线性矩阵不等式
- 格式:ppt
- 大小:401.00 KB
- 文档页数:51
控制论常用的矩阵不等式控制论是一门研究如何通过控制手段来实现系统稳定、优化和鲁棒性的学科,而矩阵不等式则是控制论中常用的数学工具之一。
本文将介绍控制论中常用的几种矩阵不等式,并讨论其在控制系统设计中的应用。
1. 线性矩阵不等式(LMI)线性矩阵不等式是控制论中最常用的矩阵不等式之一。
它的形式为:$$A(x)X+B(x)Y+C^{T}(x)YC(x)<0$$其中,$A(x)$、$B(x)$、$C(x)$均为实系数矩阵函数,$X$、$Y$均为矩阵变量。
该不等式表示的是矩阵函数$A(x)$、$B(x)$、$C(x)$构成的线性系统对应的闭环系统是渐进稳定的,即对任意的初值$x_0$,系统的输出$y(t)$都会收敛到零。
2. Lyapunov矩阵不等式Lyapunov矩阵不等式是控制论中另一种常用的矩阵不等式。
它的形式为:$$A^{T}P+PA<-Q$$其中,$A$为系统的状态转移矩阵,$P$为对称正定矩阵,$Q$为对称正定矩阵。
该不等式表示的是系统的Lyapunov函数$V(x)=x^{T}Px$满足$V(x)leqslant-alpha x^{T}x$,其中$alpha$是正常数。
3. Riccati矩阵不等式Riccati矩阵不等式也是控制论中常用的矩阵不等式之一。
它的形式为:$$A^{T}P+PA-PBR^{-1}B^{T}P<-Q$$其中,$A$、$B$为系统的状态转移矩阵和输入矩阵,$P$为对称正定矩阵,$R$为对称正定矩阵。
该不等式表示的是系统的最优控制输入满足线性方程$u=-R^{-1}B^{T}Px$。
4. Schur矩阵不等式Schur矩阵不等式是控制论中最基本的矩阵不等式之一。
它的形式为:$$Mprec N$$其中,$M$、$N$为两个对称矩阵,$prec$表示矩阵的部分序。
该不等式表示的是矩阵$N-M$是正定的。
总之,矩阵不等式在控制论中具有广泛的应用,可以用于系统稳定性分析、最优控制设计和鲁棒性分析等领域。
LMI:Linear Matrix Inequality,就是线性矩阵不等式。
在Matlab当中,我们可以采用图形界面的lmiedit命令,来调用GUI接口,但是我认为采用程序的方式更方便(也因为我不懂这个lmiedit的GUI)。
对于LMI Lab,其中有三种求解器(solver): feasp,mincx和gevp。
每个求解器针对不同的问题:feasp:解决可行性问题(feasibility problem),例如:A(x)<B(x)。
mincx:在线性矩阵不等式的限制下解决最小化问题(Minimization of a linear objective under LMI constraints),例如最小化c'x,在限制条件A(x) < B(x)下。
gevp:解决广义特征值最小化问题。
例如:最小化lambda,在0<B(x),A(x)<lamba*B(x)限制条件下。
要解决一个LMI问题,首要的就是要把线性矩阵不等式表示出来。
对于以下类型的任意的LMI问题N' * L(X1, . . . , XK) * N < M' * R(X1, . . . , XK) * M其中X1, . . . , XK是结构已经事先确定的矩阵变量。
左侧和右侧的外部因子(outer factors)N和M是给定的具有相同维数的矩阵。
左侧和右侧的内部因子(inner factors)L(.)和R(.)是具有相同结构的对称块矩阵。
每一个块由X1, . . . , XK以及它们的转置组合而成形成的。
解决LMI问题的步骤有两个:1、定义维数以及每一个矩阵的结构,也就是定义X1, . . . , XK。
2、描述每一个LMI的每一项内容(Describe the term content of each LMI)此处介绍两个术语:矩阵变量(Matrix Variables):例如你要求解X满足A(x)<B(x),那么X就叫做矩阵变量。
LMI:Linear Matrix Inequality,就是线性矩阵不等式。
在Matlab当中,我们可以采用图形界面的lmiedit命令,来调用GUI接口,但是我认为采用程序的方式更方便(也因为我不懂这个lmiedit的GUI)。
对于LMI Lab,其中有三种求解器(solver):feasp,mincx和gevp。
每个求解器针对不同的问题:feasp:解决可行性问题(feasibility problem),例如:A(x)<B(x)。
mincx:在线性矩阵不等式的限制下解决最小化问题(Minimization of a linear objective under LMI constraints),例如最小化c'x,在限制条件A(x) < B(x)下。
gevp:解决广义特征值最小化问题。
例如:最小化lambda,在0<B(x),A(x)<lamba*B(x)限制条件下。
要解决一个LMI问题,首要的就是要把线性矩阵不等式表示出来。
对于以下类型的任意的LMI问题N' * L(X1, . . . , XK) * N < M' * R(X1, . . . , XK) * M其中X1, . . . , XK是结构已经事先确定的矩阵变量。
左侧和右侧的外部因子(outer factors)N和M是给定的具有相同维数的矩阵。
左侧和右侧的内部因子(inner factors)L(.)和R(.)是具有相同结构的对称块矩阵。
每一个块由X1, . . . , XK以及它们的转置组合而成形成的。
解决LMI问题的步骤有两个:1、定义维数以及每一个矩阵的结构,也就是定义X1, . . . , XK。
2、描述每一个LMI的每一项内容(Describe the term content of each LMI)此处介绍两个术语:矩阵变量(Matrix Variables):例如你要求解X满足A(x)<B(x),那么X就叫做矩阵变量。
一、线性矩阵不等式的LMI 工具箱求解 (一)可行性问题(LMIP )1、可行性问题描述系统状态方程:[]11223301000210-414x x x x u x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦&&& 在判断系统的稳定性时,根据线性定常系统的李雅普诺夫稳定性判据,需要判断是否存在实对称矩阵P ,使得:T A P+PA=Q -成立,其中Q 为正定矩阵。
那么判断系统稳定性的问题,可以转化为下面不等式是否存在解的问题:T A P+PA<0这种不等式解是否存在的问题可以用MATLAB 的LMI 工具箱进行判断。
2、仿真所需要用到的命令setlmis([]) :开始一个线性矩阵不等式系统的描述; X= lmivar(TYPE,STRUCT):定义一个新的矩阵变量;lmiterm(TERMID,A,B,FLAG):确定线性矩阵不等式的一个项的内容; LMISYS = getlmis :结束一个线性矩阵不等式系统的描述,返回这个现行矩阵不等式系统的内部表示向量LMISYS ;X = dec2mat(LMISYS,DECVARS,XID):由给定的决策变量得到相应的矩阵变量值。
[tmin,xfeas]=feasp(lmisys):可行性问题的求解器函数,tmin大于0时,表明LMI系统不可行,P阵无解,系统不稳定,tmin小于0时,便可以用dec2mat 函数求解出P矩阵。
3、仿真结果可以看到,仿真结果tmin<0,因此P阵存在,系统是稳定的。
进一步用dec2mat 函数求解出P 矩阵。
得:(二)特征值问题(EVP)1、EVP 问题描述该问题对应矩阵工具箱中的LMI 约束的线性目标函数最小化优化问题。
一般采用mincx 求解器求解。
考虑这样一个优化问题:min ().. 0TTTrace X s t A X XA XBB X Q +++<其中:5342154067; 3; 562.78314228A B Q -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭2、仿真用到的命令DECVARS = mat2dec(LMISYS,X1,X2,X3,...) :由给定的矩阵变量得到相应的决策变量值;[copt,xopt]=mincx(LMIs,c,options):用于给定的特征值问题求解,copt 返回全局最优的决策变量,xopt 返回决策变量的最优解。
线性矩阵不等式是一种数学关系,它可以用来描述矩阵之间的线性关系。
它把一个矩阵的元素和另一个矩阵的元素比较,以表达它们之间的线性关系。
它可以用来比较两个矩阵之间的差异,也可以用来比较两个矩阵之间的相似度。
线性矩阵不等式的具体形式是:A,B两个矩阵,其中A和B的元素之间的比较关系可以写成a_ij ≤ b_ij,其中i表示A矩阵的行号,j表示A矩阵的列号,a_ij表示A矩阵第i行第j列的元素,b_ij表示B矩阵第i行第j列的元素。
线性矩阵不等式的应用非常广泛,它可以用来求解矩阵的最大值和最小值,可以用来解决线性规划问题,也可以用来求解矩阵的最优解。
总之,它是一种重要的数学工具,在线性代数中有着重要的应用。
离散代数riccati方程 lmi离散代数Riccati方程与LMI引言离散代数Riccati方程(Discrete Algebraic Riccati Equation)是控制论和系统科学中的一个重要问题。
它可以通过线性矩阵不等式(Linear Matrix Inequality,LMI)来表示和求解。
在本文中,我们将介绍离散代数Riccati方程与LMI之间的关系,探讨其应用和解决方法。
离散代数Riccati方程简介离散代数Riccati方程是一类特殊的代数方程,形式如下:X=A T XA−A T XB(R+B T XB)−1B T XA+Q其中,X是未知矩阵,A和B是已知矩阵,Q和R是给定的对称矩阵。
Riccati方程的求解对于控制系统的稳定性和性能分析具有重要意义。
线性矩阵不等式(LMI)线性矩阵不等式是描述矩阵约束条件的不等式。
LMI的一般形式如下:F(X)≼0其中,X 是待求矩阵,F (X ) 是关于 X 的线性函数。
LMI 的解集合可以表示为一组矩阵的集合。
Riccati 方程与LMI 的关系Riccati 方程和LMI 之间存在紧密的关系。
事实上,离散代数Riccati 方程可以转化为一个LMI 问题。
通过引入新的变量和约束,可以将Riccati 方程重新表述为LMI 形式,进而可以使用现有的LMI 求解方法来求解Riccati 方程。
具体而言,我们定义下面的矩阵和变量:X =[X 11X 12X 21X 22], Z =[X 11X 12X 21X 22]T F (X )=[X 11−A T X 11A +Q X 11A −X 12+A T X 21⋆X 22−R] 其中,⋆ 表示可以任意取值的元素。
通过对矩阵 F (X ) 的约束条件进行推导和求解,可以得到Riccati 方程的解。
Riccati 方程的求解方法Riccati 方程是一个重要的非线性方程,其求解是一个复杂的问题。
线性矩阵不等式在控制工程中的应用线性矩阵不等式(Linear Matrix Inequality,简称LMI)是一种常见且重要的数学工具,它在控制工程领域中得到广泛应用。
本文将着重介绍LMI的基本概念、应用场景以及在控制工程中的具体应用。
一、LMI的基本概念LMI是一种线性约束条件下的矩阵不等式,一般形式为:P > 0(表示矩阵P是正定的),或F(A, B, C) > 0(表示关于矩阵A、B、C的函数F大于零)。
LMI的解集是所有满足该矩阵不等式条件的矩阵组成的集合。
LMI问题通常可以通过利用凸优化方法进行求解。
二、LMI的应用场景LMI广泛应用于控制工程领域,其中最主要的应用场景包括:1. 系统稳定性分析与设计:通过构建LMI来分析系统的稳定性,并设计稳定控制器,以确保系统在不同工况下具有良好的稳定性。
2. 鲁棒控制设计:在存在不确定性或测量噪声的情况下,通过LMI技术设计鲁棒控制器,使系统具有鲁棒性能。
3. 最优控制设计:通过最小化LMI问题的目标函数,优化控制设计,实现系统的最优性能。
4. 过程控制与优化:利用LMI技术设计控制器,通过对系统的状态变量、输入变量进行优化,实现过程控制与优化。
5. 非线性控制器设计:通过线性化方法将非线性系统线性化,并将其表示为LMI形式,从而设计出最优的线性控制器。
三、LMI在控制工程中的具体应用1. 鲁棒控制:对于具有不确定性的系统,通过建立LMI,设计鲁棒控制器,以提高系统的稳定性和鲁棒性能。
2. H∞控制:利用LMI方法设计H∞控制器,使系统对不确定性和噪声具有良好的鲁棒性能,同时最小化系统对外界干扰的敏感度。
3. 状态反馈控制:通过LMI技术设计状态反馈控制器,实现系统状态的稳定性和快速响应。
4. 参数估计:利用LMI方法设计参数估计器,对系统的未知参数进行在线估计,以提高系统的自适应性能。
5. 面向网络控制系统的设计:通过LMI技术,设计满足网络控制系统带宽约束的控制器,以保证系统的稳定性和性能。