特高频局部放电测试仪的检测步骤
- 格式:docx
- 大小:98.71 KB
- 文档页数:2
Portable UHF MonitorOperation Manual GIS局放超高频带电测试仪操作手册英国DMS公司北京深蓝华盛科技有限公司2010年12月目录1. Introduction -- 概述 (2)1.1. The UHF principle -- 超高频检测的工作原理 (2)1.2. Monitor software -- 局部放电检测软件 (2)1.3. The online Peak Hold (Point on Wave) displays -- 峰值检测数据显示 (3)1.4. The online Single Cycle displays-- 单周期检测数据显示 (3)1.5. The online PRPD displays -- PRPD检测数据显示 (3)1.6. Event Mode – PD事件模式 (4)1.7. Library –数据库 (4)1.8. Data storage in PortSUB for Windows 2000 and Windows XP -- 系统软件PortSUB的数据存储 (5)2. Operating the Portable UHF Monitor -- 如何操作Portable UHF Monitor (5)2.1. Starting PortSUB for the first time / Adding a new Substation or Location -- 初次启动系统软件PortSUB/增加一个新变电站或检测地址 (5)2.2. The PortSUB Main Window –系统软件PortSUB主窗口 (8)2.3. PortSUB Status -- PortSUB的状态参数 (9)2.4. System Properties – Configure the UHF Monitor 系统参数--检测仪参数配置 (10)2.5. Channel Window – View the PD Data 检测通道窗口–观察PD数据 (13)2.6. Channel Window – Online Single Cycle, Peak Hold and PRPD data 检测通道窗口--Online Single Cycle、Peak Hold和PRPD数据 (13)2.7. Channel Window – PD Data Library 通道检测窗口—PD数据库 (16)2.8. Channel Window – History Data 通道检测窗口--- 历史数据 (17)2.9. Channel Window - Event Data 检测通道窗口—PD事件数据 (20)2.10. Channel Window – Speed Menu 通道检测窗口—快速操作菜单Speed Menu .. 221.Introduction -- 概述1.1. The UHF principle -- 超高频检测的工作原理运行中的GIS发生故障的原因,可能是母线气室内有超过一定长度的自由金属体,可能是由于屏蔽层与高压母线或气室间的绝缘问题而引起的电火花,也可能是因为尖端(突起)部位产生的电晕放电,所有这些问题都会在GIS发生故障之前,出现局部放电(PD:partial discharge)现象。
局部放电检测仪操作规程一、校准将空气开关推到闭合位置,转动操作台上的电源锁,接通电源,打开检测仪的电源开关,设备开机,并自动启动检测软件。
调节粗调增益到“0”档位。
将校准信号发生器一端接高压发生器的高压端,一端接地,打开信号发生器并选择合适的校正电荷量档位,一般选择50pC或100pC。
观察显示屏的椭圆放电量指示,和数码管放电量读数器读数,调节粗调增益档位,逐档上升,直至档位“3”,升档过程中应注意放电量读数,若超过本档位的测量范围(120),且显示屏椭圆放电指示过高(高于约2cm),应停止向上升档,并检查是否有异常或干扰过大。
升至档位“3”后,观察放电量读数器读数,并调节细调增益旋钮与校准信号电荷量一致,校准完成后细调增益旋钮不得再调节,除非再次校准。
粗调增益旋钮重新调节到“0”档位,并关闭校准信号发生器,移除连接线。
二、检测将试品正确连接到高压端和接地端。
按下“启动”按钮,连续按“升压”按钮,升压至试品工频耐压值的80%左右,并保持20至30秒,然后按“降压”按钮将电压调节至要求的局放电压值。
观察显示屏椭圆放电量指示和放电量读数器读数,若读数过小,则应调高一档,若读数超过100则应降低一档,最终读数应为放电量读数器读数乘以或除以档位相对应的倍率来确定。
档位“3”倍率为1,相邻档位倍率为10,档位“2”倍率为10,档位“4”倍率为0.1,其他各档位倍率按此类推。
读取放电量数据后,重新将增益粗调旋钮调至档位“0”,逐步降低电压,直至“零位”指示灯亮起,按下“停止”按钮。
用放电棒的导电部位碰触试品高压端进行放电。
在此项完成前禁止任何人员靠近试品以及高压发生器。
三、维护保养使用完毕后,关闭局放检测仪电源,关闭操作台电源锁,将空气开关扳至断开位置。
用防尘布改好操作台。
日常使用应对操作台和高压发生器除尘清洁,并保持干燥。
局部放电检测仪的使用步骤介绍仪器概述局部放电检测仪是一种专业的检测仪器,用于检测电气设备中的局部放电现象。
局部放电是制约电气设备安全运行的一个重要因素,因此在电气设备的维护和运行过程中使用局部放电检测仪是非常必要的。
使用步骤准备工作在使用局部放电检测仪进行检测之前,需要进行一些准备工作:1.检查检测仪的电源和连接线是否正常;2.对待检设备进行清洁,确保检测仪能够接触到所有需要检测的部位;3.选择适当的检测位置,并将检测仪的探头放置在该位置。
连接仪器接好电源线、放电探头及地线,将探头紧贴在被检测器件的表面上,保证电极贴合良好,尤其是被检测设备需要注意其是否接地。
开始检测通电后仪器会自动启动,显示屏会有相关参数的读数。
局部放电检测仪会自动记录局部放电的时间和发生放点的位置,并以声音或者其他方式进行提示。
需要注意的是,局部放电的检测不仅涉及局部放电的检测,还有检测数据的处理及分析,因此使用局部放电检测仪需要进行详细的检测操作及数据处理分析。
停止检测当检测完成后,应及时将探头从被检测器件表面上移除,并关闭电源。
数据分析局部放电检测仪会输出大量的数据,包括放电电容量、零漏电流、设备介质的击穿强度等多个参数。
因此,对局部放电检测数据的分析处理非常关键。
可以通过分析局部放电检测仪的数据,对设备进行运行状态进行分析,有针对性的进行设备维护。
注意事项1.在使用局部放电检测仪进行检测时,需关闭被检测电器的电源,并确保设备处于安全状态;2.执行检测过程中,应保证人员的安全,严格遵循各项规定;3.进行数据分析时,需充分考虑被检测对象的情况,结合其他测试数据进行综合分析。
总结局部放电检测仪是电气设备维护保养的重要工具,使用步骤基本相同,但不同的情况和被检测对象也会出现一些操作细微的差异,因此,在使用前需要仔细阅读检测仪器的说明书,并掌握相关的电学知识,确保在使用过程中能够得到准确的检测结果,从而更好地保护设备运行的安全和稳定。
PD-HAT局部放电检测仪用户手册目录PD-HAT (2)1 产品概述 (4)2 检测原理 (5)3 仪器操作 (6)4传感器操作 (7)5仪器的功能 (8)5.1 启/停测量 (8)5.2 切换显示 (8)5.3 图谱分析 (9)5.4 放电判断 (11)5.5 数据回读浏览 (11)5.6 自动更新 (11)5.7 数据导出 (11)5.7 帮助 (12)6使用条件 (12)7性能指标 (12)8现场测量方法与注意事项 (14)现场测量步骤: (14)附录A 常见干扰源和抗干扰方法 (18)附录B 干扰信号的典型图谱 (19)附录C 检测数据的要求 (20)附录D 术语和定义 (20)1 产品概述中压开关柜(3-66KV)是城市配电网中重要基础设施,其运行的稳定性直接影响到城市经济的发展与人民生活水平质量的提高。
开关柜设备的可靠性直接决定了用户供电的可靠性。
状态检修是提高供电设备可靠性的重要技术手段。
但是开关柜不可能采取像变压器、GIS设备那样实现全面、实时的在线监测。
因为开关柜数量众多,开关柜的设备造价低,监测设备的成本很高。
但往往开关柜的故障会导致严重的后果,导致供电中断,严重影响城市电网稳定运行。
经统计,开关柜的绝缘与载流故障占整个开关柜的30%-50%,并且绝缘与载流故障与局部放电现象密切相关,对中压开关柜的局部放电检测能显著减少故障概率。
为此,我们精心设计了PD-HAT局部放电检测仪,专门用于检测开关柜局部放电的状况,直观分析局部放电的严重程度,衡量设备内部绝缘的劣化程度,使维护人员在变电设备出现绝缘劣化时能够及时发现,采取相应措施,避免设备出现短路等严重故障。
PD-HAT局部放电检测仪采用目前流行的暂态地电压(TEV)和超声波(AE)检测局部放电的方法,通过外置的TEV天线接收开关柜内部局部放电辐射和产生的暂态地电压和超声波信号。
PD-HAT在使用上以暂态地电压为主要检测方法,超声波为辅助检测手段,还集成了HFCT检测方式,可以对开关柜局部放电进行全方位的检测。
特高频局部放电检测技术知识讲解电力设备的局部放电是一种常见的电气现象,它预示着设备的绝缘状况可能出现问题。
特高频局部放电检测技术是一种先进的检测技术,能够有效地检测和识别电力设备的局部放电。
本文将详细介绍特高频局部放电检测技术的原理、应用及优势。
一、特高频局部放电检测技术原理特高频局部放电检测技术主要利用局部放电产生的电磁波进行检测。
当电力设备发生局部放电时,放电产生的电流会激发出电磁波,这些电磁波的频率通常在数吉赫兹到数百吉赫兹之间。
特高频局部放电检测设备能够捕捉到这些特高频电磁波,并对其进行处理和分析。
二、特高频局部放电检测技术的应用特高频局部放电检测技术在电力设备检测中具有广泛的应用。
例如,它可以用于变压器、电缆、断路器等电力设备的检测。
通过对特高频电磁波的分析,可以判断出设备的绝缘状况,发现潜在的故障,从而预防设备故障的发生。
三、特高频局部放电检测技术的优势特高频局部放电检测技术相比传统的检测方法具有以下优势:1、高灵敏度:特高频局部放电检测技术对局部放电产生的电磁波非常敏感,可以检测到非常微弱的放电信号,从而能够发现潜在的设备故障。
2、宽频带:特高频局部放电检测设备具有宽频带的接收能力,可以接收到的电磁波频率范围很广,从而能够获得更全面的设备信息。
3、抗干扰能力强:特高频局部放电检测技术对噪声的抑制能力较强,可以有效地避免干扰信号对检测结果的影响。
4、非接触式检测:特高频局部放电检测技术可以采用非接触式的方式进行检测,无需接触设备,从而不会对设备的正常运行产生影响。
四、结论特高频局部放电检测技术是一种先进的电力设备检测技术,具有高灵敏度、宽频带、抗干扰能力强和非接触式检测等优势。
通过对电力设备的特高频电磁波进行检测和分析,可以有效地发现潜在的设备故障,预防设备故障的发生。
在未来的电力设备检测中,特高频局部放电检测技术将会发挥越来越重要的作用。
随着电力系统的不断发展,人们对电力设备的安全与稳定性要求越来越高。
特高频局放检测仪作业指导书目录一、仪器操作安全注意事项 (1)二、配套附件 (1)1)局放检测主机 (1)2)传感器 (2)3)手提电脑 (3)三、检测操作流程 (3)1)被检测设备基本信息 (3)2)仪器连接 (3)3)仪器操作 (4)四、数据分析判断方法案例 (6)五、整理现场 (10)一、仪器操作安全注意事项1)操作时,不得受到冲击。
2)不得让水等液体流到设备上。
3)设备的周围不得有苯等有易燃物质。
4)设备里不得进入沙子或灰尘。
5)除了配套的Cable以外,不要任意使用其他电缆。
6)电缆上不能受外力。
7)不得用尖锐物品划伤设备或锁。
8)保管场所应是防潮防尘环境。
9)搬运时,小心轻放。
10)不得私自拆卸装置11)不得使用有放大功能的UHF传感器。
二、配套附件1)局放检测主机①通信接口与手提电脑的TCP/IP通信端口连接的通信接口。
②电源开关局部放电检测装置的电源ON/OFF。
③电源电缆接口局部放电检测装置的电源供应。
④电源・通信LED电源・通信正常连接时亮。
⑤UHF传感器连接接口与UHF传感器连接的N-Type接口。
①外置型UHF PD传感器。
分别为外置型传感器和环氧树脂浇注口型传感器检测频率:0.5--1.5GHZ ②杂波传感器检测波段:300~3000㎒波段③同轴电缆外置式传感器检测UHF波段的局部放电电磁信号,安装在开放式型盆式绝缘子上。
杂波传感器,是为了区别局部放电信号和杂波信号,检测PAMOS 周围的环境杂波信号。
安装方式:底部使用强磁铁固定在GIS 的CD\CS等部位。
与便携式GIS局部放电诊断装置通信,通过网线与局放主机连接。
三、检测操作流程1)被检测设备基本信息登记GIS生产厂家、型号、投运年份、历年故障信息、检测点名称等。
2)仪器连接1.连接诊断装置本体和手提电脑的电源电缆。
2.利用TCP/IP LAN连接本体和手提电脑。
3.将检测的传感器和环境传感器利用同轴电缆连接到装置(传感器连接必须与相应的端口对应,否则损坏设备)。
GIS特高频局部放电检测方法总结GIS(气体绝缘开关设备)是一种重要的电力设备,被广泛应用于输电和配电系统中。
由于其结构复杂,局部放电(PD)是GIS故障的一种常见现象。
因此,对GIS中的局部放电进行及时检测和监测对于确保设备的安全运行至关重要。
本文将对GIS中局部放电检测方法进行总结,以期为相关研究和应用提供参考。
一、传统局部放电检测方法1.高频电流法:利用高频电流变压器探测局部放电产生的高频电流信号,通过信号分析方法确定局部放电发生位置和程度。
该方法具有较高的灵敏度和定位精度,但需要在设备中添加电流变压器,且相对复杂。
2.空气声法:通过接收局部放电产生的空气声波信号,结合声学定位方法确定局部放电发生位置。
该方法简单易行,但受环境噪声影响较大,定位精度较低。
3.热成像法:通过红外热像仪对设备表面进行扫描,观察设备是否存在温升现象,进而判断是否存在局部放电现象。
该方法实施简单,但仅能检测到已经导致设备表面温升的局部放电。
二、基于传感器的局部放电检测方法1.声发射传感器:通过安装在设备表面的传感器捕捉局部放电产生的声波信号,从而判断局部放电发生的位置和程度。
该方法相对简单且灵敏度较高,但受环境噪声干扰较大。
2.电场传感器:利用电容传感器测量设备表面的电场分布,通过分析电场信号判断局部放电发生的位置和程度。
该方法相对便捷,但受到金属外壳的干扰较大。
3.红外成像传感器:通过红外成像设备获取设备表面的温度图像,观察是否存在局部放电导致的温升现象。
该方法可以直观地显示设备的热分布情况,但无法提供放电信号定位信息。
三、基于信号处理方法的局部放电检测方法1.高频脉冲电流法:通过分析设备上的高频脉冲电流信息,识别局部放电的特征信号。
该方法可以准确判断局部放电的发生位置、程度和特征频率,但需要专业的信号处理技术。
2.波导方法:利用波导传感器测量设备内部的电场分布,以实现对局部放电的监测和定位。
该方法可以准确测量局部放电的高频电场信号,但设备的内部结构较为复杂,安装和调试困难。
电力设备高频局部放电测试仪一般由高频电流传感器、相位信息传感器、信号采集单元、信号处理单元和数据处理终端和显示交互单元等构成。
高频局部放电检测仪器应经具有资质的相关部门校验合格,并按规定粘贴合格标志。
a)按照设备接线图连接测试仪各部件,将传感器固定在盆式绝缘子非金属封闭处,传感器应与盆式绝缘子紧密接触并在测量过程保持相对静止,并避开紧固绝缘盆子螺栓,将检测仪相关部件正确接地,电脑、检测仪主机连接电源,开机。
b)开机后,运行检测软件,检查仪器通信状况、同步状态、相位偏移等参数。
c)进行系统自检,确认各检测通道工作正常。
d)设置变电站名称、检测位置并做好标注。
对于GIS 设备,利用外露的盆式绝缘子处或内置式传感器,在断路器断口处、隔离开关、接地开关、电流互感器、电压互感器、避雷器、导体连接部件等处均应设置测试点。
一般每个GIS间隔取2~3点,对于较长的母线气室,可5~10米左右取一点,应保持每次测试点的位置一致,以便于进行比较分析。
e)将传感器放置在空气中,检测并记录为背景噪声,根据现场噪声水平设定各通道信号检测阈值。
f)打开连接传感器的检测通道,观察检测到的信号,测试时间不少于30秒。
如果发现信号无异常,保存数据,退出并改变检测位置继续下一点检测。
如果发现信号异常,则延长检测时间并记录多组数据,进入异常诊断流程。
必要的情况下,可以接入信号放大器。
测量时应尽可能保持传感器与盆式绝缘子的相对静止,避免因为传感器移动引起的信号而干扰正确判断。
g)记录三维检测图谱,在必要时进行二维图谱记录。
每个位置检测时间要求30s,若存在异常,应出具检测报告(格式见附录A)。
h)如果特高频信号较大,影响GIS 本体的测试,则需采取干扰抑制措施,排除干扰信号,干扰信号的抑制可采用关闭干扰源、屏蔽外部干扰、软硬件滤波、避开干扰较大时间、抑制噪声、定位干扰源、比对典型干扰图谱等方法。