矩阵不等式】
- 格式:pdf
- 大小:165.88 KB
- 文档页数:13
矩阵的柯西施瓦茨不等式
矩阵的柯西施瓦茨不等式是线性代数的一个重要不等式,它适用于任意两个向量的内积。
对于任意两个n维向量x和y,柯
西施瓦茨不等式可以表达为:
|x·y| ≤ ||x|| ||y||
其中,x·y表示向量x和y的内积,即x1y1 + x2y2 + ... + xnyn,||x||表示向量x的范数(也就是向量的长度),表示为√(x1^2 + x2^2 + ... + xn^2)。
柯西施瓦茨不等式也可以用矩阵的形式表示。
对于两个列向量
x和y,它们可以组成一个矩阵A=[x y]。
那么柯西施瓦茨不等式可表示为:
|A'| ≤ ||x|| ||y||
其中,A'表示矩阵A的转置矩阵,||x||和||y||表示向量x和y的
范数。
柯西施瓦茨不等式的一个重要推论是当且仅当x和y线性相关时,等号成立。
也就是说,向量x和y平行时,它们的内积的绝对值等于它们的范数之积。
柯西施瓦茨不等式在很多领域有广泛的应用,特别是在数学分析和信号处理等领域。
它可以用来证明向量范数的性质,以及推导其他重要不等式,如三角不等式等。
矩阵不等式理论及其在控制理论中的应用矩阵不等式理论是现代数学中的一个重要分支,其在控制理论领域中扮演着重要角色。
本文将介绍矩阵不等式理论的基本概念,讨论其在控制理论中的应用,并探讨相关研究的前沿发展。
一、矩阵不等式理论的基本概念1.1 矩阵基础知识在讨论矩阵不等式理论之前,我们首先需要了解一些矩阵的基础知识。
矩阵是由一些数构成的矩形阵列,可以表示为$m\times n$的矩阵$A$:$A=[a_{ij}]_{m\times n}$,其中$a_{ij}$表示第$i$行第$j$列元素。
1.2 矩阵不等式定义矩阵不等式是对矩阵中元素的一种约束条件。
常见的矩阵不等式有大于等于不等式、小于等于不等式、严格大于不等式和严格小于不等式。
比如对于两个矩阵$A$和$B$,$A\geq B$表示对应元素满足$a_{ij}\geq b_{ij}$。
二、矩阵不等式理论在控制理论中的应用2.1 线性矩阵不等式线性矩阵不等式是矩阵不等式理论的重要应用之一。
在控制理论中,通过线性矩阵不等式可以描述线性系统的性能和稳定性。
线性矩阵不等式的求解可以通过线性矩阵不等式方法或凸优化方法来实现。
2.2 非线性矩阵不等式除了线性矩阵不等式,非线性矩阵不等式也在控制理论中起到关键作用。
非线性矩阵不等式可以描述非线性系统的性能和稳定性。
然而,非线性矩阵不等式的求解相较于线性矩阵不等式更加复杂,需要运用数值计算和最优化等方法。
2.3 随机矩阵不等式随机矩阵不等式是指矩阵不等式中包含随机变量的情况。
在控制理论中,随机矩阵不等式可用于描述带有随机干扰的系统的性能和鲁棒稳定性问题。
随机矩阵不等式的求解方法包括最优化方法和随机矩阵计算方法。
三、矩阵不等式理论的前沿发展矩阵不等式理论在控制理论中的应用仍在不断发展。
近年来,针对矩阵不等式理论的研究趋势主要体现在以下几个方面:3.1 非线性矩阵不等式的求解算法改进由于非线性矩阵不等式的求解复杂度较高,需要运用数值计算和最优化等方法。
控制论常用的矩阵不等式控制论是一门研究如何通过控制手段来实现系统稳定、优化和鲁棒性的学科,而矩阵不等式则是控制论中常用的数学工具之一。
本文将介绍控制论中常用的几种矩阵不等式,并讨论其在控制系统设计中的应用。
1. 线性矩阵不等式(LMI)线性矩阵不等式是控制论中最常用的矩阵不等式之一。
它的形式为:$$A(x)X+B(x)Y+C^{T}(x)YC(x)<0$$其中,$A(x)$、$B(x)$、$C(x)$均为实系数矩阵函数,$X$、$Y$均为矩阵变量。
该不等式表示的是矩阵函数$A(x)$、$B(x)$、$C(x)$构成的线性系统对应的闭环系统是渐进稳定的,即对任意的初值$x_0$,系统的输出$y(t)$都会收敛到零。
2. Lyapunov矩阵不等式Lyapunov矩阵不等式是控制论中另一种常用的矩阵不等式。
它的形式为:$$A^{T}P+PA<-Q$$其中,$A$为系统的状态转移矩阵,$P$为对称正定矩阵,$Q$为对称正定矩阵。
该不等式表示的是系统的Lyapunov函数$V(x)=x^{T}Px$满足$V(x)leqslant-alpha x^{T}x$,其中$alpha$是正常数。
3. Riccati矩阵不等式Riccati矩阵不等式也是控制论中常用的矩阵不等式之一。
它的形式为:$$A^{T}P+PA-PBR^{-1}B^{T}P<-Q$$其中,$A$、$B$为系统的状态转移矩阵和输入矩阵,$P$为对称正定矩阵,$R$为对称正定矩阵。
该不等式表示的是系统的最优控制输入满足线性方程$u=-R^{-1}B^{T}Px$。
4. Schur矩阵不等式Schur矩阵不等式是控制论中最基本的矩阵不等式之一。
它的形式为:$$Mprec N$$其中,$M$、$N$为两个对称矩阵,$prec$表示矩阵的部分序。
该不等式表示的是矩阵$N-M$是正定的。
总之,矩阵不等式在控制论中具有广泛的应用,可以用于系统稳定性分析、最优控制设计和鲁棒性分析等领域。
矩阵的几个不等式1. 矩阵的不等式定义:矩阵的不等式指的是一组矩阵的元素之间的比较,它可以是大于、小于或等于关系。
矩阵的不等式可以表示为A≤B,其中A和B分别是两个矩阵,A≤B表示A中的每个元素都小于等于B中的对应元素。
## 2. 矩阵的不等式性质1. 对于任意的n阶矩阵A,有A+A≥A;2. 对于任意的n阶矩阵A,有A+A≤2A;3. 对于任意的n阶矩阵A,有A+A≠A;4. 对于任意的n阶矩阵A,有A+A≠2A;5. 对于任意的n阶矩阵A,有A+A≥2A;6. 对于任意的n阶矩阵A,有A+A≤A;7. 对于任意的n阶矩阵A,有A+A≠0;8. 对于任意的n阶矩阵A,有A+A≠-A;9. 对于任意的n阶矩阵A,有A+A≥0;10. 对于任意的n阶矩阵A,有A+A≤-A。
3. 矩阵的不等式应用矩阵的不等式应用可以用于多种情况,如矩阵的范数估计、矩阵的特征值估计、矩阵的迹估计、矩阵的奇异值估计、矩阵的乘积估计等。
此外,矩阵的不等式应用还可以用于求解线性方程组、求解矩阵的逆等问题。
此外,矩阵的不等式应用还可以用于矩阵的正定性判断、矩阵的正交性判断等。
#### 4. 矩阵的不等式推导1. 对于矩阵A,若A的行列式不为零,则有A的逆矩阵存在;2. 若A的行列式为零,则A的逆矩阵不存在;3. 对于任意矩阵A,有A+A的逆矩阵存在;4. 对于任意矩阵A,有A*A的逆矩阵存在;5. 对于任意矩阵A,有A*A+A的逆矩阵存在;6. 对于任意矩阵A,有A*A*A的逆矩阵存在;7. 对于任意矩阵A,有A*A*A+A的逆矩阵存在;8. 对于任意矩阵A,有A*A*A*A的逆矩阵存在;9. 对于任意矩阵A,有A*A*A*A+A的逆矩阵存在。
5. 矩阵的不等式变换:矩阵的不等式变换是指将一个矩阵中的不等式变换为另一个矩阵,这样可以更容易地解决矩阵的不等式问题。
变换的方法有很多,比如可以使用行列式,矩阵乘法,矩阵加法,矩阵转置等。
矩阵不等式的证明及其应用一矩阵的秩在矩阵理论中起着非常重要的作用, 矩阵的秩是矩阵的一个重要不变量, 初等变换不改变矩阵的秩, 矩阵的秩有一定的规律, 我们有下面一些基本的不等式:Frobenius 不等式: R(ABC) ≥R(AB)+R(BC)-R(B) (1) R(A)-R(B) ≤ R(A±B) ≤ R(A)+R(B) (2) Sylvester 不等式:R(A)+R(B) - n≤R(AB)≤min( R(A),R(B) )(3)对于(1) , (2), (3) 三个不等式有不同的证明和理解,在这里我们利用分块矩阵的知识,来论证上面的结论.在论证之前,我们先来探讨分块矩阵秩的一些性质.矩阵的秩满足一定的规律,同样在分块矩阵中,它们的秩也有一定的规律可寻.利用矩阵的一些基本的不等式,我们对分块矩阵的秩进行探讨.(1)我们首先从特殊的分块矩阵分析,形如A OB C⎛⎫⎪⎝⎭或A BC⎛⎫⎪⎝⎭或0AB C⎛⎫⎪⎝⎭定理1 设A是n阶矩阵,B和C分别是m⨯n矩阵和m⨯1矩阵, 则R(A)+R(C) ≤R(AB C⎛⎫⎪⎝⎭) ≤ min{}m+R(A), n+R(C)证明:AB C⎛⎫⎪⎝⎭=mAB I⎛⎫⎪⎝⎭nCI⎛⎫⎪⎝⎭因为RAB C⎛⎫⎪⎝⎭= R(mAB I⎛⎫⎪⎝⎭nCI⎛⎫⎪⎝⎭)≥ R(mAB I⎛⎫⎪⎝⎭) + R(nCI⎛⎫⎪⎝⎭) - (n+m)= R(A)+R(mI)+ R(n I) +R(C)- (n+m)= R(A) + R(C) (1)又由于 R(0A B C ⎛⎫⎪⎝⎭) = R(0m A B I ⎛⎫ ⎪⎝⎭00n C I ⎛⎫⎪⎝⎭) ≤ min{ R(0m AB I ⎛⎫⎪⎝⎭),R(00n C I ⎛⎫ ⎪⎝⎭) }= min {}m+R(A), n+R(C) (2)综合(1) (2)两式, 故 R(A)+R(C) ≤ R(0A B C ⎛⎫⎪⎝⎭) ≤min {}m+R(A), n+R(C)定理2 设A 为n 阶距阵,B 为n ⨯1矩阵,C 为m ⨯1矩阵, 则R(A)+R(C) ≤ R(A B O C ⎛⎫⎪⎝⎭) ≤ min{ n+R(C), 1+R(A) }证明: 0A B C ⎛⎫⎪⎝⎭ = 0n B C I ⎛⎫⎪⎝⎭100A I ⎛⎫⎪⎝⎭ 因为 R(0A B C ⎛⎫⎪⎝⎭) = R(0n B C I ⎛⎫ ⎪⎝⎭100A I ⎛⎫ ⎪⎝⎭≥ R(0n B C I ⎛⎫⎪⎝⎭) + R(100A I ⎛⎫⎪⎝⎭) - (n+1) = R (n I ) + R (C ) + R(A) + R (1I ) - (n+1) = R(C) + R(A) (1)又由于R(0A B C ⎛⎫⎪⎝⎭) = R(0n B C I ⎛⎫⎪⎝⎭100A I ⎛⎫⎪⎝⎭≤ min{ R(0n B C I ⎛⎫⎪⎝⎭),R(100A I ⎛⎫ ⎪⎝⎭} = min{ n+R(C), 1+R(A) } (2)综合(1),(2) 两式,故R(A)+R(C) ≤R(A BO C⎛⎫⎪⎝⎭)≤ min{ n+R(C), 1+R(A) }定理3 设A是n阶矩阵,B和C分别是m⨯1矩阵和m⨯n矩阵,则 R(A) + R(B) ≤ R(0AB C⎛⎫⎪⎝⎭) ≤ min{}m+R(A), n+R(B)证明:0AB C⎛⎫⎪⎝⎭=mAI C⎛⎫⎪⎝⎭nBI⎛⎫⎪⎝⎭因为R(0AB C⎛⎫⎪⎝⎭) = R(mAI C⎛⎫⎪⎝⎭nBI⎛⎫⎪⎝⎭)≥ R(mAI C⎛⎫⎪⎝⎭) + R(nBI⎛⎫⎪⎝⎭) - (n+m)= R(A)+R(mI)+ R(n I)+R(B)- (n+m) = R(A) + R(B) (1)又由于R(0AB C⎛⎫⎪⎝⎭) = R(mAI C⎛⎫⎪⎝⎭nBI⎛⎫⎪⎝⎭)≤ min{ R(mAI C⎛⎫⎪⎝⎭),R(nBI⎛⎫⎪⎝⎭) }= min{}m+R(A), n+R(B)(2)综合(1) (2)两式, 故R(A)+R(B) ≤R(0AB C⎛⎫⎪⎝⎭) ≤ min{}m+R(A), n+R(B)(2) 我们分析了特殊情况后,接着探讨一下一般情形,形如A BC D ⎛⎫ ⎪⎝⎭.定理4 设A为n阶矩阵,其中B是n⨯1矩阵,C是m⨯n矩阵,D是m⨯1矩阵, 则R(A B C D ⎛⎫ ⎪⎝⎭) ≤ min{ m+R(A)+R(B), n+R(D)+R(B) }证明: 因为 A B C D ⎛⎫ ⎪⎝⎭ = 0A C D ⎛⎫ ⎪⎝⎭ + 000B ⎛⎫⎪⎝⎭所以 R(A B C D ⎛⎫ ⎪⎝⎭) = R(0A C D ⎛⎫ ⎪⎝⎭ + 000B ⎛⎫⎪⎝⎭)≤ R(0A C D ⎛⎫ ⎪⎝⎭) + R(000B ⎛⎫⎪⎝⎭)≤ min{ m + R(A), n + R(D)} + R(B)= min { m+R(A)+R(B), n+R(D)+R(B) } 证毕二 分块矩阵是讨论矩阵的重要手段,利用分块矩秩的不等式,可以系统地推证关于矩阵秩的一些结论,在这里我们利用上面得出的一些定理来证明矩阵秩的某些性质.在证明性质之前,为了便于证明,首先介绍一个引理:引理1 R(AB) ≤ min{R(A),R(B)}, 特别当A ≠0时, R(AB) = R(B)(1) A, B 都是m ⨯n 矩阵, 则R(A+B) ≤ R(A)+R(B)证明: 由于A + B = (m I m I )00A B ⎛⎫ ⎪⎝⎭nn I I⎛⎫⎪⎝⎭由引理1得: R(A+B) = R ((m I m I )00A B ⎛⎫ ⎪⎝⎭nn I I ⎛⎫⎪⎝⎭) ≤R (00A B ⎛⎫ ⎪⎝⎭nn I I⎛⎫ ⎪⎝⎭) ≤ R (00A B ⎛⎫⎪⎝⎭)= R(A) + R(B)故 R(A+B) ≤ R(A)+R(B)(2) 设A 为m ⨯n 矩阵,B 为n ⨯s 矩阵,且A B=0, 则R(A) + R(B) ≤n证明: n n n n A O AAB A O I B I O I B I B O O ⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由引理1得: R(n A O I B ⎛⎫ ⎪⎝⎭) ≤ R(n A O I O ⎛⎫⎪⎝⎭)由定理1得: R(n A O I B ⎛⎫⎪⎝⎭) ≥ R(A) + R(B)又mn n n I A A O O O O I I O I O -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭且 0mnI A OI -≠由引理1得: R(n O O I O ⎛⎫ ⎪⎝⎭ = R(n A O I O ⎛⎫⎪⎝⎭) = n由定理1得: R(A)+R(B) ≤ R(n A O I B ⎛⎫ ⎪⎝⎭ ≤ R(n A O I O ⎛⎫ ⎪⎝⎭) = R(000nI ⎛⎫⎪⎝⎭) = n 从而有 R(A) + R(B) ≤ n(3) 设A 是m ⨯ n 矩阵,B 是n ⨯s 矩阵,则 R(AB) ≥ R(A) +R(B) - n证明: 000sn n n AB I AB O I B I B I ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 且0s nI o BI ≠, 由引理1得:R(AB)+ R(n I ) = R(0n AB B I ⎛⎫⎪⎝⎭)即 R(AB) + n = R(0n AB B I ⎛⎫⎪⎝⎭) (1)又00mn n n IA AB O A I B I B I -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭且00m nI A I -≠, 由引理1,定理3得:R(0n AB B I ⎛⎫⎪⎝⎭) = R(n O A B I ⎛⎫⎪⎝⎭) ≥R(A)+R(B) (2)由(1), (2) 得: R(AB) ≥ R(A)+R(B) – n(4) 设A,B,C 分别是m ⨯n,n ⨯s,s ⨯t 矩阵,则 R(ABC)≥ R(AB) + R(BC) - R(B)证明: 因为 0000mn I A ABC ABC AB I B B ⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 且 0;:0m nI A I ≠由引理1得R(ABC) + R(B) = R 0ABCAB B ⎛⎫⎪⎝⎭(1) 又因为 0ABCAB B ⎛⎫⎪⎝⎭000ts I AB CI BC B -⎛⎫⎛⎫=≠ ⎪ ⎪⎝⎭⎝⎭t s - I 0且C I由引理1定理3得: R 0ABCAB B ⎛⎫⎪⎝⎭ = R 0()()AB R AB R BC BC B ⎛⎫≥+ ⎪⎝⎭(2) 由(1) (2)得: R(ABC) ≥ R(AB) + R(BC) - R(B) (5)如果 秩(A-I ) = r, 秩( B-I ) = s, 则 秩(AB-I ) ≤ r + s .证明: 令X = 00A IB I -⎛⎫⎪-⎝⎭则: 秩X = r + s由00A IB I -⎛⎫ ⎪-⎝⎭0I B I ⎛⎫ ⎪⎝⎭ = 0A I AB B B I --⎛⎫⎪-⎝⎭且 0I B I≠0 , 由引理1得:R (00A IB I -⎛⎫⎪-⎝⎭) = R(0A IAB B B I --⎛⎫⎪-⎝⎭) = r + s (1) 又因为 0I I I ⎛⎫ ⎪⎝⎭0A IAB B B I --⎛⎫⎪-⎝⎭ = 0A IAB I B I --⎛⎫⎪-⎝⎭得 R(0A IAB I B I --⎛⎫⎪-⎝⎭) ≥ R(AB-I ) (2) 且00I II≠ , 由引理1得:R(0A I AB B B I --⎛⎫ ⎪-⎝⎭) = R(0A IAB I B I --⎛⎫⎪-⎝⎭) (3) 综合 (1) (2) (3) 式可: R(AB-I ) ≤ r + s参考文献[1]樊恽主编. 代数学词典. 武汉: 华中师范大学出版社, 1994.[2] 高等数学研究. 2003.01.[3]北京大学数学系编. 高等代数. 高等教育出版社.[4]张禾瑞.郝炳新主编.高等代数.高等教育出版社.[5]华东师范大学学报.2002.04.[6]西北师范大学学报.1989.01.。
矩阵不等式矩阵不等式在近几年的高考中是一个热点,它常与导数、数列相结合。
通过学习掌握解答此类问题的基本思想和方法对今后的学习很有帮助。
所谓“矩阵”就是含有未知数的方程组,而不等式就是一种方程组。
把矩阵写成方程组来研究具体的不等式是非常简便易行的办法。
矩阵的秩即是不等式的解集,当然矩阵的秩越大解集也就越大了。
因为每个矩阵都包含两个元素,所以每个矩阵都至少有一个零向量。
任何满足条件的多项式都能表示为不等式组的形式,这些多项式称为函数。
如果仅仅根据多项式的系数和不等式的解集的关系,我们可以找出许多不等式,但这样做太麻烦了,还容易产生误解。
因此,人们希望寻找更简单的方法来确定方程组的系数和不等式的解集。
一般地说,要使用数值方法。
其实数值方法的原理并不复杂,主要涉及的计算方法有迭代法、牛顿法、插值法、数值积分法等。
用这些方法处理求不等式的解集是十分直观、迅速的,从而显著提高了运算效率。
矩阵不等式的求解属于求函数的极值或最值,一般情况下求解较为困难,特别是选择适宜的初始值、求解过程中的迭代步骤、代入方法以及解决可行性问题的变换手段等。
解答这类问题时,首先要明确已知量与待求量的范围,也就是问什么?求哪些量?怎么去求呢?总的原则:能用初等变换化为已知量的等价或不等式,尽量利用初等变换;若不能转化则将待求量代入原方程组,再判断原方程组是否有实数根。
遇到二次不等式,应分类讨论,不能一刀切,特殊情况除外。
如果你觉得有用请记得收藏哦!谢谢!首先应注意不同级别之间的关系,对于复杂方程组,需采用列写一般的线性方程组的方法(本节没有介绍),反之比较简单。
矩阵不等式的数学模型:令 v 是一个方程组 ax= b 的一个系数矩阵,则ax= b 关于不等式 p (a>0)有下面的基本结论:1. a≥0时, p (a<0)=0。
2.当a≤0且 a>0时,p (a)≤0;当 a<0时,p (a)≥0。
3. a≥0时,p (x<0)≥0。