盾构机掘进时因管片碎裂造成难以控制的现象。
通过对管片拼装点位的深入了解和研究,我们对通用管片衬砌隧道的掘进控制技术有了很大的提高。